A strong-motion database from the Peru-Chile subduction zone
Maria C. Arango, Fleur O. Strasser, Julian J. Bommer, Ruben Boroschek,
Diana Comte, Hernando Tavera

To cite this version:
Maria C. Arango, Fleur O. Strasser, Julian J. Bommer, Ruben Boroschek, Diana Comte, et al.. A strong-motion database from the Peru-Chile subduction zone. Journal of Seismology, Springer Verlag, 2010, 15 (1), pp.19-41. <10.1007/s10950-010-9203-x>. <hal-00616251>

HAL Id: hal-00616251
https://hal.archives-ouvertes.fr/hal-00616251
Submitted on 21 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract: Earthquake hazard along the Peru-Chile subduction zone is amongst the highest in the world. The development of a database of subduction-zone strong-motion recordings is therefore of great importance for ground-motion prediction in this region. Accelerograms recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed to obtain high-quality metadata. The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 55 different sites in Peru and Chile, between 1966 and 2007. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction events in the Peru-Chile region, it significantly expands the global database of strong-motion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Additionally, the compiled database will allow the assessment of the existing predictive models for subduction-type events in terms of their suitability for the Peru-Chile region, which directly influences seismic hazard assessment in this region.

Response to Reviewers:
We are grateful to the responsible editor and to the two anonymous reviews for the timely and constructive feedback on our paper. In this document, we explain how we have responded to each of the comments from the reviewers.

Reviewer #1
This is a very comprehensive and useful compilation of metadata. The various heterogeneous characteristics of the metadata are handled well.

We are very grateful for these constructive comments and encouraged by the endorsement of the value of the paper in presenting this dataset to the seismological and engineering communities.
Reviewer #2

Overall, the paper presents an important contribution to the earthquake hazard community and should be published with minor revisions.

We are grateful for and encouraged by this endorsement of our manuscript.

My main comments are:

1. There is no mention in the paper of the availability of the assembled database. The paper should indicate if the intention is for the database to be available to the interested user and if so, how it may be accessed. Publication of the paper without this information would seem to be a disservice.

This point is very well taken and we realise that the paper would fall short of its objectives if it did not indicate the availability of the dataset. Therefore, we have added a column to Table 1 in which we indicate the source from where the records may be accessed, which in some cases is by request to the 4th and 6th authors who manage strong-motion networks in Chile and Peru respectively.

2. The paragraph starting on line 14 of page 7 seems to indicate that focal mechanism data are presented in Table 1, but this data is not present in the table.

This is another valuable suggestion, which we have responded to by adding this information to Table 1.

3. With regard to Table 1, the useful metadata is incomplete. I suggest that the authors add the following information: epicenter location, dip of the selected fault model, top and bottom depths of the selected fault model used to compute rupture distances, mechanism (see comment 2).

All of this information has also been added to Table 1, as suggested by the reviewer.

Minor comments:

There are a few acronyms used without definition (e.g. PGA). Although their meaning is generally clear, they should be defined.

We agree with this comment and have added definitions for acronyms where they first appear in the text.

The paper needs some editorial review, there are a number of misspellings (e.g. storeys) and Table 2 is labeled as Table 3.

The labelling of Table 2 has been corrected and the paper has been carefully proof-read in order to correct a few errors, but with regards to the specific example given (storeys) we have used UK rather than US English throughout the paper. Since this is a European rather than North American journal, we believe that the use of UK English is acceptable.
Authors’ Responses to Review Comments

We are grateful to the responsible editor and to the two anonymous reviews for the timely and constructive feedback on our paper. In this document, we explain how we have responded to each of the comments from the reviewers, using different fonts to distinguish the review comments (italic Times New Roman) from our response (Arial).

Reviewer #1

This is a very comprehensive and useful compilation of metadata. The various heterogeneous characteristics of the metadata are handled well.

We are very grateful for these constructive comments and encouraged by the endorsement of the value of the paper in presenting this dataset to the seismological and engineering communities.

Reviewer #2

Overall, the paper presents an important contribution to the earthquake hazard community and should be published with minor revisions.

We are grateful for and encouraged by this endorsement of our manuscript.

My main comments are:

1. There is no mention in the paper of the availability of the assembled database. The paper should indicate if the intention is for the database to be available to the interested user and if so, how it may be accessed. Publication of the paper without this information would seem to be a disservice.
This point is very well taken and we realise that the paper would fall short of its objectives if it did not indicate the availability of the dataset. Therefore, we have added a column to Table 1 in which we indicate the source from where the records may be accessed, which in some cases is by request to the 4th and 6th authors who manage strong-motion networks in Chile and Peru respectively.

2. The paragraph starting on line 14 of page 7 seems to indicate that focal mechanism data are presented in Table 1, but this data is not present in the table.

This is another valuable suggestion, which we have responded to by adding this information to Table 1.

3. With regard to Table 1, the useful metadata is incomplete. I suggest that the authors add the following information: epicenter location, dip of the selected fault model, top and bottom depths of the selected fault model used to compute rupture distances, mechanism (see comment 2).

All of this information has also been added to Table 1, as suggested by the reviewer.

Minor comments:

There are a few acronyms used without definition (e.g. PGA). Although their meaning is generally clear, they should be defined.

We agree with this comment and have added definitions for acronyms where they first appear in the text.

The paper needs some editorial review, there are a number of misspellings (e.g. storeys) and Table 2 is labeled as Table 3.

The labelling of Table 2 has been corrected and the paper has been carefully proof-read in order to correct a few errors, but with regards to the specific example given (storeys) we have used UK rather than US English throughout the paper. Since this is a European rather than North American journal, we believe that the use of UK English is acceptable.
A STRONG-MOTION DATABASE FROM THE PERU-CHILE SUBDUCTION ZONE

M.C. Arango1, F.O. Strasser2, J.J. Bommer1,∗, R. Boroschek3, D. Comté4 & H. Tavera5

1. Department of Civil & Environmental Engineering, Imperial College London, London SW7 2AZ, UK
2. Seismology Unit, Council for Geoscience, Private Bag X112, Pretoria 0001, South Africa
3. Department of Civil Engineering, University of Chile, Blanco Encalada 2002, Santiago, Chile
4. Department of Geophysics, University of Chile, Blanco Encalada 2002, Santiago, Chile
5. Seismology department, Geophysical Institute of Peru, Calle Badajoz 169, Urb Mayorazgo IV Etapa, Ate, Lima, Peru

ABSTRACT

Earthquake hazard along the Peru-Chile subduction zone is amongst the highest in the world. The development of a database of subduction-zone strong motion recordings is therefore of great importance for ground-motion prediction in this region. Accelerograms recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed to obtain high-quality metadata. The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 55 different sites in Peru and Chile, between 1966 and 2007. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction events in the Peru-Chile region, it significantly expands the global database of strong-motion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Additionally, the compiled database will allow the assessment of the existing predictive models for subduction-type events in terms of their suitability for the Peru-Chile region, which directly influences seismic hazard assessment in this region.

Keywords: Peru-Chile subduction zone, strong-motion database, ground-motion processing, site classes, source and path parameters.

∗ Corresponding author: T: +44-20-7594-5984, F: +44-20-7594-5934, E: j.bommer@imperial.ac.uk
1. INTRODUCTION

The development of a strong-motion database from subduction events along the Peru-Chile trench is an essential step for ground-motion prediction in this region as well as other subduction zones in the world where there is a significant hazard from earthquakes along the interface between the subducting and overriding plates and within the subducting slab. The tectonic setting of the Peru-Chile region is characterised by the subduction of the relatively young (~50 My) Nazca plate beneath the continental South American plate (Figure 1), which takes place at a convergence rate of 7-9 cm/year in the N78°E direction (DeMets et al., 1990). Along the Peru-Chile subduction zone, two main types of seismicity can be identified: firstly, earthquakes occurring at the seismically coupled interface between the Nazca and South American plates (interface earthquakes) and secondly, seismicity related to the zone of extension in the interior of the descending Nazca plate (intraslab earthquakes). The Peruvian-Chilean subduction zone has frequently ruptured in great (M ≥ 8.0) destructive earthquakes during the last centuries, many of which have been thrust-faulting events occurring along the interface between the Nazca and South American Plates, although there have also been a number of damaging intraslab events. An example of the latter is the great event (Mw 8.1) that occurred on 25 January 1939, near the city of Chillán, which killed approximately 28,000 people and is amongst the most damaging events that have occurred in the seismic history of Chile (Beck et al., 1998).

The occurrence of great subduction events along the Peruvian-Chilean subduction zone is quite frequent, with 17 events of magnitude Mw≥7.5 registered during the last 50 years. In central Chile, the historical record of earthquakes starts with an event of magnitude M 9.4 in 1575 followed by great events in 1647 (M 8.4), 1730 (M 8.2), 1822 (M 8.4) and 1906 (M 8.3) (Comté et al., 1986). For instance, the great Valparaiso event of 17 August 1906 (M 8.3) caused widespread damage in central Chile and claimed thousands of lives. In recent years, the central Chile segment ruptured in a large interface earthquake on 3 March 1985 (Mw 8.0), which killed 177 people and caused extensive damage in the cities of Valparaiso and Viña del Mar. This latter event ruptured along a previously identified seismic gap in central Chile with high probabilities of recurrence for a large earthquake (e.g., Nishenko, 1985). The north-central Chile segment of subduction has also ruptured in great events in 1922 (Mw 8.7), 1943 (Mw 8.2) and 1995 (Mw 8.0). The south-central Chile segment, between 35°S and 37°S, is another identified seismic gap, referred to as the Concepción-Constitución seismic gap, which has been extensively studied following the 1939 Chillán event. This segment ruptured in a great (M 8.5) earthquake in February 1835, which completely destroyed the city of Concepción. The last great earthquake in this region was the magnitude Mw 8.8 interface event that occurred on 27 February 2010, whose epicentre was
located at 100 km from the city of Concepción. Preliminary reports indicated that this latter event had a death toll of more than 500 people and caused extensive damage to the cities of Concepción, Arauco and Coronel, affecting over 2 million people. South of this region, between 37°S and 46°S, a great MW 9.5 underthrusting event occurred on 22 May 1960, causing 1660 deaths and leaving 2 million people homeless. This event, the largest instrumentally-recorded in the world during the 20th Century, had an estimated rupture length of about 1000 km (Cifuentes, 1989) and also induced a tsunami that spread across the Pacific.

In the southern Peru and northern Chile segment of subduction, major interface events occurred in 1868 (southern Peru) and 1877 (northern Chile) with magnitudes estimated between 8.5 and 9.0 (Lomnitz, 2004; Kausel, 1986; Dorbath et al., 1990). This region had been identified as a seismic gap with a high potential of occurrence of a great earthquake (Lomnitz, 2004; Kelleher, 1972; Nishenko, 1985; Comté & Pardo, 1991; Delouis et al., 1996). The southern part of this region ruptured in a large interface event in July 1995 (MW 8.0), which occurred south of the rupture zone of the 1877 event. Large intraslab-type events have also occurred in northern Chile in December 1950 (MW 8.0) and 13 June 2005 (MW 7.8). The northern part of this seismic gap, ruptured in a great interface event on 23 June 2001 (MW 8.4), along the rupture area associated with great 1868 southern Peru event. The 2001 event had a death toll of 80 causalities and caused severe damage in the cities of Ocoña, Arequipa, Tacna and Moquegua. Along the central region of Peru, the subduction processes have caused great earthquakes in 1746 (M 8.5), 1940 (MW 8.1), 1942 (MW 8.0), 1966 (MW 8.1), 1970 (MW 7.8), 1974 (MW 8.1), 1996 (MW 7.7) and 2007 (MW 8.0), causing thousands of deaths. The Central Peru segment of the subduction zone, between the rupture areas of the 1974 (MW 8.1) Lima event and the 1996 (MW 7.7) Nazca event (Tavera & Bernal 2005), had also been identified as another seismic gap. This gap last ruptured in a MW 8.0 event on 17 August 2007 in the Pisco region of Central Peru, causing 595 deaths and extensive damage in the cities of Pisco, Chincha and Cañete (Tavera et al., 2008).

In view of the threat that both interface and intraslab-type events pose to the Peru-Chile region, the compilation of a strong-motion database of subduction events that can be the basis of future ground-motion prediction studies is of prime relevance. In Chile, the first strong-motion instruments were deployed in 1970s by the Civil Engineering Department of the University of Chile (RENADIC network), which recorded the 3 March 1985 (MW 8.0) Valparaiso events and associated aftershocks amongst other events. Presently, the RENADIC network consists of 20 analogue and 15 digital stations installed in Northern and Central Chile. A second network (DGF-DIC) was deployed by the Departments of Geophysics and Civil Engineering of the University of Chile and the Swiss Seismological Service as a part of a project to study the northern Chile seismic gap and has been in operation since 2001. The DGF-DIC network consists of 11 digital instruments.
installed in Northern Chile, from Arica to Antofagasta. These two networks have recorded several large events on 13 June 2005 (Mw 7.8) and 23 June 2001 (Mw 8.4), amongst others. The Geophysical Institute of Peru (IGP) deployed the first strong-motion instruments in Lima, which recorded the 1966, 1970, 1971 and 1974 Peruvian events. Currently, strong-motion networks in Peru are operated by IGP, the Japan-Peru Centre for Seismic Research and Disaster Mitigation (CISMID), the South American Regional Seismological Centre (CERESIS), the Catholic University of Peru (PUCP), and the Peruvian state water company (SEDAPAL). Recent significant events recorded by these networks include the 23 June 2001 (Mw 8.4) and 15 August 2007 (Mw 8.0) Pisco event.

This paper presents the work performed in order to develop a database of strong-motion records from events along the Peru-Chile subduction zone and associated information (metadata). The strong-motion data recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner, and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed. Earthquake parameters from different reporting agencies and published studies were examined to define reliable source parameters, fault-plane geometries and distance metrics. Additionally, geological and geotechnical information at the recording sites was collected from different sources and sites were classified according to various schemes.

2. DATABASE DESCRIPTION

The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 55 different sites in Peru and Chile, between 1966 and 2007. These accelerograms have been made available by local networks in Chile and Peru including the National Accelerographic Network of Chile (RENADIC, 23 records), the DGF-DIC network jointly operated by the Departments of Geophysics and Civil Engineering of the University of Chile (7 records), the Geophysical Institute of Peru (IGP, 8 records) and the Japan-Peru Centre for Seismic Research and Disaster Mitigation (CISMID, 12 records). Additionally, strong-motion records from the 1985 Valparaiso (Chile) sequence and from the 1966, 1970, 1971 and 1974 Peruvian events available at the COSMOS Virtual Data Centre (http://db.cosmos.eq.org) were also included in this database (48 records). The location of the strong-motion stations operating along the Peru-Chile subduction zone, from which recordings are presented in this study, is shown in Figure 2. The majority of the data from these agencies have been released in unprocessed format; however, in a few cases strong-motion records to which some level of processing has already been applied were also included. All strong-motion data
included in this database are from either from free-field stations or instruments at the base of structures, at a total of 56 sites. In the context of this study, free-field recordings are defined as those obtained at stations in small shelters, isolated from any building influence. The other recordings are obtained from instruments at the basement of structures up to three storeys in height, although five recordings obtained at stations located at the basement of structures with more than 3 storeys were included in this database.

Figure 3 displays the distribution of the data in terms of magnitude, distance, focal depth, event type, and NEHRP (National Earthquake Hazards Reduction Program) site class. The methodology used in the determination of the seismological parameters, computation of distance metrics and assignment of sites is discussed in the following sections of this paper. Overall, all strong-motion data available are from moderate-to-large events (6.3≤MW≤8.4) recorded at distances of about 25-420 km from the fault plane. Approximately half of the entire dataset was recorded at short distances (Rrup≤100 km) and consequently, a significant number of the ground motions are of large amplitudes; the level of peak ground acceleration (PGA) recorded during these events varies within a range of approximately 20-700 cm/s². Similarly, most of the data included in the dataset come from events with magnitudes MW 8±0.3 and MW 7±0.2. The distribution of focal depth with respect to rupture distance for recordings from both interface and intraslab-type events is shown in the upper right panel of Figure 3. The majority of the data from interface events was recorded at distances ranging from about 30 to 200 km, while the intraslab dataset includes ground motions recorded at distances Rrup greater than 100 km. The lower panels of Figure 3 show the distribution of the data for interface and intraslab events by NEHRP site class. As seen from this figure, most of the strong-motion records available are from sites classified as NEHRP class C, C/D and D. Only one record from a NEHRP class D/E site is available and no data was recorded at very soft sites (NEHRP class E).

The effort has been focused on compiling and reviewing the available metadata, which entailed an evaluation of the earthquake-related parameters (i.e., magnitude, location and fault mechanism), classification of subduction events by type (i.e., interface or intraslab), computation of source-to-site distance metrics and characterisation of site conditions at recording stations using different parameters (i.e., surface geology descriptors, shear-wave velocity profiles, natural site period and normalised response spectra shapes). Site classes were assigned to the stations in Peru and Chile following various classification schemes used in ground-motion prediction equations (GMPEs) for subduction-zone environments, such as the NEHRP classification used by Atkinson & Boore (2003, 2008), the New Zealand site classification scheme used by McVerry et al. (2006) and the scheme used by Zhao et al. (2006b).
2.1 Earthquake-related parameters

The earthquake-related information was collected from various reporting agencies and publications and ranked by preferred importance order. The epicentral locations and depths of the events used in this study were selected as follows: special studies of mainshock and aftershock sequences with accurate relocations, determinations published in the Centennial catalogue (Engdahl & Villaseñor, 2002) and locations and depths determined by the ISC. For the more recent events not included in the ISC catalogue, the location estimated by NEIC was adopted. Regional determinations reported by local agencies (e.g., Department of Geophysics, University of Chile, GUC; Geophysical Institute of Peru, IGP) were also used in this study when appropriate. The moment magnitude (M_W) estimates and focal mechanism solutions for the earthquakes whose data are used in this study were obtained from the Harvard Centroid Moment Tensor database (CMT) when available, which was generally the case for the large earthquakes included herein with magnitude greater than 6.0 which occurred after 1976. For all pre-1976 events, moment magnitudes and focal mechanism solutions were collected from individual studies (e.g., Hartzell & Langer, 1993; Pacheco & Sykes, 1992; Abe, 1972). Other instrumental measures of magnitude were collected from the online-catalogues of the different reporting agencies (i.e., International Seismological Centre, ISC and National Earthquake Information Center, NEIC) and were also included in the metadata. Surface wave magnitude (M_S) and body-wave magnitude (m_b) estimates of the Peruvian-Chilean earthquakes determined by the ISC were collected; however, in cases where ISC magnitude determinations were not available, those estimated by NEIC were used instead. No estimates of moment magnitude (M_W) were available for the 5 January 1974 (M_S 6.6) event and the 3 March 1985 (M_S 6.4) aftershock. It was therefore assumed that M_S estimates for these events were equivalent to moment magnitude estimates (M_W). This approximation was validated by plotting moment magnitude values against the different magnitude scales for the events with M_W, M_S and m_b data reported. The characteristics of the events contributing data to the present study are listed in Table 1; their locations and focal mechanisms are shown in Figure 2.

Additionally, the earthquake events were classified in terms of the physical processes with which they were associated (i.e., interface or intraslab activity). The earthquake classification was made on the basis of focal mechanism, epicentral location, depth, and relative position with respect to trench axis. The dominant mechanism of interface-type earthquakes corresponds to thrust faulting on shallow-dipping planes that are oriented approximately parallel to the trench axis. At depths greater than the coupled plate interface, the stress regime changes from compressional to tensional, and thus normal faulting prevails. These normal mechanism events are associated with intraslab activity occurring within the subducted Nazca slab, at some distance down-dip from the seismically coupled interface. At intermediate depths, two types of intraslab earthquakes have
been identified in this region (e.g., Lemoine et al., 2002): slab-push and slab-pull, which are
associated with down-plate compression and extension, respectively. Along the Peru-Chile
subduction zone, the occurrence of slab-pull events is relatively common in comparison with slab-
push events, although some slab-push events have been occurred in north-central Chile (the 15
October 1997 Punitaqui earthquake) and central Peru (the 5 and 29 April 1991 earthquakes).

The differentiation between interface and intraslab events was performed using the definitions of
style of faulting of Wells & Coppersmith (1994) and the event depth and location with respect to the
trench axis. As seen in Table 1, the interface events in this catalogue have a reverse mechanism
and are limited to a maximum depth of 40 km, which is consistent with the maximum depth extent
of the seismically coupled zone found along different segments of the Peru-Chile subduction zone
(e.g., Comté et al., 1994; Comté & Suárez, 1995; Tichelaar & Ruff, 1991). On the other hand,
intraslab-type events in Table 1 have a normal mechanism and occur within the Nazca slab at
depths from about 60 km to 110 km. The location of these events in 3D space combined with
information regarding their focal mechanism (Figure 1 and lower left panel of Figure 2) allows a
fairly unambiguous classification between interface and intraslab events, particularly since the
geometry of the subducting Nazca slab has been extensively documented. The geometry of the
subducting Nazca plate is characterised by variations in the dip angle along the strike of the trench
(Barazangi & Isacks, 1976; Jordan et al., 1983; Cahill & Isacks, 1992). Between latitude 2°S and
45°S, the subducting Nazca plate is divided into four segments: northern and central Peru, from
8°S to 15°S, where the subducted Nazca plate has a shallow dip of about 10°; southern Peru and
northern Chile, from 15°S to 27°S, where the Nazca Plate descends with a dip of 25° to 30°. In
Central Chile, from 27°S to 33°S, the slab is again relatively flat, with a shallow dip angle of about
10°, and in southern Chile, from 33°S to 45°S, the dip of the subducted slab increases to 30°.

The depth extent of the seismically-coupled plate interface along the Peru-Chile subduction zone is
similarly well-documented. It has been estimated from the maximum depth of shallow-dipping
reverse events (e.g., Tichelaar & Ruff, 1991; Suárez & Comté, 1993; Comté et al., 1994; Comté &
Suárez, 1995) and from the depth transition from compressional to extensional stress regime (e.g.,
Comté & Suárez, 1995; Pardo et al., 2002). Based on the maximum depth of large (MW>6) under-
thrusting events located teleseismically, Tichelaar & Ruff (1991) suggested that the maximum
depth of the seismically coupled zone between plates along Chile extends down to 48-53 km and
that there is a change in the maximum depth north of latitude 28°S, where the coupled zone
extends to depths of 36-41 km. In contrast, studies using both locally and teleseismically recorded
data in Northern Chile (Comté et al., 1994; Comté & Suárez, 1995) suggest that the coupling zone,
as defined by the maximum depth observed for shallow-dipping reverse events, extends
consistently to about 40±10 km and no variations along the strike of the trench are appreciable.
The maximum depth of the coupling zone may, however, extend up to 60±10 km, if the depth transition from compressional to tensional stress regime observed along the upper part of the subducting slab is considered (Comté & Suárez, 1995). This transition of stress field along Northern Chile segment occurs at depths greater than the maximum depth at which shallow-dipping reverse events are observed (~40 km). Along the Central Chile segment of the subduction zone, the maximum depth of the plate interface has also been estimated to be about 60 km (Pardo et al., 2002), which is in agreement with the above mentioned studies along different segments of the Chilean subduction zone.

2.2 Station information and assignment of site conditions

The coordinates of the stations used in this study, type of instruments and instrument housing are listed in Tables 2 and 3 and their geographical distribution is shown in Figure 2. For the stations in Central Chile that recorded the 1985 Valparaiso earthquake sequence, some of which are no longer in operation, the station coordinates listed correspond to those reported by Campbell et al. (1989, 1990), which were validated against satellite imagery (i.e., Google Earth) to ensure accuracy. Information on the type and location of instrument (i.e., type of building) was also obtained from these references, from the accelerogram headings and from the websites of the network operators (IGP, CISMID, RENADIC and DGF-DIC). Information on the majority of the Peruvian stations included herein has already been presented in Tavera et al. (2008).

Tables 2 and 3 also summarise all geological and geotechnical information collected for the sites contributing data to this study. Site conditions assigned to the stations in Central Chile were based on information collected from a number of references including descriptions of the surface geology (EERI, 1986; Çelebi, 1987, 1988; Campbell et al., 1989, 1990; Midorikawa et al., 1991; Midorikawa, 1992), the site categories following the Chilean seismic design code assigned by Riddell (1995) and NEHRP site classes assigned by Atkinson & Boore (2003) to the Chilean sites whose data were included in the regression database for subduction-zone events. Shear-wave velocity (V_S) profiles obtained by Araneda & Saragoni (1994), Midorikawa et al. (1991) and Midorikawa (1992) in addition to the natural period of the Chilean sites determined by Luppichini (2004) using the records of the 1985 Valparaiso earthquake, were also used. Site conditions at the strong-motion stations in northern Chile are still under investigation and geological and geotechnical information for a number of these stations has not yet been made available to the wider engineering community. It is believed, however, that recording sites in northern Chile can be classified as NEHRP class C, with an average shear-wave velocity over the top 30 m, V_{S30}, between 400 and 600 m/s (Boroschek & Comté, 2006). Therefore, site conditions assigned to these sites were only based on information from descriptions of the local geology (SNGM, 1982),
V_S profiles obtained from SASW (spectral analysis of surface waves) measurements at the stations in Arica and Poconchile (Cortez-Flores, 2004), and natural site periods estimated by site response analysis for the Arica and Poconchile stations (Cortez-Flores, 2004).

Site conditions assigned to the stations in Central and Southern Peru were based on descriptions of the surface geology (EERI, 2007; Bernal & Tavera, 2007a, 2007b) and the site category (i.e., rock, soil or firm ground) assigned by Rodriguez-Marek et al. (2007). Shear-wave velocity (V_S) profiles obtained from SASW measurements at the stations in Ica (Rosenblad & Bay, 2008) and the stations in Moquegua and Tacna (Cortez-Flores, 2004), as well as the V_S profiles estimate by Bernal & Tavera (2007a, 2007b) using an infinite flat-layered half-space model were also used. Additionally, the natural site period as interpreted from the microzonation map of Lima (Aguilar Bardales & Alva Hurtado, 2007) and that estimated by site response analysis for the Moquegua and Tacna sites (Cortez-Flores, 2004) were included. Information on the site conditions of the majority of the Peruvian stations included herein has been also been reported in Tavera et al. (2008).

Besides the site information collected, the spectral shapes of the records were considered by normalising the response spectra by their PGA value (for all records) and by dividing the spectra recorded at soil stations by the spectrum obtained on rock, for stations sufficiently close to one another. The natural period for each site computed from earthquake records, T_{0REC}, was also estimated and used as a guide for the assignation of site classes, following the empirical site classification approach (JP) adopted by Zhao et al. (2006a) which defines the site period as that corresponding to the highest H/V response spectral ratio. Tables 2 and 3 also list the site classes assigned to the different stations following several classification schemes: the NEHRP site classification, which is based on the average shear-wave velocity over the top 30 m; the New Zealand classification scheme used by McVerry et al. (2006), which classifies sites on the basis of the surface geology, geotechnical properties, site period and depth to bedrock; and the scheme used by Zhao et al. (2006b), which uses the predominant site period from H/V response spectral ratios.

Due to the inherent limitations of some of site data collected, the same level of priority was not given to all the various pieces of information in the assignment of site classes. For instance, only V_S profiles determined from measurements of shear-wave velocity conducted in the field have been used for the direct assignment of site classes, and profiles reported in inversions (e.g., Bernal & Tavera, 2007a; 2007b) have only been used to distinguish between shallow and deep soil sites since in several instances these profiles have been found to be biased towards low values, leading to site classifications that are inconsistent with other geological and geotechnical descriptions.
Similarly, the V_{S30} values listed in Table 2, calculated from the V_S profiles estimated by Araneda & Saragoni (1994) at a number of sites in central Chile (i.e., LLAY, MEL, ISI), were found to be biased towards high values. As no information as to the manner in which the V_S values published in Araneda & Saragoni (1994) were obtained (i.e., in situ measurements or numerical modelling), these V_S profiles have only been used to identify different soil depths. In addition, the natural period ($T_{0,CIS}$) derived using ambient noise measurements mapped in the microzonation map of Lima (Aguilar Bardales & Alva Hurtado, 2007), was generally the preferred input for assigning the JP site classes to the Peruvian sites as the predominant period calculated directly from the records ($T_{0,REC}$) could be biased due to non-linearity effects. In some instances, however, it was found that mapped period was inconsistent with other site descriptors, possibly due to limitations of the mapping resolution. For the stations in Chile, natural periods estimated by site response analysis (Cortez-Flores, 2004) were the preferred input.

Most of the stations in central Chile are situated on dense alluvial gravel and sand classified as NEHRP class C, C/D and D. There are no stations situated on soft soil (NEHRP E); however, the VMAR and V-ALM stations are on deep sand and artificial fill respectively and therefore exhibit features consistent with soils of medium density. These sites are classified as NEHRP D in view of the large values of the V_{S30} reported. Only three stations are located on hard rock and rock (NEHRP class A and B), and three sites are on soft/weathered rock classified as NEHRP class C: the RAP, VIL and UTFSM stations are located on rock (NEHRP site class B) and ZAP, QUI, PIC sites are on soft/weathered rock (NEHRP site class C). Stations in Northern Chile are situated on volcanic rock and shallow fill on weathered rock, classified as NEHRP B and C respectively. The most recent material in this region consists of Quaternary alluvial and fluvial deposits and many of the stations are located on such material. These sites are therefore classified as NEHRP C by virtue of the V_{S30} values estimated for some of those sites (ACA, ACO, POCO1, POCO2) as well as the shape of the normalised spectra (IQU, MEJI, PICA, CUY). The majority of the stations in Peru used in this study are situated on alluvial gravel, sand and silt and have been classified as NEHRP class C and D and only one station (NNA) is situated on rock classified as NEHRP class B. Conversely, the station CAL is located close to the coast in an area of reclaimed land over soft soil, and has been classified as NEHRP class D/E. Another station located on reclaimed land is RIN, which is located on loose granular fill composed of gravel, silt and fine sand.

2.3 Record information

Processing was performed with the suite of programmes for processing and manipulation of time series developed by Dr David Boore from United States Geological Survey (USGS) (Boore, 2008).
The ground-motion recordings were reformatting and converted into SMC-format files (see http://nsmp.wr.usgs.gov/smcfmt.html for details). When necessary, unevenly sampled data were interpolated and resampled at 200 samples per second. Before the application of any processing procedure, non-standard noise (i.e., spurious spikes) encountered in digitized records from analogue instruments (Douglas, 2003) was identified by visual inspection of the jerk (derivative of the acceleration trace). Spikes identified as erroneous, were removed by replacing the acceleration ordinate of the spike with the mean of the preceding and proceeding accelerations values. For some of the analogue recordings included in this database, instrument correction has been already applied by the data provider and thus not applied here. Instrument corrections were not applied to the remaining records from analogue instruments in this database as, in some cases, complete information on the instruments response was not available and additionally, the application of an instrument correction can result in amplification of high-frequency noise introduced during the digitization process (Boore & Bommer, 2005). As a result of the dynamic range of the digital instruments (natural frequencies of 100 Hz or higher) corrections for instrument characteristics were not applied to the digital recordings included in the database.

The records were processed in a consistent manner, with individual components individually filtered. Before performing the actual filtering of the record, an initial baseline correction was applied to the raw accelerogram (zeroth-order correction). The mean determined from the pre-event portion of the record, or the mean computed from the whole record if the pre-event portion was not available, was subtracted from the entire acceleration time series. After making this initial baseline correction, the acceleration traces were integrated without filtering, to check for long-period drifts that could indicate the presence of offsets in the reference baseline. In most cases baseline offsets were small and the long-period noise was removed by filtering. The records were then filtered using an acausal bi-directional, eighth-order Butterworth filter. For digital records, low-cut filter frequencies were determined by considering the signal-to-noise ratio between each channel and a model of the noise obtained from the pre-event memory. Since this type of model does not account for “signal-generated” noise (Boore & Bommer, 2005), the results were checked through visual inspection of the velocity and displacement traces obtained from integration of the filtered acceleration record. Visual inspection of these traces was also the basis for the selection of the low-cut filter frequency when no pre-event memory of digital records was available. For analogue records, fixed traces were not available to allow the identification of low-frequency noise. Therefore, the Fourier Amplitude Spectrum (FAS) of the unfiltered accelerogram was compared with the noise spectrum estimated from studies of instruments and digitising apparatus such as those proposed by Lee & Trifunac (1990) and Skarlatoudis et al. (2003), which were used as guide for the selection of low-cut filters. Since these studies correspond to a particular combination of accelerograph and digitiser, which does not correspond to that of data being processed, visual
examination of the velocity and displacement traces was also used as a basis for the selection of
the low-cut filter frequency.

In selecting low-cut filter frequencies, the filter parameter was chosen to give a signal-to-noise ratio
of 2. It is noted that the comparison of the Fourier Amplitude Spectrum (FAS) of the record with
that of the noise indicates the ratio of signal-plus-noise to noise, hence if the desired target is a
signal-to-noise ratio of 2, the ratio of the record FAS to that of the noise model should be 3. The
maximum usable period of the spectrum was then defined as 0.8 times the low-cut filter period, as
suggested by Abrahamson & Silva (1997), which is broadly consistent with the limits suggested by
Akkar & Bommer (2006). On this basis it was decided that, for about 85% of the records included
in the database, the spectral ordinates could be reliably calculated up to 3 sec (or up to 4 sec or
longer for digital records), although for a few analogue accelerograms, the usable period range
could only be extended up to 2 sec. Finally, removal of high-frequency noise was achieved by
using high frequency cut-off filters at 25 Hz for records from analogue instruments and 50 Hz for
records from digital instruments. Peak values of acceleration and velocity and acceleration
response spectra values for 5% of the critical damping were then obtained from the processed
data.

The other relevant parameter for each record is the source-to-site distance. The source-to-site
distance was characterised in terms of the closest distance to the earthquake fault plane or rupture
distance (R_{rup}). Fault plane dimensions and orientations were obtained from published finite-source
rupture models when available (e.g., Abe, 1972; Hartzell & Langer, 1993; Mendoza et al., 1994;
Choy & Dewey, 1988; Pritchard et al., 2007; Ji & Zeng, 2007). Events for which fault-plane
geometries from finite-fault inversion were available have moment magnitudes 7.1≤M_{W}≤8.4 and
contribute 70% of the strong-motion data included in the database. For the 1966 (M_{W} 8.1) and 1970
(M_{W} 8.0) Peruvian earthquakes, the rupture areas assumed for source-to-site distance
computations were those estimated by Abe (1972) based on early aftershocks distributions; these
two events only contribute two records. For the aftershocks of the 1985 Valparaiso event, with
moment magnitudes 6.3≤M_{W}≤7.1, the circular rupture geometries determined by Choy & Dewey
(1988) were used to estimate the corresponding rupture distances.

For the remaining events, for which neither finite source models nor reliable distribution of early
aftershocks were available, an alternative approach was used to estimate the distance metrics.
Fault-rupture dimensions were estimated from empirical relationships between rupture area and
moment magnitude (M_{W}) for interface and intraslab-type events that have been determined in
Strasser et al. (2010). The rupture plane was then located in space, assuming that the epicentre
lies above the centre of a dipping plane. The strike, dip and rake of the fault plane were assumed
to correspond to the preferred focal plane of the two sets of angles listed in the Harvard CMT catalogue. On the other hand, for intraslab-type events the main focal plane was assumed to be that suggested by individual studies of these events. For instance, for the 15 October 1997 (\(M_W\) 7.1) Punitaqui event, the orientation of the actual fault plane was estimated to be the almost vertical nodal plane of the two sets of angles reported in the Harvard CMT catalogue, based on the body-wave modelling for this event carried out by Lemoine et al. (2001). Similarly, the orientation of the preferred focal planes for the 7 November 1981 (\(M_S\) 6.7) and the 5 January 1974 (\(M_S\) 6.7) events used herein were those suggested by Astiz & Kanamori (1986) and Langer & Spence (1995) respectively. This approach is expected to be a reasonable approximation for the purpose of source-to-site distance calculations in view of the fact that most of the events for which this assumption was applied correspond to intraslab events with magnitude \(5.9 \leq M_S \leq 6.8\), which were recorded at large distances and thus their fault dimensions are not likely to be very large compared to the source-to-site distances.

3. CONCLUSIONS

A database of recordings for the Peru-Chile region from 1966 to 2007 has been compiled, with particular emphasis on the quality of both the data and the metadata associated with the recordings. The development of reliable regional strong-motion databases for subduction events is therefore of prime importance as they increase the confidence in the results of both regional and global ground-motion prediction studies for subduction regimes. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction-type events in the Peru-Chile region, it significantly expands the global database of strong-motion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Indeed, the compiled database further extends the magnitude range of the currently available global databases for interface events (e.g., Youngs et al., 1997; Atkison & Boore, 2003; 2008) by the inclusion of data from the 2001 (\(M_W\) 8.4) Peruvian event and further supplements the global intraslab data by the inclusion of recordings from the 2005 (\(M_W\) 7.8) Chilean event. Although the database presented in this paper includes strong-motion data recorded from 1966 to 2007, the present work can be easily extended to include more recordings and metadata from this region as they become available, including those from the \(M_w\) 8.8 that struck Chile on 27 February 2010, as this study was being finalised.

The compiled database will also allow the assessment of the existing predictive models for subduction-type events in terms of their suitability for this region, which directly influences the seismic hazard assessment in this region.
ACKNOWLEDGMENTS

The doctoral research of the first author, on which this paper is based, has been partially funded by the Alßan Programme of the European Union under scholarship E05D053967CO and the COLFUTURO programme; their financial support is gratefully acknowledged. The authors thank Bertrand Delouis for providing information on the source process of the 13 June 2005 Chilean earthquake.

We are grateful to two anonymous reviewers for their constructive feedback that helped to improve the manuscript.
REFERENCES

SNGM (1982). 1:250,000 geologic map of Chile. Servicio Nacional de Geologia y Mineria, Chile.

FIGURES

Figure 1: Tectonic setting and distribution of seismicity along the Peru-Chile subduction zone. Seismicity corresponds to that reported in EHB Bulletin for the period 1960-2006. The width and direction of the cross sections of seismicity are indicated by the rectangle in the map.

Figure 2: Location of the strong-motion stations used in this study. The panels show the stations located in (a) Central and Southern Peru; (b) Northern Chile; and (c) Central Chile. The locations and focal mechanisms of the events contributing data to this study are also shown.

Figure 3: Distribution of the dataset in terms of magnitude, distance, focal depth, event type, and NEHRP site class.

TABLES

Table 1. Summary of the earthquakes recorded in Peru and Chile, whose data is used for this study. M_W estimates were obtained from Harvard CMT catalogue, except for those events not included in there, for which M_S estimates have been listed instead (values followed by asterisk). The source of the fault geometry used to compute the rupture distance (R_{rup}) is also listed along with the number of records available from each event and the distance and PGA range. Other parameters listed include the hypocentral location, the style-of-faulting and dimensions of the fault rupture (see notes at foot of table).

Table 2: Summary of characteristics of Chilean strong-motion stations used in this study.

Table 3: Summary of characteristics of Peruvian strong-motion stations used in this study.
Table 1. Summary of the earthquakes recorded in Peru and Chile, whose data is used for this study. Mw estimates were obtained from Harvard CMT catalogue, except for those events not included in there, for which Ms estimates have been listed instead (values followed by asterisk). The source of the fault geometry used to compute the rupture distance (Rrup) is also listed along with the number of records available from each event and the distance and PGA range. Other parameters listed include the hypocentral location, the style-of-faulting and dimensions of the fault rupture (see notes at foot of table).

<table>
<thead>
<tr>
<th>EQ ID</th>
<th>Event date and time [UTC]</th>
<th>Epicentrea</th>
<th>Depth [km]</th>
<th>Mw b</th>
<th>S-of-Fc</th>
<th>Type</th>
<th>Fault geometry refd</th>
<th>Fault orientatione</th>
<th>Fault depth and lengthf</th>
<th># records</th>
<th>Rrup range [km]</th>
<th>PGA range [cm/s²]</th>
<th>Data availabilityg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>05/01/1974 [08:33:51]</td>
<td>12.360</td>
<td>76.390</td>
<td>82.0</td>
<td>6.6</td>
<td>N Intraslab</td>
<td>From scaling relations</td>
<td>315</td>
<td>35°</td>
<td>76</td>
<td>87</td>
<td>315</td>
<td>23</td>
</tr>
</tbody>
</table>

a: Epicentre coordinates in degrees South and West.
b: Magnitude of the event.
c: Style-of-faulting.
d: Fault geometry reference.
e: Fault orientation in degrees.
f: Fault depth and length in kilometers.
g: Data availability notes.
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time</th>
<th>Timezone</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth</th>
<th>Magnitude</th>
<th>Type</th>
<th>Rupture Length</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 20 21 25</td>
<td>13 2</td>
<td>75-119 31-101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 21 33 43</td>
<td>26 9</td>
<td>36-197 21-158</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15/10/1997</td>
<td>[01:03:35]</td>
<td></td>
<td>31.020</td>
<td>71.230</td>
<td>68.0</td>
<td>7.1</td>
<td>N</td>
<td>Intraslab</td>
<td>From scaling relations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173 80 54 82</td>
<td>43 3</td>
<td>72-161 50-347</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310 11/25 7.5</td>
<td>25/70</td>
<td>310 7</td>
<td>62-231 31-330</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175 15/35 105.4</td>
<td>115/132</td>
<td>110 23 108-420</td>
<td>18-708</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>323 27 3.5</td>
<td>52 190</td>
<td>13 37-139 19-488</td>
<td></td>
</tr>
</tbody>
</table>

a Epicentre locations and depths from the following references: Engdahl and Villaseñor (2002) [Events 1,2,6,8], Larger and Spence (1995) [Events 3,4,5], Choy and Dewey (1988) [Events 7,9,10,11], [3] Pardo et al. (2002b) [Event 12], Tavera et al. (2002) [Event 13], Delouis and Legrand [Event 14], Tavera and Bernal (2008) [Event 15]

b Mw estimates are taken from the CMT catalogue. For events earlier than 1976, the values reported come from the following references: Abe (1972) and Stauder (1975) [Events 1, 2], Langer and Spence (1995) [Event 3], Hartzell and Langer (1993) [Events 4,5]

c Style-of-Faulting: R (reverse), N (normal) following the Wells & Coppersmith (1994) definitions

d Fault plane dimensions of events of unknown geometry have been defined using the Strasser et al. (2010) scaling relations for subduction-zone events.

e Fault plane orientation from the selected fault model. Events for which a finite source model is not available, the strike and dip have been selected from the two sets of angles reported in the Harvard CMT catalogue (see text for explanation). Two dip values are reported for hinged fault models.

f H top: depth to top, H bottom: depth to bottom. For multi-segment models, the depth to the hinge in the fault is also reported (H hinge). RL: rupture length as measured along the strike

Table 2: Summary of characteristics of Chilean strong-motion stations used in this study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Lat [ºS]</th>
<th>Lon [ºW]</th>
<th>IT</th>
<th>IL</th>
<th>Surface geology</th>
<th>Geological & geotechnical information</th>
<th>Site classes assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>Arica-Casa</td>
<td>18.482</td>
<td>70.308</td>
<td>S</td>
<td>B1</td>
<td>Marine and</td>
<td>SC${AB}$ = 432$^{(1)}$, T${S1}$ = 0.15, T$_{S2}$ = 0.34</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>continental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sediments on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rock$^{(1)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACO</td>
<td>Arica Costanera</td>
<td>18.474</td>
<td>70.313</td>
<td>S</td>
<td>B</td>
<td>Marine and</td>
<td>SC${AB}$ = 389$^{(1)}$, T${S1}$ = 0.32, T$_{S2}$ = 0.39</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>continental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sediments on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rock$^{(1)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIE</td>
<td>Arica Escuela</td>
<td>18.494</td>
<td>70.312</td>
<td>E</td>
<td>B1</td>
<td>Volcanic rock$^{(1)}$,</td>
<td>- B - 1132$^{(1)}$, T$_{S1}$ = 0.11, 0.38</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock$^{(1)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALA</td>
<td>Calama Hospital</td>
<td>22.459</td>
<td>68.930</td>
<td>E</td>
<td>B</td>
<td>Sediments$^{(2)}$,</td>
<td>- - - - - - - - -</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deep sediments$^{(3)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAU</td>
<td>Cauquenes</td>
<td>35.97</td>
<td>72.32</td>
<td>S</td>
<td>B2</td>
<td>Alluvium$^{(2)}$,</td>
<td>D - II 646$^{(2)}$, 0.45</td>
<td>C/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dense gravel$^{(1)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIL</td>
<td>Chillán-Viejo</td>
<td>36.60</td>
<td>72.10</td>
<td>S</td>
<td>B2</td>
<td>Alluvium$^{(1)}$,</td>
<td>- - II 568$^{(3)}$, 0.77</td>
<td>C/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soft alluvium$^{(3)}$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dense gravel$^{(1)}$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Granite$^{(1)}$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paleozoic intrusive$^{(1)}$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium density sand$^{(2)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS</td>
<td>Constitución</td>
<td>35.33</td>
<td>72.41</td>
<td>S</td>
<td>B2</td>
<td>Sedimentary rock and marine sediments$^{(1)}$</td>
<td>- - - - - - - - -</td>
<td>C/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUY</td>
<td>Cuya</td>
<td>19.160</td>
<td>70.177</td>
<td>S</td>
<td>U</td>
<td>Firm gravel$^{(4)}$, Alluvium$^{(1)}$, Shallow fill on dense gravel$^{(1)}$</td>
<td>- - 513$^{(3)}$, 0.33</td>
<td>C</td>
</tr>
<tr>
<td>END</td>
<td>Santiago Endesa</td>
<td>33.45</td>
<td>70.65</td>
<td>P</td>
<td>B6</td>
<td>Alluvium$^{(1)}$, Dense gravel$^{(1)}$</td>
<td>B - II 527$^{(2)}$, 0.38</td>
<td>C/D</td>
</tr>
<tr>
<td>HUA</td>
<td>Hualañe</td>
<td>34.97</td>
<td>71.82</td>
<td>S</td>
<td>B1</td>
<td>Alluvium$^{(4,7)}$, Dense gravel$^{(1)}$, Alluvium$^{(4,7)}$, Dense gravel$^{(1)}$</td>
<td>E - II 613$^{(2)}$, 0.25</td>
<td>C</td>
</tr>
<tr>
<td>ILLA</td>
<td>Illapel</td>
<td>31.63</td>
<td>71.17</td>
<td>S</td>
<td>B1</td>
<td>Alluvium$^{(4,7)}$,</td>
<td>D - II 555$^{(2)}$, 0.33</td>
<td>C/D</td>
</tr>
<tr>
<td>ILO</td>
<td>Iloca</td>
<td>34.93</td>
<td>72.18</td>
<td>S</td>
<td>B1</td>
<td>Alluvium$^{(4,7)}$, Sand$^{(1)}$, Sediments$^{(2)}$</td>
<td>- - - - - - - - -</td>
<td>C</td>
</tr>
<tr>
<td>IQU</td>
<td>Iquique-Iidiem</td>
<td>20.215</td>
<td>70.140</td>
<td>S</td>
<td>B</td>
<td>Sediments$^{(2)}$</td>
<td>- - - - - - - - -</td>
<td>C</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Type</td>
<td>Depth</td>
<td>Porosity</td>
<td>Viscosity</td>
<td>Density</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Iquique-Inp</td>
<td>[IQUC]</td>
<td>20.217</td>
<td>70.149</td>
<td>S</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iquique Hospital</td>
<td>[IQUI]</td>
<td>20.214</td>
<td>70.138</td>
<td>E</td>
<td>B</td>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>San Isidro</td>
<td>[ISID]</td>
<td>32.90</td>
<td>71.27</td>
<td>S</td>
<td>U</td>
<td>Alluvium</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La Ligua</td>
<td>[LIG]</td>
<td>32.45</td>
<td>71.25</td>
<td>S</td>
<td>B1</td>
<td>Alluvium, Dense gravel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Llay Llay</td>
<td>[LLAY]</td>
<td>32.84</td>
<td>70.97</td>
<td>S</td>
<td>B1</td>
<td>Soft alluvium, Gravel and soft limestone</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Llolleo</td>
<td>[LLO]</td>
<td>33.58</td>
<td>71.61</td>
<td>S</td>
<td>B1</td>
<td>Sandstone and volcanic rock, Dense sand</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>El Loa</td>
<td>[LOA]</td>
<td>22.636</td>
<td>68.152</td>
<td>S</td>
<td>U</td>
<td>Volcanic rock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mejillones Hospital</td>
<td>[MEJI]</td>
<td>23.103</td>
<td>70.446</td>
<td>E</td>
<td>B</td>
<td>Sediments, very deep sand</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Melipilla</td>
<td>[MELP]</td>
<td>33.68</td>
<td>71.22</td>
<td>S</td>
<td>B1</td>
<td>Alluvium; Dense sand, Granite</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Papudo</td>
<td>[PAP]</td>
<td>32.51</td>
<td>71.45</td>
<td>S</td>
<td>B1</td>
<td>Granite, Weathed rock</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Pica Hospital</td>
<td>[PICA]</td>
<td>20.492</td>
<td>69.330</td>
<td>E</td>
<td>B</td>
<td>Sediments</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pichilemu</td>
<td>[PICH]</td>
<td>34.38</td>
<td>72.02</td>
<td>S</td>
<td>B1</td>
<td>Slate, sandstone, limestone, Rock</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Pisagua</td>
<td>[PIS]</td>
<td>19.955</td>
<td>70.212</td>
<td>S</td>
<td>U</td>
<td>Shallow fill on weathered rock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poconchile 1</td>
<td>[POCO1]</td>
<td>18.466</td>
<td>70.067</td>
<td>S</td>
<td>B</td>
<td>Marine and continental sediments on rock</td>
<td>-</td>
<td>C2</td>
</tr>
<tr>
<td>Poconchile 2</td>
<td>[POCO2]</td>
<td>18.457</td>
<td>70.107</td>
<td>E</td>
<td>B</td>
<td>Weathered rock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Putre</td>
<td>[PU]</td>
<td>18.197</td>
<td>69.574</td>
<td>S</td>
<td>U</td>
<td>Paleozoic intrusives, Rock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quintay</td>
<td>[QUIN]</td>
<td>33.20</td>
<td>71.68</td>
<td>S</td>
<td>S</td>
<td>Sediments, Paleozoic intrusives, Rock</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Rapel</td>
<td>[RAP]</td>
<td>34.03</td>
<td>71.58</td>
<td>R</td>
<td>T</td>
<td>Firm gravel, Alluvium</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The table includes various locations and their corresponding geological features and properties.
<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Depth</th>
<th>Soil Class</th>
<th>Site Class</th>
<th>Predominant Site Period (s)</th>
<th>Design S Factor</th>
<th>Site Class according to NEHRP (1997)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFDO</td>
<td>San Fernando</td>
<td>34.60</td>
<td>Alluvium</td>
<td>D</td>
<td>543 (0.36)</td>
<td>0.22-0.46</td>
<td>C</td>
</tr>
<tr>
<td>SFEL</td>
<td>San Felipe</td>
<td>32.75</td>
<td>Alluvium</td>
<td>D</td>
<td>502 (0.50)</td>
<td>-0.12</td>
<td>C</td>
</tr>
<tr>
<td>TAL</td>
<td>Talca</td>
<td>35.43</td>
<td>Alluvium</td>
<td>E</td>
<td>598 (0.83)</td>
<td>0.17</td>
<td>C</td>
</tr>
<tr>
<td>TCP</td>
<td>Tocopilla</td>
<td>22.104</td>
<td>Alluvium</td>
<td>-</td>
<td>142 (1.00)</td>
<td>-0.78-0.87</td>
<td>A</td>
</tr>
<tr>
<td>UTFSM</td>
<td>Valparaiso</td>
<td>33.03</td>
<td>Alluvium</td>
<td>B</td>
<td>360 (0.67)</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>VALMD</td>
<td>Valparaíso</td>
<td>33.03</td>
<td>Alluvium</td>
<td>D</td>
<td>331 (0.67)</td>
<td>0.76-1.0</td>
<td>D</td>
</tr>
<tr>
<td>VENT</td>
<td>Ventanas</td>
<td>33.03</td>
<td>Loose sand</td>
<td>D</td>
<td>1215 (0.26)</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>VIL</td>
<td>Los Vilos</td>
<td>31.92</td>
<td>Alluvium</td>
<td>B</td>
<td>273 (0.50)</td>
<td>0.50-0.80</td>
<td>D</td>
</tr>
<tr>
<td>VMAR</td>
<td>Viña del Mar</td>
<td>33.02</td>
<td>Alluvium</td>
<td>B</td>
<td>605 (0.41)</td>
<td>-0.18</td>
<td>C</td>
</tr>
</tbody>
</table>

* Station code, followed by the network: REN=RENADIC; D=DGC-DIC.
* Instrument type: E=ETNA; P=PK-130; R=RFT-250; S=SMA-1.
* Instrument location: B=building, followed by number of storeys if known; S=shelter; T=tunnel; U=unknown.
* Site class assigned following the New Zealand site classification, which is based on surface geology, geotechnical properties, natural site period and depth to bedrock (see McVerry et al. (2006) for details).
* Site class assigned following the Zhao et al. (2006b) scheme, considering the natural period of the site.
Table 3. Information on Peruvian strong-motion stations used in this study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>IT</th>
<th>Lat [ºS]</th>
<th>Lon [ºW]</th>
<th>Loc</th>
<th>Surface geology*</th>
<th>S_{CRM} [m/s]</th>
<th>V_{S30} [m/s]</th>
<th>T_D cr</th>
<th>$T_{0.5}$ CIS</th>
<th>$T_{S,REC}$</th>
<th>NH</th>
<th>NZ</th>
<th>JP</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC</td>
<td>Ancon</td>
<td>D</td>
<td>11.776</td>
<td>77.150</td>
<td>U</td>
<td>Alluvial gravel (soil)</td>
<td>S 280[-3]</td>
<td>0.2 - 0.3</td>
<td>0.30</td>
<td>0.10</td>
<td>C/D</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>ANR</td>
<td>Asamblea Nacional de Rectores</td>
<td>D</td>
<td>12.123</td>
<td>76.976</td>
<td>B</td>
<td>Alluvial gravel (soil)</td>
<td>FG 205[-3]</td>
<td>0.2 - 0.3</td>
<td>0.50</td>
<td>0.15</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>CAL</td>
<td>Callao</td>
<td>E</td>
<td>12.060</td>
<td>77.150</td>
<td>S</td>
<td>Soft soil[1]; Soft clay[2]; Granular fill over fine stratified soils[2]</td>
<td>S 75[-3]</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
<td>0.52</td>
<td>D/E</td>
<td>E</td>
<td>IV</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>CDL-CIP</td>
<td>CDL-CIP</td>
<td>E</td>
<td>12.092</td>
<td>77.049</td>
<td>S</td>
<td>Dense, stiff gravel deposit (Lima Conglomerate)[1]; Alluvial gravel (soil)[2]</td>
<td>FG 184[-3]</td>
<td>0.1 - 0.2</td>
<td>0.82</td>
<td>0.30</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>CER</td>
<td>Ceresis</td>
<td>E</td>
<td>12.103</td>
<td>76.998</td>
<td>U</td>
<td>Alluvial gravel (soil)</td>
<td>FG 128[-3]</td>
<td>0.1 - 0.2</td>
<td>0.28</td>
<td>0.45</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>CSM</td>
<td>Cismid</td>
<td>D</td>
<td>12.013</td>
<td>77.050</td>
<td>B1</td>
<td>Dense, stiff gravel deposit (Lima Conglomerate) [1]; Alluvial gravel (soil) [2]</td>
<td>FG 184[-3]</td>
<td>0.2 - 0.3</td>
<td>0.05</td>
<td>0.10</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>GEO</td>
<td>Geological Institute</td>
<td>A</td>
<td>12.08</td>
<td>76.95</td>
<td>U</td>
<td>Coarse dense gravel</td>
<td>-</td>
<td>-</td>
<td>0.72</td>
<td>0.48</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>HUA</td>
<td>Casa Huaco – Las Gardenias</td>
<td>A</td>
<td>12.13</td>
<td>76.98</td>
<td>U</td>
<td>Alluvial deposits</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>0.22</td>
<td>B</td>
<td>B</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA2</td>
<td>Ica 2</td>
<td>A</td>
<td>14.089</td>
<td>75.732</td>
<td>B</td>
<td>Silty sand, soil[1]</td>
<td>S 312</td>
<td>-</td>
<td>0.18</td>
<td>0.48</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>LMOL</td>
<td>La Molina Universidad Agraria</td>
<td>A</td>
<td>12.085</td>
<td>76.948</td>
<td>U</td>
<td>Alluvial deposits (soft clays and sand)[2]</td>
<td>-</td>
<td>-</td>
<td>0.11</td>
<td>0.18</td>
<td>C</td>
<td>B</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>Mayorazgo</td>
<td>D</td>
<td>12.055</td>
<td>76.944</td>
<td>U</td>
<td>Sand and silt[2]</td>
<td>S 276[-3]</td>
<td>0.2 - 0.3</td>
<td>0.22</td>
<td>0.20</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>MOL</td>
<td>Molina</td>
<td>E</td>
<td>12.10</td>
<td>76.89</td>
<td>B</td>
<td>Shallow soil overlying dense Lima Conglomerate; Sand[2]</td>
<td>R 380[-3]</td>
<td>0.2 - 0.4</td>
<td>0.13</td>
<td>0.20</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>MOQ1</td>
<td>Moquegua 1</td>
<td>A</td>
<td>17.187</td>
<td>70.929</td>
<td>S</td>
<td>Alluvial deposits (sandy gravels)[2]</td>
<td>573</td>
<td>0.11-0.18</td>
<td>0.18</td>
<td>0.11</td>
<td>C</td>
<td>B</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNA</td>
<td>Ñaña</td>
<td>D</td>
<td>11.987</td>
<td>76.389</td>
<td>U</td>
<td>Rock[2]</td>
<td>R -</td>
<td>-</td>
<td>0.10</td>
<td>0.22</td>
<td>B</td>
<td>B</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>Parcona</td>
<td>D</td>
<td>14.042</td>
<td>75.699</td>
<td>U</td>
<td>Soil[1]</td>
<td>S 456</td>
<td>-</td>
<td>0.42</td>
<td>0.54</td>
<td>C/D</td>
<td>C</td>
<td>C</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>PUCP</td>
<td>Universidad Catolica del Peru</td>
<td>D</td>
<td>12.074</td>
<td>77.080</td>
<td>B</td>
<td>Alluvial gravel (soil)[2]</td>
<td>FG 125[-3]</td>
<td>0.2 - 0.3</td>
<td>0.90</td>
<td>0.90</td>
<td>D</td>
<td>D</td>
<td>III</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>RIN</td>
<td>Rinconada</td>
<td>D</td>
<td>12.084</td>
<td>76.921</td>
<td>U</td>
<td>Fill consisting of sand, silt and gravel[2]</td>
<td>S 200[-3]</td>
<td>0.2 - 0.3</td>
<td>0.32</td>
<td>0.32</td>
<td>C/D</td>
<td>C</td>
<td>C</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>
* Description of surface geology profile, based on the following references: [1] EERI (2007) [2] Bernal and Tavera (2007a,b) [3] information provided by the strong-motion network in the accelerogram heading
Site class assigned by Rodriguez-Marek et al. (2007).

Average shear-wave velocity over the top 30m. For the Ica stations, this is based on the V_s profiles obtained by Rosenblad and Bay (2008) using SASW. For the Lima stations, the value tabulated is a tentative estimate of $V_{s,30}$ based on the V_s profile inferred by Bernal and Tavera (2007a,b) using an infinite flat-layered half-space model.

Natural site period (T_0) inferred from the microzonation map of Lima (Aguilar Bardales and Alva Hurtado, 2007). Values are not available for the NNA station in Lima, nor for the Ica stations.

Predominant period calculated from accelerogram by considering the H/V ratio of the response spectra, following the approach of Zhao et al. (2006a). The top value corresponds to the east-west component of motion, while the bottom value corresponds to the north-south component.

Site class according to the NEHRP (1997) provisions. The number in brackets corresponds to the $V_{s,30}$ value assumed when explicitly required, following the recommendations of Atkinson and Boore (2003).

Site class according to the New Zealand site classification, which is based on surface geology, geotechnical properties and depth to bedrock. See McVerry et al. (2006) for details.

Site class according to the Zhao et al. (2006a) scheme, considering $V_{s,30}$ and the natural period of the site.

Site class assumed to compute the design loads prescribed by the 1977 and 2003 Peruvian seismic codes.
Seismicity 1960 - 2006 (EHB Catalogue)

Depth of events:
- 0-75 km
- 75-150 km
- 150-225 km
- 225-300 km
- 300-375 km
- >375 km

Events used in this study:
- Peru-Chile Trench

Relative plate motions:
- NAZCA PLATE: 78 mm/year
- SOUTH AMERICAN PLATE: 80 mm/year
- PACIFIC OCEAN: 80 mm/year

Events used in this study:
- Peru-Chile Trench

Seismicity 1960 - 2006 (EHB Catalogue)

Section 1-1'

Section 2-2'

Section 3-3'

Section 4-4'

Section 5-5'

Section 6-6'

Click here to download colour figure: JOSE451_Figure 1.eps
Click here to download colour figure: JOSE451_Figure 2.eps
colour figure
Click here to download colour figure: JOSE451_Figure 3.eps