PERI-OPERATIVE MANAGEMENT OF OPHTHALMIC PATIENTS TAKING ANTI-THROMBOTIC THERAPY

Gregory Lip

To cite this version:

HAL Id: hal-00614654
https://hal.archives-ouvertes.fr/hal-00614654
Submitted on 14 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PERI-OPERATIVE MANAGEMENT OF OPHTHALMIC PATIENTS TAKING ANTI-THROMBOTIC THERAPY

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Clinical Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>IJCP-06-10-0335.R2</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Non-Systematic Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>17-Sep-2010</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Lip, Gregory; City Hospital, University Department of Medicine</td>
</tr>
<tr>
<td>Specialty area:</td>
<td></td>
</tr>
</tbody>
</table>
Review

PERI-OPERATIVE MANAGEMENT OF OPHTHALMIC PATIENTS TAKING ANTI-THROMBOTIC THERAPY

Gregory YH Lip* 1
Omar M Durrani* 2
Vanessa Roldan3
Peck Lin Lip2
Francisco Marin4
Tristan Q Reuser5

1 Haemostasis Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
2 Birmingham & Midlands Eye Centre, City Hospital, Birmingham, UK
3 Centro Regional de Hemodonación, C/ Ronda de Garay s/n, Murcia 30002, Spain.
4 Department of Cardiology. Hospital Universitario Virgen de la Arrixaca. Murcia. Spain.
5 Heartlands & Solihull NHS Trust, Birmingham, and The Midlands Eye Institute, Solihull, UK

[*Prof Lip and Mr Durrani are joint 1st authors, with equal contributions to the work]

Correspondence: Professor GYH Lip
Tel: +44 121 5075080; Fax +121 554 4083; g.y.h.lip@bham.ac.uk

Competing Interests - None to declare, for all authors
Abstract

Background. Increasing number of patients presenting for ophthalmic surgery are using oral anti-coagulant and anti-platelet therapy. The current practice of discontinuing these drugs pre-operatively due to a presumed increased risk of bleeding may not be evidence-based and could pose a significant risk to the patient’s health.

Objective. To provide an evidence-based review on the peri-operative management of ophthalmic patients that are taking anti-thrombotic therapy. In addition, we briefly discuss the underlying conditions that necessitate the use of these drugs, as well as management of the operative field in anti-coagulated patients.

Methods. A semi-systematic review of literature was performed. The databases searched included MEDLINE, EMBASE, database of abstracts of reviews of effects (DARE), Cochrane controlled trial register and Cochrane systematic reviews. In addition, the bibliographies of the included papers were also scanned for evidence.

Results The published data suggests that aspirin did not appear to increase the risk of serious post-operative bleeding in any type of ophthalmic surgery. Topical, sub-tenon, peri-bulbar and retrobulbar anesthesia appear to be safe in patients on anti-thrombotic (warfarin and aspirin) therapy. Warfarin does not increase the risk of significant bleeding in most types of ophthalmic surgery when the INR was within the therapeutic range.

Conclusion. Current evidence supports the continued use of aspirin and with some exceptions, warfarin in the peri-operative period. The risk of thrombosis-related complications on disruption of anticoagulation may be higher than the risk of significant bleeding by continuing its use for most types of ophthalmic surgery.

Key words: aspirin, warfarin, anticoagulation, ophthalmic surgery
Take Home messages

- Increasing number of patients presenting for ophthalmic surgery are using oral anti-coagulant and anti-platelet therapy.

- The current practice of discontinuing these drugs pre-operatively due to a presumed increased risk of bleeding may not be evidence-based and could pose a significant risk to the patient’s health.

- Current evidence supports the continued use of aspirin and with some exceptions, warfarin in the peri-operative period.

- The risk of thrombosis-related complications on disruption of anticoagulation may be higher than the risk of significant bleeding by continuing its use for most types of ophthalmic surgery.
Introduction

Increasing number of patients presenting for ophthalmic surgery are using oral anti-coagulant and anti-platelet therapy. Common medical conditions, such as atrial fibrillation and valvular heart disease, require the use of anticoagulants (e.g. warfarin), whilst antiplatelet therapy is used in high risk populations to reduce vascular events. For example, there are one million people in America who are receiving warfarin, making it the 46th most commonly prescribed drug in USA in 1993.

As patients over the age of 65 years are twice as likely to have some form of surgery as compared to those under that age the true importance of managing peri-operative anti-thrombotic therapy becomes clear. These drugs are routinely discontinued pre-operatively due to a perceived increased risk of severe bleeding intra and post-operatively, a practice which is generally not based on published evidence and the potential risks to the patient may be poorly understood (Table 1). Nonetheless, the risk of peri-operative bleeding in patients on anti-coagulants is dependant on multiple factors including the patient’s age, other systemic diseases (cancer), the type of surgery as well as the INR. The underlying clinical state, the type of surgery and the phenomenon of rebound hypercoagulability on interruption of warfarin contributes to the risk of thrombosis-related complications.

The aim of this overview is to provide a semi-systematic review of the current published evidence on the peri-operative management of anti-coagulant and anti-platelet therapy. In particular, we will review the risk of significant bleeding in patients on anti-coagulant
and anti-platelet therapy and determine what types of ophthalmic procedures are safer than others. We will also assess the risks of thrombosis-related complications associated with short-term modification of these drugs and stratify the risk on the basis of underlying systemic disease. Management of the surgical field in ophthalmic patients on anti-coagulants will be summarized.

Methods used in undertaking this overview, as well as a brief overview of the indications for anti-thrombotic therapy are provided as web-only supplementary material.

Altering anti-thrombotic therapy and the risk of thrombotic complications

The risks of thrombotic complications on one hand and bleeding on the other are dependent on multiple factors, including the type of anti-thrombotic therapy, the type and duration of surgery and rebound hypercoagulability that may be associated with stopping warfarin.

Aspirin users may be placed in two broad overlapping groups: those with significant cardiovascular risk factors where aspirin plays a significant cardioprotective and anti-thrombotic role, and those taking aspirin to keep the circulation “healthy”. There is no published evidence to suggest that aspirin use in the latter group is beneficial. In the former group, in addition to the cardio-protective effect, aspirin reduces the risk of stroke by an average of 22%.2,21 Of note, current guidelines recommended dual antiplatelet therapy after coronary stenting especially with drug eluting stents, as early antiplatelet discontinuation may increase the risk of stent thrombosis22
The clinical relevance of rebound hypercoagulability is disputed by many authorities, though there is evidence to suggest that the risk of thromboembolism is increased on abrupt cessation of warfarin by a combination of this phenomenon and the prothrombotic effect of surgery.22-23 Laboratory studies show increased levels of prothrombin, fibrin and thrombin activation in the early period after abrupt cessation of warfarin.23-24 Post-operative changes in haemostatic markers also suggest that surgery itself may increase the thrombophilic risk.25 Furthermore, high levels of a fibrin degradation product, fibrin D-dimer, may actually be predictive of the risk of post-operative thrombosis.26-27

An overview of studies examining the effect of altering antithrombotic therapy and the risk of thrombotic complications suggests a greater risk for patients with mitral valve disease, combined mitral and aortic prosthetic valves and atrial fibrillation. The exact thrombotic risk is dependent on multiple factors including the underlying systemic condition requiring anti-coagulation, duration of disruption and the use of bridging therapy (Table 3).28-32 All these studies (either retrospective or prospective) have relatively small numbers. High quality prospective randomised studies are therefore needed to better define this risk. A meta-analysis of studies reporting thromboembolic complications describes 29 thrombotic events, including seven strokes in 1868 patients (1.6%; 95% CI, 1.0-2.1%) receiving oral anticoagulation and undergoing surgery or invasive procedures.33
Antithrombotic therapy use, surgery & the risk of bleeding complications

A recent systematic review by Dunne and Turpie identified 31 studies relating to long-term oral anti-coagulants and surgery, and reported that the quality of evidence was generally poor. They concluded that most patients can undergo cutaneous, dental, ophthalmic surgery, arthrocentesis, and upper gastrointestinal endoscopy without alteration to oral anticoagulants. For other invasive surgery, they recommend withholding oral anticoagulants and the use of heparin as bridging therapy. The perioperative management of antithrombotic therapy has been the subject of an American College of Chest Physicians Evidence-Based Clinical Practice Guideline (8th Edition; ACCP8) and broadly recommends an approach based on thromboembolic risk. For example, in those at high risk for thromboembolism, ACCP8 recommends bridging anticoagulation with therapeutic-dose subcutaneous (SC) Low molecular weight heparin (LMWH) and IV unfractionated heparin (IV UFH) over no bridging during temporary interruption of warfarin therapy, whilst in patients at moderate risk, bridging anticoagulation with therapeutic-dose SC LMWH, therapeutic-dose IV UFH, or low-dose SC LMWH is also recommended, over no bridging during temporary interruption of warfarin therapy. In patients with a mechanical heart valve or atrial fibrillation or venous thromboembolism at low risk for thromboembolism, low-dose SC LMWH or no bridging is recommended.

Cataract surgery

Cataract surgery is one of the most commonly performed surgical procedures with over 200,000 procedures carried out in the United Kingdom in the last year. Most of the patients are elderly and a significant minority are on anticoagulants. The use of
aspirin, clopidogrel and warfarin in the peri-operative period in patients undergoing cataract surgery does not appear to be associated with an increased risk of significant bleeding complications \(^{1,33-38}\).

For example, one prospective study of 1383 patients investigated the bleeding risk of local anaesthetic infiltration in patients using aspirin, warfarin and other non steroidal anti-inflammatory drugs (NSAIDS) and undergoing a variety of ocular procedures.\(^{35}\) The overall risk of bleeding was found to be 4% (minor to moderate): there were no cases of retro-bulbar hemorrhage. Another large study investigating the risks of complications from the peri-operative use of anti-coagulant in 19,283 patients undergoing cataract surgery did not find an increase in the rates of haemorrhage in patients using warfarin or aspirin: 22.2% of patients were using aspirin while 4% were on warfarin pre-operatively\(^{33}\). Aspirin was discontinued by 22% of users two weeks pre-operatively while 28.3% of warfarin users discontinued its use four days before surgery. Retrobulbar and/or peribulbar anesthesia was used in 73.9% while the rest had topical and/or sub-tenon blocks, and continued use of antithrombotic therapy (aspirin, warfarin) was recommended, as the rate of adverse bleeding events is not increased by their use. Interestingly, the rate of thrombotic complications was much higher on interruption of anti-coagulants than the rate of bleeding complications on continued use in the study population.\(^{38}\) Indeed, Gainey et al\(^{39}\) did not find a difference in the haemorrhage rate of patients irrespective of whether warfarin was continued or stopped before surgery. In patients who are undergoing cataract removal and are receiving vitamin K antagonists (VKAs), the ACCP8 guidelines recommend continuing warfarin around the time of the procedure\(^{34}\).
One study of patients undergoing cataract surgery found a greater incidence of subconjunctival hemorrhage in patients who were receiving either clopidogrel or warfarin compared to aspirin or no antithrombotic drugs, although there were no sight-threatening bleeding complications40.

\textbf{Vitreoretinal surgery}

Vitreoretinal surgery, though more invasive than cataract surgery, also appears to be safe in patients taking aspirin. For example, Narendran and Williamson41 did not find an increased rate of bleeding complications in patients taking aspirin; however, only 7 patients in the study were taking warfarin, making it difficult to draw any firm conclusions from the higher bleeding rate in this sub-group. Fu at al.42 reported 25 patients on warfarin undergoing vitreoretinal surgery, where the only reported complication was of one patient undergoing scleral buckling and external drainage of subretinal fluid where intraoperative subretinal haemorrhage was associated with the drainage procedure. The preoperative INR in this case was 2.7. Another retrospective study identified 54 patients who underwent 57 vitreoretinal surgical procedures while on warfarin anticoagulation therapy with an therapeutic INR43. There were no intraoperative hemorrhagic complications and only 4 postoperative haemorrhages, all of them resolved spontaneously.

\textbf{Glaucoma surgery}

Trabeculectomy also appears to be safe in patients taking aspirin. In a retrospective study, Cobb et al.44 reported that patients on aspirin had a postoperative hyphaema rate which was twofold compared to non-aspirin users, but there was no significant difference in surgical outcome when comparing intraocular pressures (IOP) at 2 years; however,
patients on warfarin had serious haemorrhagic complications (INR ranged from 1.5 to 4.5). In their small series, all 5 patients on warfarin developed clinically significant hyphaema, 2 of whom required surgical evacuation. Within 1 year, 4 cases needed antiglaucoma medication as IOP exceeded 21mmHg.

Lacrimal surgery

Lacrimal surgery can be associated with blood loss, sometimes significant\(^{45,46}\). In endonal lacrimal surgery, visualisation is essential, and even a little blood loss will affect outcomes. Good hemostasis is therefore essential not only per-operatively, but also to prevent bleeding in the immediate postoperative period. Poor visibility during the operation correlates with poor outcomes.

Oculoplastic, Oro-facial & cutaneous surgery

Oro-facial and cutaneous surgery, including general plastic surgery and dermatologic procedures (eg. Moh’s surgery) are broadly similar to oculoplastic and adnexal surgery, and evidence from these specialties are relevant to ophthalmologists.

Only one study investigating oculoplastic surgery in anti-coagulated patients was identified.\(^{47}\) The authors concluded that the incidence of serious haemorrhagic complications was low.

Cutaneous surgery generally appears safe in anti-coagulated patients.\(^{48}\) There is broad consensus that oral anticoagulants do not significantly increase the risk of bleeding and that stopping anticoagulant therapy does not offer significant benefits.\(^{49-52}\) The rate of
bleeding complications in anti-coagulated patients may be higher than those on aspirin but serious problems are uncommon. \(^5^3\)

Meticulous hemostasis with or without topical hemostatic agents like autologous fibrin glue or similar commercially available products and the use of pressure dressings post-operatively, further reduce this risk. One prospective study by Billingsley et al\(^5^3\) found no difference between patients on warfarin, aspirin and controls. A retrospective review of 586 patients undergoing Moh’s micrographic surgery reports a serious bleeding rate of 1.6\% in patients taking warfarin and aspirin, although there was no difference between the treated (oral anticoagulants (OAC) continued) and untreated groups (OAC stopped).\(^5^4\) Major thrombotic episodes including pulmonary embolism and thrombosis of prosthetic valve have also been reported when anticoagulant therapy was withheld prior to surgery.\(^5^5\) Finally, a recent meta-analysis of complications attributed to anticoagulation in patients following cutaneous surgery reported that patients taking warfarin were nearly seven times as likely to have a moderate-to-severe complication whereas patients taking aspirin were more than two-fold (but not statistically significant) to have a moderate-to-severe complication compared to controls.\(^5^6\)

Oral and dental surgery

There is evidence that oral and dental surgery is safely carried out in chronically anti-coagulated patients. A prospective randomised study comparing bleeding complications in patients continued on warfarin to those that had warfarin reduced or warfarin added found no statistically significant difference in the rate of bleeding complications.\(^5^7\) Another randomised controlled trial\(^5^8\) of 109 patients, comparing the discontinuation of warfarin two days pre-operatively with continued anti-coagulation did not find a
significant difference in the rate of post-operative bleeding, whereby the incidence of bleeding was 26% in the intervention group compared to 14% in the control group. Thus, for the management of anti-coagulated patients undergoing dental extraction, warfarin and aspirin should not be withdrawn as the benefits are low while the risks are high. Topical hemostatic agents like platelet rich fibrin gel could be used in patients at a higher risk of bleeding.

Five trials (a total of 553 patients) were included in a recent meta-analysis that evaluated the effect of continuing warfarin therapy on the bleeding risk of patients undergoing elective dental surgery. Perioperative continuation of warfarin with patients’ usual dose was not associated with an increased risk for clinically significant non major bleeding or an increased risk for minor bleeding compared with interrupting warfarin therapy (either partial or complete).
Modification of antithrombotic therapy

For most types of surgical procedures, the risks of interrupting anti-coagulation outweigh its benefits, but clinical needs may at times dictate disruption of warfarin or aspirin. If the INR is within the therapeutic range (2-3.5), discontinuing warfarin for three to four days will allow the INR to drop below 2.0. For those with INRs higher than the therapeutic range (ie >3.5), a longer period may be required. Consulting a cardiologist or a clinical haematologist is highly recommended in these cases.

A population of patients that deserves special consideration are patients on antiplatelet therapy related to coronary artery disease, since such patients are common, and often require chronic treatment. Indeed, a cardiologist should always be consulted where patients with coronary artery disease are on treatment with aspirin + clopidogrel (dual antiplatelet therapy) for an acute coronary syndrome or after recent stent implantation (whether drug eluting (DES) or bare metal stent (BMS) implantation.). In such patients, the risk of recurrent cardiac ischaemia or stent thrombosis is real, and non-urgent surgery (including ophthalmic procedures) should be delayed where possible, especially since the potential for bleeding with dual antiplatelet therapy may be as high as that seen with warfarin. The risk of thrombosis diminishes with time, and dual antiplatelet therapy is mandated for 4 weeks after elective BMS implantation, and for 6-12 months after DES implantation or an acute coronary syndrome. If urgent surgery is needed and cannot be delayed, and where the bleeding risk is significant, clopidogrel should be discontinued for 5 days, and restarted as soon as possible post-procedure34.
Elective surgery should be delayed if it has been less than a month since the thrombotic episode. Bridging therapy with low molecular weight heparin should only be instituted in patients at a moderate to high risk of thrombotic complications (table 3). Aspirin or clopidogrel is generally stopped 7 days prior to surgery. One prospective controlled trial suggests that stopping aspirin 48 hours before surgery is just as effective as seven days.

Urgent reversal of warfarin anticoagulation

In patients needing urgent surgery, two options are available to rapidly reduce the INR. Vitamin K (phytonadione) is a fat soluble vitamin that is required for synthesis and biologic activity of coagulation factors II, VII, IX and X as well as Proteins C and S. Warfarin inhibits the γ-carboxylation of the coagulation factors and limits their ability to bind calcium and form clots. A small dose (2.5-5 mg) of either oral or intravenous vitamin K will reverse the effects of warfarin within 24 to 36 hours. Intramuscular Vitamin K injection should be avoided because of erratic absorption and the risk of hematoma formation. For life-threatening situations with a need for emergency surgery, guidelines recommend the use of fresh frozen plasma (FFP) to treat warfarin overdosage only where there is severe bleeding or prothrombin complex concentrates (PCCs) are unavailable.
Management of the operative field

While continuing anti-coagulants in the therapeutic range does not increase the risk of serious bleeding in most types of surgery, persistent bleeding or oozing from the operative site may be more than just an annoyance. In cutaneous, oculoplastic and lacrimal surgery, important tissue planes may be obscured and the risk of graft failure increased due to hematoma formation. Orbital, oto-laryngatologic and other “key-hole” procedures may become impossible because of poor view, and dangerous if associated with significant bleeding post-op. Simple steps such as meticulous surgical technique and a good understanding of local anatomy reduce surgical trauma. Also, hypotensive anesthesia is an excellent way of reducing intraoperative bleeding in most types of surgery but post operative bleeding is a risk as potential bleeding sites may not be identified.\(^{67,68}\) Local infiltration with adrenaline is a tried and tested method of achieving local hemostasis and is especially useful in cutaneous, oculoplastic, and lacrimal surgery, and a dilution of 1:80,000 to 1:200,000 is effective when infiltrated about 10 minutes before surgery.\(^{69}\) Radiofrequency cutting diathermy also reduces bleeding at the operative site by cauterizing the wound at the time of incision.\(^{70}\) CO2 laser in the cutting mode works on a similar principal and can minimize bleeding.\(^{71}\)

Topical hemostatic agents

Fibrin Sealants enhance hemostasis at the operative site by duplicating the last phase of blood clot formation. A mixture of fibrinogen, thrombin, ionized calcium and factor XIII are applied locally. Thrombin converts fibrinogen in to fibrin and activates factor XIII. This results in cross-linking of fibrin and increased clot strength. During the healing process, this material is gradually absorbed and may actually enhance wound healing.\(^{72}\)
The preparations may be autologous, homologous and derived from pooled donors or bovine sources. To prepare the autologous gel, the patient needs to come to the hospital a few days before the procedure and give about 100-300ml of blood which is then processed to recover platelet rich fibrin glue and thrombin. When this gel is applied to the operative field, the platelets come in contact with thrombin/calcium it results in their activation and coagulum formation. The platelets interdigitate with the fibrin web and develop an adhesive haemostatic layer. Platelet activation also releases highly active vasoconstrictors, including serotonin, thromboxane and platelet derived growth factor (PDGF). In addition to haemostasis, it also promotes wound healing and has “tissue glue” properties. Commercially available topical agents tend to be more effective as they contain much higher concentrations of clotting factors.

The homologous products are screened for all currently known infectious agents but concerns remain. Bovine products like FlowSeal Matrix™ are another alternative. They are derived from closed herds that are screened for all known infections including prion diseases but the possibility of (rare) allergic reactions must be kept in mind.

A systemic review of randomised controlled trials of fibrin sealants by Carless et al suggests that these agents reduce the rate of blood loss as well as reducing the need for transfusion. A multi-centre study comparing the efficacy of fibrin sealant with conventional topical haemostatic agents in emergency re-sternotomy and redo cardiac surgery found these agents to control bleeding within five minutes of application in 92.6% of patients compared to 12.4% in the conventional group.
Floseal Matrix™ is a bovine derived two component (gelatin matrix and thrombin) haemostatic agent, which is effective in stopping bleeding following endonasal surgery in an average of 2.5 minutes. A recent randomised controlled trial found it to be safe and effective in controlling post-operative bleeding following adenoid surgery in children. It does not appear to alter wound healing or flap survival in clinical studies but delayed mucosal healing and increased scarring was reported in one animal study.

Though there is no published evidence of the use of these topical products in orbital surgery, a recent study of trans-sphenoidal surgery found Flowseal to be effective in controlling severe bleeding where standard methods had failed. Tisseal™, another topical agent is effective as hemostatic agent and tissue glue. One of the major benefits of this product is the ability to vary the clotting rate by changing the dilution of the thrombin in the preparation.

Haemostatic sponges have been around for a long time and are used either alone or after soaking them in thrombin. They work primarily by activating platelets and providing scaffolding for clot formation. Bone wax is a useful and cheap alternative for controlling moderate bleeding from bone.

Conclusions

Even with the limited quality and quantity of evidence we are able to draw certain conclusions from the available data (Table 4). Figure 1 provides an algorithm for management of warfarinized patients undergoing ophthalmic surgery.
While aspirin does not appear to be associated with an increased risk of significant bleeding in patients undergoing any type of ophthalmic surgery or infiltration of local anesthesia, no evidence of excessive thromboembolism on its discontinuation was identified. In procedures where oozing at the operative site may be detrimental to surgical outcome, aspirin may be discontinued in the peri-operative period in patients without significant cardio-vascular risk factors. The risk of significant bleeding in patients using warfarin and undergoing ophthalmic surgery appears to be relatively low when the INR is within the therapeutic range, whilst the probability of thromboembolism on its interruption appears to be much higher. Peri-operative modification of warfarin needs to be done cautiously and in close discussion with a cardiologist and/or clinical haematologist. Reducing the warfarin dose pre-operatively to bring down the INR to the lower limit of the therapeutic range is a safer alternative to disrupting it and exposing the patient to a risk of thromboembolism. There is also insufficient evidence to make precise recommendations about the newer anti-platelet drugs like clopidogrel and prasugrel.
Limitations

This overview highlights the heterogeneity of the data, with limited data from robust large randomised controlled trials, and dependence on case series.

In summary, most types of ophthalmic surgery appear to be safe in anti-coagulated patients. When the disruption to warfarin is considered essential, it should be for the minimal possible time with low molecular weight heparin ‘bridging; cover during the period of cessation as the risk of thrombophilia on interrupting oral anticoagulants appears to be higher than the risk of post-operative bleeding. The constant oozing of blood at the surgical field can also be proactively managed by a combination of local measures. The question of the best practice in the peri-operative management of chronically anti-coagulated patient is perhaps too important to ignore and well planned prospective studies are still needed.

ACKNOWLEDGEMENTS

We thank Fariha Shafi, Usman Mahmood and Anu Pherwani, for assistance with literature reviews.
REFERENCES

Table 1. Potential problems in interrupting anti-coagulant therapy

- Delay in urgent surgery
 - 3-5 days with warfarin
 - 1-2 weeks with aspirin & clopidogrel

- The need to admit patients to administer bridging heparin therapy

- Risk of thrombosis-related complications: several days needed to re-establish therapeutic INR

- Rebound hypercoagulability on disrupting warfarin
Box

Grades of Evidence

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Strongest evidence usually consisting of randomised controlled trials and well conducted meta-analysis.</td>
</tr>
<tr>
<td>II</td>
<td>Studies that provide significant evidence but with some deficiencies (non-randomised comparative trials, cohort and case-control studies as well as case-series with significant numbers).</td>
</tr>
<tr>
<td>III</td>
<td>Weaker evidence consisting of small non-comparative case series and case reports</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very important or crucial to good clinical outcome.</td>
</tr>
<tr>
<td>B</td>
<td>Moderate importance to clinical outcome</td>
</tr>
<tr>
<td>C</td>
<td>Considered relevant but not definitely related to the clinical outcome.</td>
</tr>
</tbody>
</table>
Table 2. Evidence included in this systematic review of antithrombotic therapy

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Type of surgery</th>
<th>Antithrombotic agent</th>
<th>Findings</th>
<th>Comment</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah-Weng A, 2003<sup>51</sup></td>
<td>68rx</td>
<td>Cutaneous</td>
<td>Warfarin</td>
<td>No serious significant bleeding in warfarinized patient (median INR 3.4)</td>
<td>Thrombophilia on disruption of warfarin</td>
<td>III</td>
</tr>
<tr>
<td>Alam M, 2002<sup>55</sup></td>
<td>2</td>
<td>Cutaneous</td>
<td>Aspirin, Clopidogrel</td>
<td>Two cases</td>
<td>Two cases</td>
<td>III</td>
</tr>
<tr>
<td>Alcalay J, 2001<sup>52</sup></td>
<td>32</td>
<td>Cutaneous</td>
<td>Warfarin</td>
<td>Warfarin can be continued</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Assia EI, 1998<sup>7</sup></td>
<td>61</td>
<td>Cataract</td>
<td>Aspirin</td>
<td>Peri-operative aspirin use appears safe in cataract surgery</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Billingsley EM, 1997<sup>53</sup></td>
<td>36</td>
<td>Cutaneous</td>
<td>Warfarin, anti-platelet & NSAIDS</td>
<td>Bleeding risk not increased</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Cannon PD, 2003<sup>87</sup></td>
<td>70</td>
<td>Oral</td>
<td>Warfarin</td>
<td>Dental extraction safe in anti-coagulated patients</td>
<td>Average INR in treated group was 3.4. Duration of post-op follow-up was five days. No statistical analysis</td>
<td>II</td>
</tr>
<tr>
<td>Carter K, 1998<sup>36</sup></td>
<td>87/81</td>
<td>Ophthalmic</td>
<td>Aspirin</td>
<td>No serious bleeding from surgery or local anesthesia including retrobulbar injection</td>
<td>Two cases</td>
<td>III</td>
</tr>
<tr>
<td>Carrel TP, 1999<sup>29</sup></td>
<td>235</td>
<td>multiple</td>
<td>Warfarin</td>
<td>Thromboembolic complications may occur up to one month after surgery</td>
<td>Two cases</td>
<td>III</td>
</tr>
<tr>
<td>Custer PL, 2002<sup>47</sup></td>
<td></td>
<td>Oculoplastic</td>
<td>Warfarin, anti-platelet</td>
<td>Two cases</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Devani P, 1998<sup>88</sup></td>
<td>65</td>
<td>Oral</td>
<td>Warfarin</td>
<td>No significant post-op bleeding with INR up to 4</td>
<td>Case-controlled study</td>
<td>II</td>
</tr>
<tr>
<td>Dunn AS, 2003<sup>33</sup></td>
<td>1868</td>
<td>Meta-analysis</td>
<td>Warfarin</td>
<td>Cataract surgery safe in anti-coagulated patients</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Evans IL, 2002<sup>58</sup></td>
<td>109</td>
<td>Oral</td>
<td>Warfarin</td>
<td>Higher rate of bleeding in warfarinized group</td>
<td>Two cases</td>
<td>II</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Type</td>
<td>Drug(s)</td>
<td>Description</td>
<td>Reference Rating</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Gainey SP</td>
<td>1989</td>
<td>Ophthalmic</td>
<td>Warfarin</td>
<td>Higher rate of haemorrhagic complications in anti-coagulated patients</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Hall, DL</td>
<td>1988</td>
<td>Ophthalmic</td>
<td>Warfarin</td>
<td>Cataract surgery safe in anti-coagulated patients. 3 patients had hyphaema with good visual outcome</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Kallio H</td>
<td>2000</td>
<td>Ophthalmic</td>
<td>Warfarin, anti-platelet</td>
<td>Peribulbar and retrobulbar anaesthesia is safe in patients using aspirin, NSAIDS or warfarin</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Kargi E</td>
<td>2002</td>
<td>Cutaneous</td>
<td>Warfarin, Aspirin</td>
<td>Warfarin use associated with significantly higher risk of bleeding complications</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Katholi RE</td>
<td>1976</td>
<td>Multiple</td>
<td>Warfarin</td>
<td>Two deaths on caseation of warfarin</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Katz J</td>
<td>2003</td>
<td>Ophthalmic</td>
<td>Warfarin, Aspirin</td>
<td>Bleeding risk is not increased in patients that continued to use aspirin/warfarin intraoperatively.</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>McCormack P</td>
<td>1993</td>
<td>Ophthalmic</td>
<td>Warfarin</td>
<td>No major haemorrhagic complication due anesthesia or surgery</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>McMahon LB</td>
<td>1988</td>
<td>Ophthalmic</td>
<td>Warfarin</td>
<td>No major bleeding complication</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Morris A</td>
<td>2000</td>
<td>Ophthalmic</td>
<td>Warfarin</td>
<td>Cataract surgery safe in anti-coagulated patients</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Narendran N</td>
<td>2003</td>
<td>Vitreo-retinal</td>
<td>Warfarin, aspirin</td>
<td>Aspirin does not increase the risk of intra or post-op bleeding. Warfarin carries a higher risk (RR 6.1)</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Otley CC</td>
<td>1996</td>
<td>Cutaneous</td>
<td>Warfarin, anti-platelet</td>
<td>Anti-coagulants did not increase the bleeding risk compared to controls</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Palareti G</td>
<td>1994</td>
<td>Multiple</td>
<td>Warfarin</td>
<td>Two of 17 patients had thrombotic events</td>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>

Reference Rating:
- **III**: Suggestive evidence
- **II**: Good evidence
- **I**: Strong evidence
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Type</th>
<th>Location</th>
<th>Anti-coagulants</th>
<th>Findings</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roberts CW, 1991</td>
<td>Cataract</td>
<td>Anti-coagulants</td>
<td>No major haemorrhagic complication due anesthesia or surgery</td>
<td>Warfarin results in increased circulating activated coagulation products</td>
<td></td>
</tr>
<tr>
<td>Robinson GA, 1989</td>
<td>Cataract</td>
<td>Warfarin</td>
<td>No major haemorrhagic complication due anesthesia or surgery</td>
<td>Warfarin not discontinued, INR not mentioned. INR range 1.8-3.2</td>
<td></td>
</tr>
<tr>
<td>Rotenstreich, Y, 2001</td>
<td>Cataract</td>
<td>Warfarin</td>
<td>Cataract surgery safe in warfarinized patients</td>
<td>Warfarin not discontinued, INR not mentioned. INR range 1.8-3.2</td>
<td></td>
</tr>
<tr>
<td>Saitoh, AK, 1998</td>
<td>Cataract</td>
<td>Aspirin, warfarin, Ticlopidine</td>
<td>Increased risk of bleeding with Ticlopidine. None with aspirin, warfarin</td>
<td>Warfarin re-started immediately post-op: stroke occurred one week later</td>
<td></td>
</tr>
<tr>
<td>Schambacher CF, 2000</td>
<td>Cutaneous</td>
<td>Warfarin</td>
<td>Stroke occurred on cessation of warfarin</td>
<td>Warfarin re-started immediately post-op: stroke occurred one week later</td>
<td></td>
</tr>
<tr>
<td>Shuler JD, 1992</td>
<td>Ophthalmic</td>
<td>Aspirin</td>
<td>Patients on aspirin required greater intra-operative effort to achieve hemostasis. No major difference in haemorrhagic complication (wound dehiscence, hematoma).</td>
<td>No statistical analysis</td>
<td></td>
</tr>
<tr>
<td>Shalom A, 2003</td>
<td>Cutaneous</td>
<td>Aspirin</td>
<td>Patients on aspirin required greater intra-operative effort to achieve hemostasis. No major difference in haemorrhagic complication (wound dehiscence, hematoma).</td>
<td>No statistical analysis</td>
<td></td>
</tr>
<tr>
<td>Souto JC, 1996</td>
<td>Oral</td>
<td>Warfarin</td>
<td>Warfarin should be continued for oral surgery</td>
<td>92 patients randomised to six study arms</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Systemic disease and the risk of thrombosis

<table>
<thead>
<tr>
<th>Disease/Condition</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous thrombosis > 3/12 ago</td>
<td>Low risk</td>
</tr>
<tr>
<td>Non-valvular atrial fibrillation</td>
<td></td>
</tr>
<tr>
<td>Bio-prosthetic valve</td>
<td></td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Aortic prosthetic valve</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
</tr>
<tr>
<td>Mitral valve</td>
<td>High risk</td>
</tr>
<tr>
<td>Recurrent arterio/venous thrombophilia</td>
<td></td>
</tr>
<tr>
<td>Venous thrombosis < 1/12</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.
Evidence based recommendations for peri-operative management of warfarin and aspirin.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin or warfarin should not be discontinued prior to peri-ocular infiltration of local anesthetic (sub-tenon, peri-bulbar or retro-bulbar).</td>
<td>A (II)</td>
</tr>
<tr>
<td>In the presence of vasculopathic risk factors, aspirin should not be stopped prior to any type of ophthalmic surgery.</td>
<td>B (II)</td>
</tr>
<tr>
<td>Cataract surgery can be safely carried out in patients taking aspirin or warfarin.</td>
<td>A (II)</td>
</tr>
<tr>
<td>*With the exception of vitreo-retinal surgery, warfarin should be continued in patients undergoing ophthalmic surgery as the risk of thrombophilia is higher than the risk of significant bleeding.</td>
<td>B (II)</td>
</tr>
<tr>
<td>Peri-operative modification of anti-coagulants should only be carried out after advice from a cardiologist/ clinical hematologist.</td>
<td>A ()</td>
</tr>
<tr>
<td>#In moderate to high risk patients, rather than stopping warfarin pre-operatively, its dose should be modified to reduce the INR to the lower end of the therapeutic range.</td>
<td>A ()</td>
</tr>
</tbody>
</table>

* No evidence found regarding glaucoma filtration surgery
Therapeutic INR range: 2-3.5
Figure 1. Management of warfarinized patients undergoing ophthalmic surgery

Management of warfarinized patients undergoing ophthalmic surgery

INR VALUE

- <2.0
 - Surgery as planned + Local measure

- 2.0-3.5
 - Surgery as planned + Local measures

- >3.5
 - Elective surgery:
 - Postpone
 - Notify physician
 - Reduce warfarin
 - Emergency surgery:
 - Oral/Intravenous vitamin K
 - Fresh frozen plasma