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Evolution of the rate of biological aging using a

phenotype based computational model

Aristotelis Kittas

Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

In this work I introduce a simple model to study how natural selection acts
upon aging, which focuses on the viability of each individual. It is able to
reproduce the Gompertz law of mortality and can make predictions about the
relation between the level of mutation rates (beneficial/deleterious/neutral),
age at reproductive maturity and the degree of biological aging. With no
mutations, a population with low age at reproductive maturity R stabilizes at
higher density values, while with mutations it reaches its maximum density,
because even for large pre-reproductive periods each individual evolves to
survive to maturity. Species with very short pre-reproductive periods can
only tolerate a small number of detrimental mutations. The probabilities
of detrimental (Pd) or beneficial (Pb) mutations are demonstrated to greatly
affect the process. High absolute values produce peaks in the viability of the
population over time. Mutations combined with low selection pressure move
the system towards weaker phenotypes. For low values in the ratio Pd/Pb,
the speed at which aging occurs is almost independent of R, while higher
values favor significantly species with high R. The value of R is critical to
whether the population survives or dies out. The aging rate is controlled by
Pd and Pb and the amount the viability of each individual is modified, with
neutral mutations allowing the system more ”room” to evolve. The process
of aging in this simple model is revealed to be fairly complex, yielding a rich
variety of results.
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1. Introduction

Aging is probably one of the most familiar, yet least understood aspects
in biology (Kirkwood, 2005). It can be defined, from an evolutionary point of
view, as a progressive decline in fitness (the ability to survive and reproduce)
with increasing age (Partridge, 2001). It has been used interchangably with
the term senescence, which is the lowering of survival rates as time goes
by. Cellular senescence is the phenomenon by which normal diploid cells
lose the ability to divide, while organismal senescence refers to the aging
of organisms. Senescence is a complex process, which may derive from a
variety of mechanisms, such as the shortening of telomeres with each cell
cycle, oxidative stress (i.e. the imbalance between the production of reactive
oxygen and ability to readily detoxify the reactive intermediates) and others,
and its role in organismal aging is at present an active area of investigation.

Senescence of the organism can give rise to the Gompertz law of mortal-
ity. This law, observed by Gompertz (1825), was proved to be valid for the
populations of most industrialised countries, describing the age dynamics of
human mortality rather accurately in the age window from about 30 to 80
years of age (Thatcher, 1999). The Gompertz law of exponential increase
in mortality rates with age is observed in many biological species (Strehler,
1978; Finch, 1990), including humans, rats, mice, fruit flies, flour beetles,
and human lice (Gavrilov and Gavrilova, 1991). Let S(α) be the probability
of surviving from birth to age α, which can be obtained by the cumulative
distribution of the stable age distribution. Then, the mortality function μ(α)
is:

μ(α) = −
d(lnS(α))

dα
(1)

Because data normally is given in yearly intervals, equation (1) can be ap-
proximated by:

μ(α) = ln(
S(α)

S(α + 1)
) (2)

The Gompertz law states that the mortality rate of certain organisms in-
creases exponentially with age α:

μ(α) ∝ c · ebα (3)

This law, however, is not without exceptions. Some animals, including
many reptiles and fish, age extremely slowly and exhibit very long life spans
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(negligible senescence) (Finch, 1990). Some produce even more offspring as
they get older, while their mortality rate actually drops, in disagreement
with the Gompertz ”law”, a phenomenon called negative senescence (Vaupel
et al., 2004). Another notable exception are Hydras, which do not undergo
senescence and are therefore biologically immortal (ageless) (Martinez, 1998).

2. Aging theories

”There is no shortage of theories of aging” (Partridge, 2007). Almost
every aspect of an organism’s phenotype undergoes modification with aging,
and this phenomenological complexity has led, over the years, to a bewilder-
ing proliferation of ideas about specific cellular and molecular causes (Kirk-
wood, 2005). An attempt by Medvedev (Mevdevev, 1990) to rationalise the
multiplicity of hypotheses resulted in a listing of more than 300 mechanistic
”theories” of aging, that describe how aging occurs. However, there are only
a few evolutionary theories about why aging evolved.

Evolutionary biology is concerned with the reasons behind the aging pro-
cess and the challenge of why aging occurs, in spite of its obvious drawbacks
(Kirkwood, 2005). Aging results in significant loss of Darwinian fitness, giv-
ing rise to the question why it has not been eliminated by natural selection.
It was proposed (Hamilton, 1966; Templeton, 2006) that if mutations can
occur that kill their bearers at a sufficiently advanced age, such mutations
are effectively neutral and some will go to fixation, thereby destroying the
agelessness of the initial population.

The ”mutation accumulation” theory (Medawar, 1952) claims that aging
results from the non-adaptive process of mutation accumulation. If a delete-
rious mutation manifests itself at a young age, there will be strong selection
pressure to eliminate it because it will affect the fitness of a large major-
ity of the population. However, if that same mutation does not manifest
itself until later in life, many of the individuals carrying it will have died
before it is expressed. Therefore, mutations killing an individual before it
reaches reproductive maturity vanish from the population, while those act-
ing later in life allow it to reproduce and are selected with a much weaker
force (Charlesworth, 1997).

Williams in 1957 proposed a similar theory, in which the existence of
pleiotropic genes of special sort have opposite effects on fitness at differ-
ent ages. Their effects are beneficial in early life, when natural selection is
strong, but harmful at later ages, when selection is weak. If these genes
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confer increased reproductive success early in life they would be selected for,
despite the fact that they may later cause senescence. This is now known as
”antagonistic pleiotropy” theory (Williams, 1957), which claims that aging
results from an adaptive process of selection favoring certain genes with net-
positive effects. The p53 gene is perhaps one of the clearest examples of an
antagonistially pleiotropic gene (Leroi et al., 2005).

Another major theory is the ”disposable soma” theory (Kirkwood, 1977;
Kirkwood and Holliday, 1979; Kirkwood and Rose, 1991), which focuses on
the idea that cell maintenance (e.g. DNA repair, protein turnover etc) is
costly. It suggests that longevity is controlled primarily through genes that
regulate the levels of somatic maintenance and repair (Kirkwood, 2005). The
organism should optimally allocate its metabolic resources, chiefly energy, be-
tween the maintenance and repair of its soma and its other functions in order
to maximise its Darwinian fitness. The necessity for trade-off arises because
resources allocated to one function are unavailable for another. Therefore,
the allocation of resources to maintenance and repair is determined by evo-
lutionary optimization.

Mutation accumulation and antagonistic pleiotropy provide the backbone
for much of the thinking about the evolutionary genetics of aging. However,
evidence for mutation accumulation remains limited and controversial (Kirk-
wood, 2005; Shaw et al., 1999), while evidence for antagonistic pleiotropy,
although stronger, is as yet lacking in detail. There have been suggestions
(Kirkwood, 2005) that these theories may all provide a partial explanation
for the phenomenon of aging but no single theory has been explicitly proven
to explain the aging process.

3. Computational modelling for biological aging

While there is an abundance of aging theories, the same cannot be said
about computer simulations of biological aging (Stauffer, 2007). T. J. P.
Penna implemented the mutation accumulation theory (Penna, 1995) by di-
viding and individual lifetime into B time intervals, representing the genome
with a string of B bits (chronological genome). An analytic solution is also
available (Coe and Mao, 2003). The model has been successfull in repro-
ducing the senescence of the pacific salmon (Penna et al., 1995), and has
been modified to account for the antagonistic pleiotropy mechanism (Sousa
and de Oliveira, 2001; Cebrat and Stauffer, 2005) and spatial distributions
on a lattice (Makowiec, 2000). Speciation in age structured populations has
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also been of interest, and in specific sympatric speciation (Sousa, 2000; Luz-
Burgoa et al., 2003) and parapatric speciation (Schwammle et al., 2006), in
some cases including sexual reproduction, diploid and even triploid organisms
(de Oliveira, 2004; Sousa et al., 2003).

A rather obscure model for the evolution of aging is the Heumann-Hotzel
model (Heumann and Hotzel, 1995), which is a generalization of the Dasgupta
model (Dasgupta, 1994). In this model, each individual carries a ”chronolog-
ical genome” of size xmax, with a survival probability per time step G(x) at
age x, which can be modified according to some mutations. The model has
been modified to account for its weaknesses, namely its incapacity to treat
populations with many age intervals and its ability to handle mutations ex-
clusively deleterious (de Medeiros and Onody, 2001), where the catastrophic
sensescence and the Gompertz law have been demonstrated. Optimization
models of the disposable soma theory have been developed by several groups
(Cichon and Kozlowski, 2000; Mangel and Munch, 2005; Abrams and Lud-
wig, 1995; Vaupel et al., 2004; Baudisch, 2008; Drenos and Kirkwood, 2005),
which describe how the optimal investment in maintenance is affected by
varying the parameters that specify the schedules of reproduction and mor-
tality.

4. The model

A computational model was constructed to study the evolution of the rate
of biological aging. This is a phenotype (in contrast to genotype) centered
model and does not focus on a specific genetic procedure that affects the aging
process. It does not assume any genetic mechanism of aging at work, just
the idea that each individual’s ability to survive is age dependent. It focuses
on the phenotypic results of the genome i.e. the viability of each individual.
The model uses asexual reproduction and assumes a well mixed population
(i.e. no spatial effects) and no interaction between the individuals.

The motivation behind this work is to provide a simple model to under-
stand how various parameters, such as the age at maturity or different kinds
of mutations affect the evolution of the rate of aging. In this model I assume
that the viability of each individual is age dependent and diminishes with
age. Given this hypothesis, mutations can produce offspring with increased
or decreased viability. Consequently, natural selection acts on these muta-
tions, affecting the overall viability of the population. The model can make
predictions about how the mutation probabilities, mutation strength, and
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age at reproductive maturity shape aging patterns and affect the aging rate
and the final state of the system.

I focus in the simplicity of the model rather than how it would be more
realistic. As a result, a small number of parameters have been used and
a number of simplifying assumptions have been made. It assumes asexual
reproduction only, a fixed age at reproductive maturity (which is known to
differ from the strategy many organisms use in the face of limited resources),
a constant number of offspring and a very specific function which is used to
calculate each individual’s viability. Consequently the model has its limita-
tions and favors simplicity over realism. The intention behind it is to give
a qualitative understanding and some initial predictions on the influence of
each individual’s viability and how its change affects the aging process and
thus and instigate future work on the subject.

Let N0 be the initial number of individuals. Each individual is character-
ized by a parameter f that is responsible for the individual’s viability F (α),
which is age dependent and stays in range from 0 to 1. Parameter f is the
measure of aging and the change of its value over time shows the evolution
of biological aging. The value of f indicates how an individual’s viability
changes over its life course; high values of f imply fast aging and low f slow
aging (see also Eq. (4)). Parameter f can be related to Darwinian fitness
under the assumption that individuals with higher survival potential will be
able to maintain or increase their numbers in succeeding generations, leading
to a better representation of their genome.

The threshold parameter T , which controls the number of hits an indi-
vidual can withstand is typically set to 2. Simulations have been also been
performed with T = 1, T = 4, T = 8, and T = 16. The Gompertz pattern
arises typically for small T values (e.g. T ≤ 4), because for higher values
stochastic effects are more pronounced and the mortality pattern is more
scattered due to noise, deviating significantly from the exponential function.
Therefore, a small constant value of T is used to minimize this effect and to
reduce the complexity in the study of the model’s behavior.

An aging function, which is a logistic function, is used to calculate the
individual’s viability at age α in the form of:

F (α) =
1

1 + ( 1
B
− 1) · efα

(4)

where: B is a constant (typically equal to 0.99), f is each individual’s char-
acteristic parameter for its viability, which can be modified due to mutations,
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and F (α) each individual’s viability at age α. A time step is completed when
all the individuals at the specific time are selected. The simulation begins
with N0 individuals. The algorithm at each time step is as follows:

1. An individual is selected.

2. Its age is increased by 1.

3. F (α) is calculated for the individual’s current age α. It then receives
a ”hit” with probability 1− F (α). Let H be the number of total hits
an individual can withstand.

4. T is the parameter which represents the threshold of hits. If H = T
(T typically equal to 2), the individual dies and the next individual is
selected.

5. If the individual survives and its age α is α ≥ R (where R is the age
at reproductive maturity), it generates 1 offspring.

6. The offspring survives with probability: 1 − N(t)
Nmax

. This is the Ver-
hulst Factor, which accounts for the limited carrying capacity of the
environment.

7. If the offspring survives, they receive their parents’ genome with mu-
tations that affect their viability (parameter f). These mutations can
have a beneficial effect (f is reduced with probability Pb), dentrimen-
tal effect (f is increased with probability Pd), or neutral (f remains
constant).

As a result of the aging function (Eq. (4)), low values of f correspond
to high viability of each individual (and vice versa). The amount that the
f is modified in the newborn is parameter M of the simulation (mutation
step). To keep the exponent in Eq. (4) above zero, the minimum value
of f is restricted to be equal to M in each simulation. In this model, the
maximum age of each individual does not depend on an external parameter,
but emerges naturally from the aging function.

The Verhulst factor is applied here in a different fashion than the Penna or
the Heumann-Hotzel model. Instead of acting as a random death probability
for all the population, it acts here only on the individuals whose genomes have
not been tested by the environment yet, the newborn. From the economics of
the population, this is clearly a better choice, since little investment is wasted
(Lee, 2003). From the biological perspective, although it is not yet the most
faithful representation of the real natural processes, it has an advantage since
the genome of the newborn is on the average less well-fitted, because of the
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overwhelming majority of bad over good mutations and random deaths will
only occur for a fraction of the population that has more bad mutations than
the average (Martins and Cebrat, 2000; Niewczas et al., 2000).

The quantities I monitor in the simulation are the total population N(t),
the mortality function μ(α) when the population reaches a stable age distri-
bution, and the average value 〈f〉 (t) of the population over time, which is
a measure of the evolution of aging in the population. Typical values used
for the population dynamics in our model are N0=100 and Nmax = 104. All
results are an average of 100 independent runs in each case.

5. Results and Discussion

Firstly, we would like to observe the population dynamics of the model
with no mutations present, i.e the parameter f of each lineage remains con-
stant during the simulation. In Fig. 1, N(t) is shown with no mutations for
different values of reproduction age R. It is clear that populations with low
R become fixed at higher values than the ones where R is high (see also inset
of fig. 3). This can be attributed to the fact that as R increases, the aver-
age number of individuals that will be given the opportunity to reproduce
is decreased. For R = 8 the limiting factor is the carrying capacity of the
environment (Verhulst factor) and N(t) quickly approaches Nmax and settles
a little below it, while for R = 30 the reproduction age is principal factor for
limiting population growth.

The time it takes for the population to stabilize is also higher for high
values of R. Because not everyone has the chance to reproduce, N(t) in-
creases much slower compared to lower values of R. The fluctuations in the
population density become more pronounced for high R. For R = 30, when
a new generation is born, it will take 30 time intervals for its individuals to
reproduce. The effect is obviously less pronounced for lower values of R and
disappears when the population density becomes stable. If R is sufficiently
high, the population will perish, because very few individuals will reach the
age of reproduction and the rate of deaths will surpass the birth rate.

Fig. 2 shows the mortality function μ(α) for different initial values of
f0, for a stable age distribution. It is clear that the main factor that affects
the mortality function is the viability of the individuals, with lower values
of f allowing them to survive longer. The model is able to reproduce the
Gompertz-law of mortality (eq. 3), and μ(α) is shown to depend exponen-
tially on age a, with the exponent having a linear dependence on the value
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on f0 (fig. 2, inset). Simulations were also performed for different values of
R, where it is evident that it does not have a dependence on the mortality
function (although it can affect the stable state of the system when mutations
are present, as is later shown).

Population density N(t) in the presence of mutations is shown in fig. 3.
For R = 30, N(t) increases significantly slower than R = 8, just as in the
case without mutations. With mutations however, it takes more time to
reach a stable population density. There is a significant difference in this
case; the population will reach Nmax regardless of R in contrast to the case
with no mutations, where the final population density is greatly affected by
R (see inset of fig. 3). While the population has a tendency to die out due to
mutations, it is obvious that it stabilizes at a value close to the carrying ca-
pacity of the environment. This happens since beneficial mutations increase
survival chances, and so even for large R the population evolves to survive
to maturity and thus eventually is able to reach its size limit.

Mutations change the viability of the individuals and give the opportunity
to the system to reach a different stable state. In fig. 4 I plot 〈f〉 (t) of the
population during the course of the simulation. A high value for deleterious
mutations is used; 90% of the newborn will not survive as long as their parents
(same values of simulation parameters as in fig. 3). A high probability of
detrimental mutations tends to reduce significantly the overall viability of
the population. This is evident by the initial increase of 〈f〉 (t) and the peak
in fig. 4. However, natural selection is at work and the small percentage
of individuals with increased viability will reproduce more and carry their
healthy genes to their offspring.

Consequently, in the system there are two forces at work: mutations which
tend to decrease the viabilty of the population (increase 〈f〉) and natural
selection, which allows individuals with low f to generate more offspring and
so contributes to a decrease of 〈f〉, namely an increase in the average viability
of the population. Therefore, mutations combined with low selection pressure
start to move the system towards a low viability with weaker phenotypes
and after the time delay selection pressure is tightened and only the small
percentage of the healthier phenotypes survive and reproduce, thus increasing
the viability of the population. The constant reproductive potential, which
the model assumes, favors simplicity over realism. Real organisms produce
different number of offspring and this can affect greatly the dynamics of the
system.

The effect of R on the final state of the system is evident in fig. 4. High
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values of R will have as a result a stable state with low 〈f〉. This happens
because for low R individuals with reduced viability will still have a high
probability to reproduce, because they reach the reproduction age early in
their lives. In this case the selection force on them is very relaxed and 〈f〉
tends to increase and stabilize at higher values. Consequently, the force of
natural selection is tightened for higher reproduction ages, e.g. in the case
of R=30. Individuals with reduced viability are strongly selected against,
because they will not have a chance to reproduce. As a result, the value of
〈f〉 will not have a high tendency to increase compared to lower R values.
This explains the lower peak in the case of R = 30 compared to R = 8 in
fig. 4 and the lower value of 〈f〉 where the system reaches equilibrium. If,
however, the reproduction age is very high the individuals will not have a
chance to reproduce, 〈f〉 increases and does not stabilize and the population
dies out, as shown below.

In fig. 5-9 I relax the probability of mutations, allowing a large room
for neutral mutations, which do not change the viability of individuals. The
population density still reaches the environent’s carrying capacity regardless
of R, as long as the R remains within the limits that allow the individuals to
reach reproductive maturity (fig. 5). The mortality function obeys the Gom-
pertz law and does not depend on R (inset of fig.5). Detrimental mutations
still happen much more frequently than benecifial ones. As a direct result
〈f〉 decreases slower and the selection pressure is less evident for different R
(compare fig. 4 to fig. 6).

If Pd is increased even more (fig. 7-8) an interesting thing happens,
namely the population dies out for low R values. In this case, the relaxed
selection pressure at low R can be fatal to the population as f keeps in-
creasing (fig. 8) at a rapid rate at R = 8. Here, detrimental mutations
decrease the population’s viability because they are not selected against and
the population perishes. For high R values, however, 〈f〉 decreases and the
system reaches equilibrium, because the strong selection pressure eliminates
deleterious mutations and weaker phenotypes. There seems to be a critical
value close to R = 16, below which the population dies out and above which
it survives and reaches a stable state. Therefore, the system’s final state is
shown to be very sensitive to the age at reproductive maturity. It should be
noted that these dynamics assume a constant age at reproductive maturity
in order to keep the model simple, while the age at reproductive maturity
changes dynamically for many organisms (e.g. given the strategy that they
use in the face of limited resources), and this change could have a great effect
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on the evolution of the system.
The probability of beneficial or detrimental mutations is therefore shown

to affect how the population evolves, as well as R, which plays a critical role
in the final state of system. For lower values in the ratio of the probability
of detrimental/beneficial mutations (Pd/Pb), aging evolves almost as fast
regardless of R (fig. 6). Higher values favor significantly species with late
age of maturity, in which case there seems to be a critical value in the age
at reproductive maturity, below which the population dies out and above
which it survives and evolves to a stable state (fig. 8). High absolute values
of these probabilities produce peaks in viability of the population 〈f〉 (t),
because strong selection pressure takes over after a significant number of
weaker phenotypes have appeared due to the high mutation rate (fig. 4). In
species with high age at reproductive maturity, natural selection is stronger
and quickly eliminates the weaker phenotypes, while in species with low R
it is more relaxed and the peaks in 〈f〉 (t) are more pronounced.

The role of mutation step M is examined in fig. 9, which shows 〈f〉 (t)
for various M values. The system is again shown to evolve towards a low 〈f〉
of its individuals. However in this case, it will take considerably more time
(〈f〉 (t) decreases very slow) to reach the final state for M = 0.001, with M
controlling the speed with which evolution takes place. The process, however
is also controlled by Pd and Pb. If the mutations are relaxed, the system will
evolve to a steady state of individuals with higher potential for survival. If
we use Pd = 0.9 and Pb = 0.1 (same values as fig. 3-4), the population will
die out for M = 0.001. This happens because the small difference in fitness
in the newborn is not significant enough to be selected by natural selection
and compete with the high tendency of mutations to reduce the population’s
viability. The carrying capacity of the environment however, is also to be
taken into account in conjunction with the value of M . Simulations have been
performed with larger populations (Nmax = 100000), where the population
reaches a stable state because a larger number for individuals allow natural
selection more ”room” to act.

The effect of different mutation probabilities Pd and Pb is studied in fig.
10. The frequency of beneficial and deleterious mutations and their ratio is
again revealed to play a crucial role in the system, controlling not only the
evolution rate, but also whether the population survives or perishes. When
the probability of beneficial mutations is sufficiently small the population will
die out, otherwise the system will evolve to a stable state with better overall
viability (see also inset of fig. 10, where the effect is apparent in the final
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population density). The higher the absolute values of these probabilities, the
more pronounced the peaks are for 〈f(〉 t). Not only that, but lower values
allow the system to stabilize at lower 〈f(〉 t), namely evolving towards a more
viable population (compare Pd = 0.9, Pb = 0.1 with Pd = 0.5, Pb = 0.05 and
Pd = 0.1, Pb = 0.01 in fig. 10). High relative values of Pd/Pb slow down
evolution, while for even higher values the overall viability decreases rapidly
(〈f(〉 t) increases) and the population dies out (compare Pd = 0.9, Pb = 0.1
with Pd = 0.9, Pb = 0.05 and Pd = 0.9, Pb = 0.01 in fig. 10).

6. Conclusions

A simple model, based on physical viability, was constructed to study
the evolution of biological aging. The mortality rates are shown to obey the
Gompertz law. It’s clear that given sufficient ”room”, i.e. number of indi-
viduals and amount their viability is modified, natural selection drives the
system towards better phenotypes, reducing aging effects. Mutations appear-
ing at later ages may be acted weakly upon by natural selection as suggested
by the mutation accumulation theory, but beneficial mutations which extend
the survival of the species will always have a tendency to increase in the
population, as shown by the model.

Life exists far from thermodynamic equilibrium. Maintaining its stability
could be regulated by optimally allocating the organism resources, however
this does not exclude the existence of an ageless phenotype in an optimal
environment. Entropy must inevitably increase within a closed system, but
living beings are not closed systems. A single theory that fully decribes all
aging phenomena and why aging has evolved, is still lacking. This model is
not concerned with why aging evolved, but can make predictions about how
various parameters, such as the age at reproductive maturity or mutation
probabilities, affect the aging patterns.

More specific, in the absence of mutations lower ages at reproductive ma-
turity R tend to reach higher values of final population density. With muta-
tions present, the population stabilizes near the maximum density, except for
species with short pre-reproductive periods, which can only tolerate low rates
of deleterious mutations and thus the populations dies out. For lower values
in the ratio of the probability of detrimental/beneficial mutations (Pd/Pb),
aging evolves almost as fast regardless of R. Higher values favor significantly
species with late age of maturity, in which case there seems to be a critical
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value in the age at reproductive maturity, below which the population dies
out and above which it survives and evolves to a stable state.

High absolute values of these probabilities produce peaks in 〈f〉 (t) and
low values allow the system to stabilize at lower 〈f〉 (t). In species with low
R selection pressure is more relaxed and the peaks are more pronounced.
High relative values of Pd/Pb decrease the evolution rate, and if this ratio
is further increased, 〈f〉 (t) increases rapidly and the population dies out.
The rate of aging is controlled by the mutation probabilities in conjunction
with the amount they modify each individual’s phenotype, with neutral mu-
tations allowing the system more ”room” to evolve. Therefore, even in this
simple model, the process of evolution of biological aging is shown to be fairly
complex and very sensitive to the parameters that control it.
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Figure 1: N(t) vs t for different values of reproduction age R. t = 104, f0 = 0.1, no
mutations.
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Figure 2: μ(α) vs age α for the population at t = 104 for various values of initial fitness
f0. R = 8, no mutations. Inset: Slope A of μ(α) vs f0.
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Figure 3: N(t) vs t for different values of reproduction age R. t = 104, f0 = 0.1, Mutations
are allowed, Pb = 0.1, Pd = 0.9, M = 0.01. Inset: Final population N for the stable state
vs R and comparison with the case with same simulation parameters, but no mutations
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Figure 4: 〈f〉 (t) vs t for different values of reproduction age R. t = 104, f0 = 0.1,
mutations are allowed, Pb = 0.1, Pd = 0.9, M = 0.01. Inset: Final 〈f〉 for the stable state
vs R.
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Figure 5: N(t) vs t for different values of reproduction age R. t = 104, f0 = 0.1, mutations
are allowed, Pb = 0.01, Pd = 0.1, M = 0.005. Inset: Mortality function μ(α) vs α for
t = 104 (R = 8 only shown for clarity).
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Figure 6: 〈f〉 (t) vs t for different values of reproduction age R. t = 104, f0 = 0.1,
mutations are allowed, Pb = 0.01, Pd = 0.1, M = 0.01.
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Figure 7: N(t) vs t for different values of reproduction age R. t = 104, f0 = 0.1, mutations
are allowed, Pb = 0.01, Pd = 0.5, M = 0.005.
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Figure 8: 〈f〉 (t) vs t for different values of reproduction age R. t = 104, f0 = 0.1,
mutations are allowed, Pb = 0.01, Pd = 0.5, M = 0.005.
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Figure 9: 〈f〉 (t) vs t for different values of mutation step M . t = 105, f0 = 0.1, mutations
are allowed, Pb = 0.01, Pd = 0.1, R = 16. Inset: Population N(t) vs t (M = 0.001 only
shown for clarity).
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Figure 10: 〈f〉 (t) vs t for different values of mutation probabilities Pb and Pd. t = 104,
f0 = 0.1, M = 0.01, R = 16. Inset: Population N(t) vs t.
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