The RB/ p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma

Elzbieta Stankiewicz, David Prowse, Elena Ktori, Jack Cuzick, Laurence Ambroisine, Xiaoxi Zhang, Sakunthala Kudahetti, Nicholas Watkin, Cathy Corbishley, Dan M Berney

To cite this version:

HAL Id: hal-00614751
https://hal.archives-ouvertes.fr/hal-00614751
Submitted on 16 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
The RB/ p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Histopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>HISTOP-12-09-0677.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Penile squamous cell carcinoma, human papillomavirus, p53, p21, p16INK4A, RB</td>
</tr>
</tbody>
</table>
The RB/ p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma

Short title: HPV and protein expression in penile SCC

Elzbieta Stankiewicz1*, David M. Prowse1, Elena Ktori1, Jack Cuzick2, Laurence Ambroisine2, Xiaoxi Zhang1, Sakunthala Kudahetti1, Nicholas Watkin3, Catherine Corbishley4, Daniel M. Berney1

1Queen Mary University of London, Centre for Molecular Oncology and Imaging, Barts and The London School of Medicine and Dentistry, London, UK

2Queen Mary University of London, Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, London, UK

3The Department of Urology, St George's Hospital, Tooting, London, UK

4The Cellular Pathology Department, St George's Hospital, Tooting, London, UK

*Corresponding author. Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, Institute of Cancer, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom.

Tel: 02078823563; Fax: 02078823887. E-mail address: e.stankiewicz@qmul.ac.uk

This work should be attributed to: Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, Institute of Cancer, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom

Keywords: Penile squamous cell carcinoma, human papillomavirus, p53, p21, p16INK4A, RB

Abbreviations: HPV, human papillomavirus; PCR, polymerase chain reaction; PSCC, penile squamous cell carcinoma
Abstract

Aims: The Pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood. Human papillomavirus (HPV) may be involved in carcinogenesis, but few studies have compared cell-cycle protein expression in HPV positive and negative cancers. The aim was to determine the extent of HPV infection in different histological subtypes of PSCC and its impact on the expression of key cell cycle proteins: p53, p21, p16INK4A and RB.

Methods and Results: We examined 148 PSCC samples immunohistochemically for RB, p16INK4A, p53 and p21 protein expression. 102 cases were typed for HPV by PCR. HPV DNA was detected in 56% of tumours with HPV16 present in 81%. Basaloid tumours were strongly related to HPV infection (10/13) while verrucous were not (3/13). Fifty-nine % (38/64) of usual type SCCs had HPV infection. RB protein negatively (p<0.0001) and p16INK4A (p<0.0001) and p21 (p=0.0002) positively correlated with HPV infection. p53 did not correlate with HPV infection.

Conclusions: HPV infection is present in over half of penile cancers and it is responsible for RB pathway disruption. However, no link between HPV and p53 immunodetection was found. Only basaloid and half of usual type PSSCs correlate with HPV, confirming possible separate aetiologies for those tumours.
Introduction

Penile carcinoma is rare in developed countries, representing 0.3-0.5% of male malignancies in Europe and the USA \(^1\). In the UK there are approximately 600 (rate 1 per 100,000) new cases each year, mostly after the sixth decade \(^1\), \(^2\). The vast majority (95%) are squamous cell carcinomas \(^3\). These may be divided into usual type (70%), followed by more aggressive basaloid (10%) and a slow growing, low grade group of ‘verruciform’ tumours (20%). Verruciform lesions include verrucous carcinoma, warty carcinoma and papillary squamous cell carcinomas \(^4\). Mixed tumours of usual type and one or more of other subtypes of SCC also exist.

Risk factors for penile cancer include lack of circumcision during childhood, phimosis and cigarette smoking \(^5\). There is some confusion on the role of infection with human papillomavirus in penile cancer \(^3\), as contrary to cervical cancer \(^6\) the incidence rate varies significantly from 15% to 77.5% \(^7\), \(^8\), depending on detection range, population studied and tumour type \(^9\). HPV16 is most prevalent infection \(^7\), similar to other HPV-related ano-genital cancers \(^10\). Basaloid and warty tumours have been shown to be strongly associated with HPV infection \(^11\). Therefore, penile cancer may resemble vulvar cancer, which has two different aetiologies, one related to HPV infection and one that is not \(^12\).

The carcinogenic abilities of high-risk HPV types are well known due to extensive studies on cervical cancer. Viral oncoproteins E6 and E7 can disrupt cell cycle checkpoints and apoptosis by respectively interacting with tumour suppressor proteins, RB and p53. RB regulates cell cycle progression, protecting the cell from uncontrolled proliferation and is regulated by cyclin dependent kinase phosphorylation. p16\(^{INK4A}\) can inhibit cyclin dependent kinase mediated RB phosphorylation, preventing cell cycle progression. In cells infected with high-risk HPV, viral E7 protein binds directly to RB causing its inactivation and downregulation, which prevents cell-cycle control by p16\(^{INK4A}\) \(^13\), \(^14\). In these circumstances accumulation of p16\(^{INK4A}\) can occur, which is an indication of HPV infection \(^15\). p53 can also
inhibit cancer development and tumour growth through its ability to efficiently inhibit cell proliferation and promote apoptotic cell death. In cancers harbouring high-risk HPV, expression of viral E6 protein can inactivate p53 through its downregulation and an inverse correlation between HPV positivity and p53 overexpression has been found in some cancer sites but not others. HPV E7 protein can additionally overcome the inhibitory function of p21. p21 is a p53-responsive protein and arrests cell cycle in presence of DNA damage. E7 protein binds to p21 and abrogates its inhibitory functions, therefore overcoming a DNA damage-induced cell cycle arrest despite high levels of p21.

The mechanisms of oncogenesis in penile cancer are not fully understood. There are no data on RB expression in penile cancer and results on p53 in relation to HPV are inconclusive. Limited data is available on p16INK4A immunodetection and p21 expression in penile tumours. Therefore, we investigated HPV infection type in one of the largest series of penile SCC to test the hypothesis that HPV type and its association with key cell cycle proteins had differential effects on the tumour subtypes, in order to elucidate their role in tumour pathogenesis.
Materials and Methods

The study was conducted upon approval from East London and The City Research Ethics Committee. We retrospectively reviewed the Cellular Pathology Department Registry of St George’s Hospital to identify patients treated for penile SCC between 2001 - 2007. We retrieved 148 penile SCCs. 97 samples were usual type SCCs, 17 basaloid, 15 pure verrucous carcinomas, 7 mixed verrucous/usual type, 7 mixed verrucous/warty, 2 warty and 3 warty/usual types. 21 cases were obtained from excision biopsies/circumcisions, 82 from glansectomies and 45 from partial/total penectomies. All cases were re-reviewed by an expert uropathologist (C.C.) including subtyping, grading and staging by standard methodologies.

Polymerase chain reaction (PCR).

102 wax blocks from penile SCC cases were available for DNA extraction with a QIAamp DNA Mini kit (51304; Qiagen, Crawley, U.K.). Beta-Globin polymerase chain reaction was performed using primers B1 and B19 to confirm the adequacy of the extracted DNA. Validated samples were tested for the presence of HPV DNA by a broad-spectrum HPV PCR method using SPF10 primers which amplify a 65-bp fragment of the L1 open reading frame and HPV genotypes identified by the INNO-LiPA line probe assay (Innogenetics NV, Ghent, Belgium).

Immunohistochemistry.

Tissue microarray blocks were prepared using a manual microarrayer. Three x 1mm tissue cores were taken from each tumour. Four um sections were cut and immunostained using standard heat-induced antigen retrieval methods and the ABC kit (Vector Laboratories, PK-6200), according to manufacturer instructions. Primary antibodies dilutions were: 1:50 for RB (Novocastra, NCL-RB-358), 1:100 for p16\(^{INK4A}\) (Neomarkers, MS-1064-PO), 1:1000 for p53 (Dako, M7001) and p21 (Dako, M7202). The antibody used against RB (clone 13A10) binds to the N-terminal region of the protein and detects RB regardless of phosphorylation status. Positive controls included CIN III for p16\(^{INK4A}\), placenta for p21, anaplastic thyroid...
cancer for p53 and tonsil for RB. The staining pattern of RB, p53 and p21 was nuclear.
p16^{INK4A} showed both nuclear and cytoplasmic staining.

Sections were scored semiquantitatively by a consultant genitourinary pathologist (D.B.). For
nuclear positivity each core was given an estimated visual score between 0 – 100%,
representing the percentage of positively stained neoplastic nuclei. The intensity of staining
was also measured as: 1 (weak), 2 (medium) and 3 (strong). The final score was deduced
by multiplying the percentage of staining by intensity to give an expression score from 0-300.
p53 expression was always strong; therefore nuclear score alone was applied. Cytoplasmic
expression of p16^{INK4A} was determined by intensity of staining alone. The core with highest
score was selected for analysis. Statistical analysis was performed using StatsDirect
software, version 2.60.6000. The correlations between antibodies were evaluated using
Spearman’s rank correlation test and the tumour type or HPV infection was evaluated by
Chi-Square test or Fisher’s exact probability test. Comparisons between antibodies
expression in different histological subtypes of SCCs were restricted to usual type, verrucous
and basaloid only. The warty group of tumours was too heterogeneous and included only 2
pure warty samples. Similar to previous papers, the cut-off points selected for antibody
positivity were: >0 for p16^{INK4A} \(24\), \(\geq\) 5 for p53 and >5 for p21 \(25, 26\). As RB is normally highly
expressed in tissue we chose the median value of 240 and above (cut off \(\geq\) 240) as a high
expression of RB in penile SCC. All analyses were 2-sided, p<0.05 was considered to be
significant.
Results

148 tumours were analysed which comprised 97 usual type SCCs, 17 basaloid, 15 verrucous, 7 mixed verrucous/usual type and 12 mixed warty and other SCC subtypes. The histopathological features of the tumours are listed in Table 1. Of these, 102 cases were also suitable for HPV analysis.

HPV infection

HPV DNA was detected in 57/102 (56%) penile SCCs. Of these HPV positive tumours, 39/57 (68%) were single, 17/57 (30%) multiple HPV type infections containing up to 6 low and high risk HPV types, and one sample (2%) contained unidentified HPV (Table 2). High-risk type 16 was the most prevalent type, present in 46/57 (81%) of HPV positive tumours. HPV18 was not detected. In the majority of HPV positive tumours, 33/57 (58%) HPV16 was the only HPV type detected (Table 2).

Differences in the HPV infections were observed between the histological subtypes of PSCC. For the usual type, HPV DNA was detected in 38/64 (59%) tumours, with high risk HPV16 present in 33/38 (87%) cases. Mixed warty subtypes were positive for HPV DNA in 6/11 (55%) cases, with HPV16 present in 3/6 (50%) cases. Basaloid tumours showed higher positivity, 10/13 (77%) for HPV DNA, with HPV type 16 present in 100% of these cases. In contrast, HPV was detected in only 3/13 (23%) verrucous tumours and HPV16 was not found (0%).

Immunohistochemistry

The positive expression of proteins and mean values are listed in Table 3. High RB expression (Figure 1A) was detected in 85/147 (58%) of penile SCC and significant differences were observed between histological groups (p<0.0001). A high percentage of verrucous cases (87%), an intermediate number of usual type (60%) and few basaloid cancers (12%) expressed high RB levels. The mean RB expression was two-fold lower in basaloid than in verrucous and usual subtypes.
p16INK4A demonstrated both nuclear and cytoplasmic staining (Figure 1B). Overall 47% of PSCCs are positive for cytoplasmic p16INK4A expression, with significant differences between histological groups: 13% of verrucous, 52% usual and 94% of basaloid cases were p16INK4A positive. Basaloid samples had very high mean expression of nuclear and cytoplasmic p16INK4A, while mean expression of p16INK4A in verrucous samples was very low and usual type showed intermediate values. There was a significant inverse correlation between RB and p16INK4A expression (p<0.0001) in penile SCCs.

p53 immunodetection (Figure 1C) showed no significant difference between histological subtypes of SCC and was present in 79% of cases overall. Intensity of p21 staining was weak (Figure 1D) and present in 62%, with no difference in the expression between different SCC subtypes. No relationship was detected between p53 and p21 expression. There was a positive correlation between p21 and p16INK4A expression (Spearman’s $\rho = 0.658793$, p<0.0001) and negative correlation with RB (Spearman’s $\rho = -0.499952$, p<0.0001).

There was also a strong positive correlation between HPV infection and p21 (p=0.0002) and p16INK4A (p<0.0001) immunodetection and negative correlation with RB expression (p<0.0001) in penile SCC. p53 did not show any correlation with HPV infection (p=0.5682).
Discussion

The rate of HPV infection in penile cancer varies widely, depending on the population studied and sensitivity and specificity of the method used. Our results suggest that in a developed country, unlike cervical cancer, penile cancer has at least two aetiologies: one HPV related and one unrelated (similar to vulvar cancer) as we detected HPV DNA in 56% (57/102) of PSCC cases. This is consistent with our previous report of HPV prevalence in PSCC of 54% \(^{19}\) and the recent review that found 48% of 1,266 cases from 30 studies of invasive penile cancer were HPV positive \(^{27}\). We confirm existence of differences in HPV infection between histological subtypes \(^{11}\). HPV prevalence in usual type SCC varies between 11% and 71% \(^{7,8,28}\), and 59% (38/64) reported by us falls well within this range. As previously reported by our group, verrucous tumours were mostly HPV negative confirming the lack of HPV involvement in this neoplasm \(^{29}\), while basaloid carcinomas showed strong correlation to HPV infection \(^{11,28}\).

HPV16 is the most prevalent type in our study and was detected in 81% (46/57) of positive samples and in over half of these as a single infection suggesting that this HPV genotype is more likely to contribute to the carcinogenic process. However, 17/57 (30%) patients had multiple HPV type infections which is similar to other penile studies \(^{30,31}\). The significance of multiple HPV infections in cancer development is not clear and reports on increased risk for carcinoma in women with multiple HPV infections, as compared to those infected with a single HPV type are contradictory \(^{32,33}\).

Comparing these results with protein expression reveals that basaloid tumours have an aetiology related to high-risk HPV infection, which manifests itself in high p16\(^{\text{INK4A}}\) and decreased RB expression, as has been shown in cervical cancer \(^{34}\). The aetiology of usual type SCC can only be attributed to HPV infection in approximately half of the tumours, showing corresponding loss of RB and gain of p16\(^{\text{INK4A}}\) protein expression. This is analogous
to the involvement reported for HPV in carcinogenesis of anal SCC \(^{35}\) and tonsillar carcinoma \(^{36}\).

Detection of p53 protein by immunohistochemistry in penile cancer varies between 41.5\% and 89\% \(^{21, 37, 38}\) and there is a lack of reports comparing different histological types. We detected p53 immunostaining in 79\% (103/143) of penile SCCs and the value was very similar regardless of histology (Table 3). There was no correlation between high-risk HPV infection and p53 immunostaining, which is in agreement with previous reports on penile SCC \(^{37, 38}\). We used the DO-7 clone antibody which mainly detects mutated p53 but is also able to recognise wild type (wt) p53. Therefore, it may detect wt p53 when it is highly expressed in cells. High risk HPV infection also causes oncogenic stress to the cell which induces normal cellular responses such as increased p53 levels in order to arrest the cell cycle. Keratinocytes or fibroblasts expressing high risk HPV E7 protein are well known to overexpress wt p53, however, there is evidence that in E7 expressing cells wt p53 is transcriptionally inactive \(^{39}\). Additional studies on p53 mutations are necessary to confirm its mutational status in these tumours.

p21 was expressed in 62\% (88/143) of penile SCC with no significant difference between tumour subtypes. Lam and Chan \(^{21}\) showed lower p21 expression in penile cancer but on much smaller cohort. Interestingly p21 did not correlate with p53 and some cases expressed high levels of p21 despite low or absent p53 protein, suggesting p53-independent activation of p21. Surprisingly, similar to tonsilar SCC \(^{36}\), we found positive correlation of p21 with HPV infection \((p=0.0002)\). Additionally, p21 positively correlated with p16\(^{INK4A}\) \((p<0.0001)\) and negatively with RB expression \((p<0.0001)\). Funk at al \(^{18}\) reported that high-risk HPV16 E7 protein can directly bind to p21 and abrogate a DNA damage-induced cell cycle arrest, despite high levels of p21. He suggested it is possible that the release of E2F from RB and inactivation of p16\(^{INK4A}\) and p21 are all necessary for the ability of E7 to bypass cell cycle
arrest signals. On the other hand, there is emerging evidence that p21 in certain cancers may itself act as an oncogene and actually promote proliferation. To our knowledge this is the largest study to examine penile cancer pathogenesis by comparing HPV type with proteins commonly affected by HPV infection. We demonstrated, for the first time, that HPV infection in penile SCC disrupts the RB/p16INK4A pathway through downregulation of RB and elimination of cell-cycle control from p16INK4A, manifesting itself in accumulation of p16INK4A, which fails to block cell cycle progression. p21 was widely expressed, consistent with abnormal cell cycle regulation. However, p21 seems to be regulated independently from p53 and may be involved in oncogenic process. We confirm that penile tumours seem to have two different aetiologies: one related to HPV and one unrelated. These data suggest that use of the bivalent HPV16/18 prophylactic vaccine in men could reduce occurrence of penile SCC by about 45%.
Acknowledgements

This work was supported by The Jean Shanks Foundation and The Orchid Cancer Appeal.
References

Titles and legends to Figures

Figure 1. Immunostaining results for penile squamous cell carcinoma. (A) Strong RB expression throughout the tumour. (B) p16\textsuperscript{\text{INK4A}} expression showing both cytoplasmic and nuclear positivity. (C) Strong positivity of p53 in basal areas of the tumour. (D) p21 expression, showing scattered staining only

Titles and legends to Tables

Table 1. Histological grade and stage of different subtypes of penile squamous cell carcinoma

Table 2. Human papillomavirus DNA detection by polymerase chain reaction method in different histological subtypes of penile squamous cell carcinoma

Table 3. Positive expression of RB, nuclear and cytoplasmic p16\textsuperscript{\text{INK4A}}, p53 and p21 in all penile squamous cell carcinomas and in regard to histological subtypes
<table>
<thead>
<tr>
<th>SCC subtype</th>
<th>Grade (1-3)</th>
<th>Stage (1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>All SCCs n=148</td>
<td>35</td>
<td>59</td>
</tr>
<tr>
<td>Usual type n=97</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td>Verrucous n=15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Basaloid n=17</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Mixed warty n=12</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

SCC, squamous cell carcinoma; No data, there was no tumour stage available for six patients, which underwent penile circumcision or excision biopsy.
Table 2. Human papillomavirus DNA detection by polymerase chain reaction method in different histological subtypes of penile squamous cell carcinoma

<table>
<thead>
<tr>
<th>Histological subtype of SCC</th>
<th>n</th>
<th>HPV DNA positive</th>
<th>6</th>
<th>11</th>
<th>16</th>
<th>33</th>
<th>6</th>
<th>11</th>
<th>16</th>
<th>31</th>
<th>51</th>
<th>6</th>
<th>11</th>
<th>6</th>
<th>31</th>
<th>6</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual type</td>
<td>64</td>
<td>38 (59%)</td>
<td>2</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Basaloid</td>
<td>13</td>
<td>10 (77%)</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verrucous</td>
<td>13</td>
<td>3 (23%)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mixed verrucous/usual type</td>
<td>1</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mixed warty</td>
<td>11</td>
<td>6 (55%)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

SCC, squamous cell carcinoma; HPV, human papillomavirus; X, unclassified HPV genotype.
Table 3. Positive expression of RB, nuclear and cytoplasmic p16INK4A, p53 and p21 in all penile squamous cell carcinomas and in regard to histological subtypes

<table>
<thead>
<tr>
<th>SCC subtype</th>
<th>RB (≥240)</th>
<th>nuc p16INK4A (>0)</th>
<th>cyt p16INK4A (>0)</th>
<th>p53 (≥ 5%)</th>
<th>p21 (>5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>mean</td>
<td>n (%)</td>
<td>mean</td>
<td>n (%)</td>
</tr>
<tr>
<td>All SCCs</td>
<td>85/147 (58)</td>
<td>205.6</td>
<td>65/144 (45)</td>
<td>54.2</td>
<td>67/144 (47)</td>
</tr>
<tr>
<td>Usual type</td>
<td>58/97 (60)</td>
<td>212</td>
<td>48/93 (52)</td>
<td>62.3</td>
<td>48/93 (52)</td>
</tr>
<tr>
<td>Verrucous</td>
<td>13/15 (87)</td>
<td>248</td>
<td>1/15 (7)</td>
<td>2.7</td>
<td>2/15 (13)</td>
</tr>
<tr>
<td>Basaloid</td>
<td>2/17 (12)</td>
<td>118.2</td>
<td>16/17 (94)</td>
<td>102.4</td>
<td>16/17 (94)</td>
</tr>
<tr>
<td>Mixed warty</td>
<td>6/11 (55)</td>
<td>199</td>
<td>2/12 (17)</td>
<td>16.7</td>
<td>3/12 (25)</td>
</tr>
</tbody>
</table>

nuc p16INK4A, nuclear p16INK4A; cyt p16INK4A, cytoplasmic p16INK4A
3. You hereby warrant that this Article contains no violation of any existing copyright or other third party right or any material of an obscene, indecent, libellous or otherwise unlawful nature and that to the best of your knowledge this Article does not infringe the rights of others;

4. You hereby warrant that in the case of a multi-authored Article you have obtained, in writing, authorization to enter into this Agreement on their behalf and that all co-authors have read and agreed the terms of this Agreement;

5. You warrant that any formula or dosage given is accurate and will not if properly followed injure any person;

6. You will indemnify and keep indemnified the Editors and Blackwell Publishing against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on your behalf in this Agreement.

By signing this Agreement you agree that Blackwell Publishing may arrange for the Article to be:

- Published in the above Journal, and sold or distributed, on its own, or with other related material;
- Published in multi-contributor book form or other edited compilations by Blackwell Publishing;
- Reproduced and/or distributed (including the abstract) throughout the world in printed, electronic or any other medium whether now known or hereafter devised, in all languages, and to authorize third parties (including Reproduction Rights Organizations) to do the same;
- You agree to Blackwell Publishing using any images from the Article on the cover of the Journal, and in any marketing material.

You authorize Blackwell Publishing to act on your behalf to defend the copyright in the Article if anyone should infringe it, although there is no obligation on Blackwell Publishing to act in this way.

As the Author, copyright in the Article remains in your name (or your employer's name if your employer owns copyright in your work).

Blackwell Publishing undertakes that every copy of the Article published by Blackwell Publishing will include the full bibliographic reference for your Article, together with the copyright statement.

☐ BOX A: to be completed if copyright belongs to you

☐ BOX B: to be completed if copyright belongs to your employer (e.g. HMSO, CSIRO)

The copyright holder grants Blackwell Publishing an exclusive licence to publish the Article including the abstract in printed and electronic form, in all languages, and to authorize third parties to do the same. This will be printed on the copyright line on each page of the Article. It is the responsibility of the Author to provide the correct information of the copyright holder.

☐ BOX C: to be completed if the Article is in the public domain (e.g. US Federal Government employees) You certify that the Article is in the public domain. No licence to publish is therefore necessary.

Signature (on behalf of all co-authours) Print name: D. M. Barney Date: 7-12-04

If your employer claims copyright in your work, this form must also be signed below by a person authorized to sign for and on behalf of your employer, as confirmation that your employer accepts the terms of this licence.

Signature (on behalf of the employer of the author(s)) Print name: Date:

The rights conveyed in this licence will only apply upon acceptance of your Article for publication.

Data Protection: The Publisher may store your name and contact details in electronic format in order to correspond with you about the publication of your Article in the Journal. We would like to contact you from time to time with information about new Blackwell publications and services in your subject area. (For European contributors, this may involve transfer of your personal data outside the European Economic Area.) Please check the following boxes if you are happy to be contacted in this way:

☐ (conventional mailing) ☐ (via e-mail)

Please return the signed form to:

Histopathology Editorial Office
Blackwell Publishing Ltd
85 Goring Road
Oxford OX4 2DG

31st August 2005
COPYRIGHT TRANSFER AGREEMENT

Date: A.12.08
Contributor name: Elzbieta Stankiewicz

Contributor address: OMUL, Molecular Pathology, John Van Lennep Centre, Charing Cross Square, E14 6E

Manuscript number (if known):

Re: Manuscript entitled: The E11 PLK pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma (the “Contribution”)

for publication in: Histopathology (the “Journal”)

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal’s instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publishers, and/or the Society if applicable, suitable in form and content as follows: Title of Article, Author, Journal Title and Volume/Issue, Copyright © (year), copyright owner as specified in the Journal.

Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor, or if applicable, the Contributor’s Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back the following rights to the Contributor in the version of the Contribution as originally submitted for publication:

 a. After publication of the final article, the right to self-archive on the Contributor’s personal website or in the Contributor’s institution’s repository or archive. This right extends to both Internet and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CIF, which has been published in final form at [link to final article].

 b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of these relationships, and other offerings allowing open web use, are set forth at the following website: http://www.wiley.com/journal/understatement. NIH grantees should check the box at the bottom of this document.

D. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

 a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further provided that there is no systematic distribution of the Contribution, e.g. posting on a listserv, website or automated delivery.

 b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

 c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor’s institutional place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/learning at the Contributor’s institutional place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open internet is not permitted.

 d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).

 a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published version.

 b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:

 (i) Full and accurate credit must be given to the Contribution.

 (ii) Modifications to the figures, tables and data must be noted.

 Otherwise, no changes may be made.

 (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.

 (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment as a "work-made-for-hire" in the course of employment, the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's internal network. Copies so used may not be resold or distributed externally, however. The company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the Institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fees. Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution is prepared jointly, then the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contributor is submitted only to this Journal and has not been published before. If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's instructions for Contributors, and show credit to the sources in the Contribution. The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent, or trademark rights) of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- [] Contributor-owned work
- [] Company/institution-owned work (made-for-hire in the course of employment)
- [] U.S. Government work
- [] U.K. Government work (Crown Copyright)
- [] Other Government work
- [] NIH Grantees

Contributor's signature: [Signature]

Date: 4/12/09

Type or print name and title: [Name]

Co-contributor's signature: [Signature]

Date: 7/12/09

Type or print name and title: [Name]

Authorized signature of Employer:

Date:

Note to U.S. Government Employees:

A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and falls in the public domain in the United States. In such case, the employee may cross out Paragraph A, but must sign the Contributor's signature line and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

Note to U.K. Government Employees (Crown Copyright):

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via [URL]. The information in the form will be used as part of the U.K. government's Crown Copyright Permissions Guide to publication of articles written by employees and civil servants.

Note to non-U.S., non-U.K. Government Employees:

If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

Note to NIH Grantees:

Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, please see [URL].