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SYNOPSIS 

 
The SOUL protein is known to induce apoptosis by provoking the mitochondrial 
permeability transition and a sequence homologous to the Bcl-2 homology 3 (BH3) 
domains has been recently identified in it thus making it a potential new member 
of the BH3-only protein family. Here we present NMR, SPR and crystallographic 
evidence that a peptide spanning SOUL residues 147 – 172 interacts with the anti-
apoptotic protein Bcl-xL. We have crystallized SOUL alone and the complex of its 
BH3 domain peptide with Bcl-xL and solved their three-dimensional structures. 
The SOUL monomer is a single domain organized as a distorted beta barrel with 
eight anti-parallel strands and two alpha helices. The BH3 domain extends across 
15 residues at the end of the second helix and 8 amino acids in the chain following 
it. There are important structural differences in the BH3 domain in the intact 
SOUL molecule and the same sequence bound to Bcl-xL.  
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 3

INTRODUCTION 
 
The Bcl-2 (B-cell lymphoma-2) family are a group of evolutionarily conserved proteins 
that interact to maintain a balance between newly forming and old, damaged or 
superfluous dying cells. [1]. They play a central role in the regulation of apoptosis, or 
programmed cell death, a process that in multicellular organisms leads to the controlled 
death of unneeded or unwanted cells. A crucial event in apoptosis is the mitochondrial 
permeability transition (MPT), a drastic increase in the permeability of the 
mitochondrial inner membrane to low molecular weight solutes [2]. Through the 
regulation of apoptosis the Bcl-2 proteins have an important function in embryogenesis 
[3], tissue remodelling [4], and the immune response [5]. Their abnormal behaviour is 
linked to many diseases such as autoimmunity [6], neurodegenerative disorders [7] and 
cancer [8]. 
The effect of the Bcl-2 proteins on the apoptotic process is due to the presence of one or 
more conserved regions of amino acid sequences, known as Bcl-2 homology (BH) 
domains named BH1, BH2, BH3 and BH4 [9,10]. The proteins of this family that 
contain only the BH3 domain are pro-apoptotic and function as initial sensors of 
apoptotic signals resulting from various cellular processes whereas the pro-survival  
Bcl-2 family members, like Bcl-2 or Bcl-xL, wield their effect by binding and 
sequestering their pro-apoptotic counterparts [11]. Peptides spanning the sequence of 
BH3 domains appear to exert the physiological activity of the intact proteins and their 
complexes with anti-apoptotic members of the Bcl-2 family have received considerable 
attention since this interaction is believed to explain the effect at the molecular level. In 
particular the complexes of peptides with the sequences of the BH3 domains of Bad, 
Bim, Bak Bid and Beclin1 with Bcl-xL have been examined by X-ray crystallography 
and NMR and the conserved crucial interactions between the peptides and the protein 
have been identified [12,13]. 
Cancer cells frequently over-express the anti-apoptotic members of the Bcl-2 family and 
small molecules, that incorporate the structural features of the BH3 domains necessary 
for binding to these anti-apoptotic proteins, have been synthesized and are being tested 
as specific cancer cell killers [14]. 
SOUL was first identified at the transcriptional level by suppression subtractive 
hybridization in chicken retina and pineal gland, and its gene was named ckSoul because 
of the high transcript levels found in the pineal gland, the organ René Descartes 
hypothesized was the location of the Soul [15]. A few years before this report, human 
SOUL had been isolated and characterized from saline extracts of human term placentas 
and had been called placental protein 23 (PP23) [16]. More recently, the protein has also 

been identified in normal human amniotic fluid [17]. It has subsequently been shown 
that the gene coding for this protein is very widely distributed in evolution and it has 
been characterized in many other species including the popular model organism of plant 
biology Arabidopsis thaliana. On the basis of its sequence similarity with the mouse 
gene p22 HBP, which codes for heme-binding protein 1 or p22HBP, SOUL has also 
been called with the alternative name of heme-binding protein 2 P(HEBP2) [18]. 
Recombinant mouse SOUL was reported to be a dimer in the absence of heme and to a 
hexamerize upon heme binding with a dissociation constant in the nanomolar range 
[19]. 
A very important observation is that SOUL can induce mitochondrial permeability 
transition, a condition that leads to mitochondrial swelling and cell death [20]. More 
recently, analysis of the human SOUL sequence revealed the presence of a putative 
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BH3 domain of the Bcl-2 protein family whose deletion abolished the apoptotic effects 
of SOUL [21].  
In this paper we provide experimental evidence that SOUL is a BH3-only protein since 
the sequence spanning amino acids 147 – 172 interacts with the anti-apoptotic protein 
Bcl-xL. In addition, we have crystallized both intact SOUL and the complex of a 
peptide that contains its BH3 domain with Bcl-xL and solved their three-dimensional 
structures to 1.6 and 2.0 Å resolution respectively. The Bcl-xL SOUL BH3 domain-
interactions are particularly interesting since the domain adopts a different structure 
when bound to Bcl-xL. 

 
EXPERIMENTAL  
 
Protein expression and purification  
The cDNA coding for human SOUL (IMAGE ID 3445763), obtained from RZPD 
(Deutsches Ressourcenzentrum fuer Genomforschung GmbH), was amplified by PCR 
using primers designed to introduce restriction sites for BamHI and HindIII 
endonucleases and a sequence coding for a digestion site for thrombin in the C terminal 
end in the amplified fragment. After purification, the fragment and the expression vector 
pQE50 (Qiagen) were digested with the restriction enzymes mentioned above and 
incubated with ligase to insert the cDNA in the vector respecting the reading frame. 
BL21 C41 strain E. coli cells were transformed with the resulting vector, grown at 37°C 
and protein synthesis was induced overnight at 20°C with 0.5 mM IPTG (isopropyl 
beta-D-1 thiogalactopyranoside). Under these conditions of subcloning in pQE50, the 
expressed intracellular domain is fused to a histidine tag through its C terminus. The 
presence of the tag allowed the affinity purification of the fused protein by passing the 
bacterial extracts through a nickel-sepharose column. The column was equilibrated with 
20 mM Tris-HCl pH 7.5, 0.5 M NaCl, 10 mM imidazole and 0.02% NaN3 and the 

bound protein was eluted with a linear gradient of imidazole from 10 to 500 mM. After 
the affinity column, the tag was removed by thrombin digestion and the protein was 
further purified by gel filtration in a Superdex G-200 column equilibrated with 20 mM 
Tris-HCl pH 7.5, 0.15 M NaCl and 0.02% NaN3 and by hydrophobic interaction 

chromatography (Lipidex1000). 
Recombinant human Bcl-xL (the cDNA used has the IMAGE ID 2823498 and was 
obtained from RZPD) was prepared in a similar way. A truncated form lacking the 
flexible loop spanning amino acids 27 - 82 and the last 24 amino acids which are the 
transmembrane domain was inserted in the pET15b vector which introduces an N 
terminal histidine tag and a thrombin digestion sequence. The purification protocol 
followed that of SOUL. 
Complete removal of the tag was assessed by Western blot analysis using an anti-His-
HRP-conjugated antibody (Sigma-Aldrich). The purified protein showed in both cases 
one band in SDS-PAGE. 
UV/Visible Spectra were recorded with a UV/Vis Unicam spectrometer (Cambridge, 
U.K.). An aliquot of 250 M of hemin dissolved in DMSO was diluted with 20 mM 
Tris HCl buffer 0.15 M NaCl pH = 7.5 so that the final hemin concentration was 10 M. 
The concentration of the hemin solution was determined as described in the literature 
[22]. Two other samples were prepared adding, in addition to hemin, appropriate 
aliquots of SOUL and BSA dissolved in the Tris buffer to bring their final concentration 
to 100 M. These samples contained thus a ratio of 10 times the molar concentration of 
SOUL and BSA with respect to the hemin concentration. The three samples were 
incubated for 30 minutes at room temperature and their UV-visible spectra recorded. 
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Nuclear Magnetic resonance measurements  
For the production of 15N-labeled human Bcl-xL lacking only the C terminal 
transmembrane domain, host cells were grown in M9 minimal medium using 15NH4Cl 

as sole nitrogen source. HSQC NMR spectra were recorded on a Bruker Avance 
spectrometer operating at 600.13 MHz, equipped with a cryoprobe. The labelled 
protein, dissolved in 20 mM Tris, pH = 7.5, 0.15 M NaCl (in 10 % D2O) and at a 

concentration of 85M, was titrated with the SOUL BH3 peptide dissolved in the same 
buffer at a concentration of 600 M. Nine additions were made so that, after correcting 
for the peptide precise concentration and taking into account dilutions, the molar ratio 
BH3 peptide/protein was 0.07, 0.17, 0.26, 0.35, 0.52. 0.69, 1.38, 2.77 and 3.83. After 
each of the additions the sample was incubated at 20°C for about five minutes and a 1D 
15N decoupled-1H spectrum and a [2D 1H-15N] HSQC spectrum were recorded at the 
same temperature. Standard sequence schemes with pulsed field gradients were used to 
achieve the suppression of the solvent signal. 
The dissociation constant was calculated from the shifts in two peaks in fast exchange 
in the methyl region of the decoupled-1H spectrum fitting the data with the equation 
 

    
P

PLKLPKLP dd

2

4
2

max





 

  

where  is the chemical shift change, P is the protein concentration, L is the total ligand 
concentration and Kd the dissociation constant. Appropriate corrections for the dilution 

of protein and ligand were made after the addition of each aliquot during the titration. 
Surface plasmon resonance studies 
Bcl-xL was immobilized on a COOH1 research-grade sensor chip (Nomadics) by 
amine-coupling chemistry using the manufacturer's protocols, and the SOUL BH3 
domain peptide was used as the analyte. SPR measurements were carried out in HBS 
buffer (10 mM HEPES (pH 7.4), 150 mM NaCl, 3 mM EDTA, 0.005% P-20 surfactant) 
at 20°C using the SensiQ Pioneer instrument (ICx Technologies, Oklahoma City, 
U.S.A). Data were analyzed with the Qdat evaluation analysis software. 
Crystallization, X-ray data collection, structure solution and refinement 
Purified native SOUL was used at a concentration of about 20 mg per ml for the initial 
screen of crystallization conditions. Molecular Dimensions Structure Screens were used 
at 20ºC with the hanging-drop method, mixing 1 l of the protein solution with the 
same volume of the precipitating solution, and equilibrating versus a volume of 0.3 ml 
of the latter in the reservoir. The conditions yielding small crystals were later refined 
and the sitting-drop method with larger volumes was also tested until crystals that were 
large enough for data collection were obtained.  
The SOUL BH3 peptide spanning amino acids 147 – 172 was synthesized by TAG 
Copenhagen A/S. The complex of recombinant human Bcl-xL with the peptide was 
prepared by mixing the protein at a concentration of about 4 mg per ml with four times 
the molar ratio of the peptide. The mixture was incubated for about one hour and then 
concentrated to about 15 mg per ml and used at this concentration for the crystallization 
experiments. 
Two different crystal forms of native SOUL were obtained, both in the presence of 1-
butyl-3-methylimidazolium chloride added to a concentration of 0.2 M because it 
improved drastically the diffraction properties of the crystals. The first crystal form is 
hexagonal, space group P6122 with a = b = 143.9 Å and c = 242.1 Å. It contains four 

molecules in the asymmetric unit (see Table 1), diffracts to about 2.85 Å and appears to 
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 6

be closely related to another crystal form reported in the literature [23]. The crystals 
grow by adding to the protein solution equal volumes of 0.1 M Tris-HCl pH 8.5, 2.0 M 
ammonium sulphate. The second crystal form is orthorhombic, space group C2221, a = 

137.7 Å, b = 114.7 Å and c = 67.4 Å and grows by mixing equal volumes of the protein 
solution and 0.85 M NaH2PO4, KH2PO4, 0.08 M Hepes, pH 7.5. These crystals 

diffract to a better resolution, about 1.6 Å, contain two molecules in the asymmetric unit 
and are the crystal form that was solved first using the S.I.R. (single isomorphous 
replacement) method. The hexagonal crystal form was solved later by molecular 
replacement. 
The best crystals of the complex human Bcl-xL – SOUL BH3 peptide grow by mixing 
equal volumes of the complex solution and 15 % PEG 6000, 0.2 M sodium sulphate and 
0.3 M 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulphate. They are 
tetragonal, space group P43, with a = b= 66.8 Å and c = 175.2 Å and diffract to 2.0 Å 

resolution. 
The diffraction data were collected from crystals frozen at 100 K after a brief immersion 
in a mixture of 80% of the mother liquor and 20% glycerol. The data set for a gold 
heavy atom derivative used for phasing were obtained using copper Kradiation from a 
Rigaku RU-300 rotating anode X-ray generator with a Mar345 imaging plate area 
detector. The final data sets used for refinement of this and the other crystal forms were 
collected at the ID14-2 beamline of the European Synchrotron Radiation Facility in 
Grenoble (= 1.001 Å ). The data were indexed, integrated and reduced using the 
programs AUTOMAR, MOSFLM and Scala [24]. The diffraction data statistics of the 
data sets used for refinement are summarized in Table 1.  
Initial phases for the orthorhombic crystals to 2.3 Å resolution were determined by the 
single isomorphous replacement method with the derivative data collected at the home 
source. Two gold sites were located in a difference Patterson map using the program 
SHELXS [25] and entered as input for the program autoSHARP [26] that was used to 
locate the minor sites of the derivative, and for density modification and final phasing to 
1.8 Å resolution. The electron density map thus produced was of very good quality and 
could be readily interpreted. The initial model of SOUL was built in this map using the 
program Coot [27].  
Refinement was carried out initially using the program REFMAC [28] and, in a second 
stage, with the program Phenix.refine [29]. During the process of refinement and model 
building, the quality of the models was controlled with the program PROCHECK [30]. 
Solvent molecules were added to the model in the final stages of refinement according 
to hydrogen-bond criteria and only if their B factors refined to reasonable values and if 
they improved the R free. The model was finally subjected to a final round of TLS 
refinement.  
The structure of the hexagonal crystal form of SOUL was solved using the CCP4 suite 
of programs for crystallographic computing. The initial phases were calculated by the 
molecular replacement method as implemented in the program MOLREP [31], with the 
coordinates of the orthorhombic model as search probe. The automatic search with data 
up to a resolution of 2.9 Å gave a solution that placed in their correct position three out 
of the four molecules present in the asymmetric unit. Fixing these coordinates the fourth 
molecule was found by the same program. The score of this solution was 0.544 and its 
R factor 41.6 %. 
A similar procedure was followed to solve and refine the structure of the complex 
human Bcl-xL – SOUL BH3 peptide using the coordinates of a protomer of Bcl-xL (32, 
Protein data bank accession code 2YXJ) as the search probe. After the four protomers of 
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Bcl-xL present in the asymmetric unit had been placed in their correct position, it 
became evident that they dimerized with domain swapping and at this point the extra 
electron density for the four BH3 helices present in the asymmetric unit was also very 
clear. The final refinement statistics for the models of the three crystal forms are 
summarized in Table 1. 

 
RESULTS  
X-ray structure of human SOUL 
The SOUL monomer is a single domain structure organized as an open distorted beta 
barrel with eight anti-parallel strands. The barrel is open in the sense that the first and 
the last strands (A and E) are not in contact in the sheet (Figure 1). Two alpha helices 
connect the second to the third strand and the sixth to the seventh. They are both located 
on one face of the molecule and pack against the curved sheet that forms the barrel. A 
monomer of SOUL fits into a box with the approximate dimensions 56 x 47 x 40 Å. 
This fold is quite different from that of the canonical member of the BH3 only protein 
family, BID (Figure 1).  
Examination of the secondary structure (Figure 1B) reveals that the molecule is made 
up of two repeated units, each with β-β-α-β-β topology related by a pseudo 2-fold axis 
of symmetry. Two SOUL monomers (A & B) are present in the asymmetric unit of the 
orthorhombic crystal form (Table 1). The secondary structure assignments of monomer 
A are, for the beta strands, the following: strand A, residues 39-43, B, residues 46-55, 
C, residues 89-94, D, residues 103-110, E, residues 127-132, F, residues 135-142, G, 
residues 174-178 and H residues 190-195. The two alpha helices span residues 58-73 
and 148-164. In addition, residues 25 and 26 extend the beta sheet and residues 113-116 
form an additional helix turn in both monomers. A minor difference between the two 
monomers was also observed: strand D of molecule B has one residue less at the N 
terminal end. 
The space within the beta barrel is filled by the side chains of both hydrophobic and 
hydrophilic residues: Trp48, Met135, Leu137, Leu139 and Trp193 but also Arg41 and 
Arg132, Asp130 and Asp191, Thr90 and Tyr179. Packing of the first helix takes place 
through hydrophobic and the following specific contacts: Trp58 (NE1)-Ser91 (OG), 
Lys68 (O)-Glu124 (OE), Tyr72 (OH)-Pro120 (O), Tyr72 (O)-Gln77 (OE) and Ile73 
(O)-Ile83 (N). Packing of the second helix involves the following specific contacts: 
Gln154 (OE)-Arg140 (NE) and Leu162 (O)- Lys167 (N). 
Two NMR structures of murine p22HBP, have been published [33, H334H]. The protein has 
about 28% sequence identity with murine SOUL. Comparison of the two SOUL 
molecules present in the crystallographic asymmetric unit of the orthorhombic crystal 
form with the two NMR models of murine p22HBP reveals that the four models differ 
substantially only in rather limited areas (Supplemental Fig. S-1). The zone where the 
two SOUL molecules in the asymmetric unit differ more from one another are the 
region before the first strand of beta sheet and the loop connecting strands C and D. The 
chains before the first strand are totally exposed to the solvent while in the case of the 
connection of strands C and D the loop in chain A is in close contact with a symmetry 
related molecule while the equivalent area in molecule B is in contact with the solvent. 
These differences are thus probably simply a consequence of molecular packing in the 
crystal. Although there is more variability in the two NMR structures of murine 
p22HBP the two models are very similar in the region connecting strands C and D 
which is also the region where both are most different from SOUL. This particular 
region of the SOUL molecule appears thus to be more variable than the rest of the 
molecule. 
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The BH3 domain predicted by sequence alignment to be present in SOUL, spans 
residues 158-172, i.e. the last 7 residues of the second alpha helix of the molecule and 8 
amino acids in the loop connecting it to strand G. The domain is represented in light 
blue in Fig.1D. Additional details on this structure have been included as Supplemental 
Information. 
Does SOUL bind hemin? 
All our attempts to prepare co-crystals of SOUL and hemin failed. When 
crystallizations were set up, with molar ratios of hemin to SOUL of even up to five, the 
crystals obtained, after screening many different conditions, were invariably those of the 
apoprotein. Soaking the pre-formed crystals did not reveal any electron density other 
than that of the apoprotein. It was thus suspected that the interaction of the two 
molecules, if present, was not as strong as expected. For this reason the UV-visible 
spectrum of hemin was examined alone and in the presence of 10 times the molar ratio 
of SOUL and bovine serum albumin used as a control (Supplemental Fig S-2A). 
Whereas the sample containing BSA has, due to the ligand protein interaction, its peak 
higher and shifted from 390 to 401 nM, as expected for hemin bound with no axial 
coordination to a hydrophobic cavity [35], the sample containing SOUL shows only 
negligible differences that can be explained by the absorption of the protein present in 
the sample and cannot be considered as evidence of a SOUL-hemin interaction. 
A second control was carried out recording P

15
PN,HPTU

1
UTHPH HSQC NMR spectra of P

15
PN 

labelled SOUL in the presence of increasing amounts of hemin dissolved in Tris buffer. 
Hemin aliquots corresponding to 0.5, 1, 2, 3 and 4 equivalents of SOUL were added to 
the protein sample and the spectra were recorded at 25°C (Supplemental Fig S-2B). 
After the addition of up to four equivalents of hemin per protein molecule the spectrum 
remains unaltered. Given the time involved to record the different spectra, a kinetic 
effect can be excluded in this case or at least if there is such an effect it has to be 
proposed that the reaction is so slow that, even after more than one day of observation, 
no change in the spectrum is detectable at all. These observations thus lead to the 
conclusion that, with the methods described here, no interaction between hemin and 
SOUL, that may be considered of physiological relevance, can be observed.  
Interaction of the SOUL BH3 peptide with human Bcl-xL 
The BH3 domain predicted by sequence alignment to be present in SOUL spans 
residues 158-172, i.e. the last 7 residues of the second alpha helix of the molecule and 8 
residues in the loop connecting it to strand G. BH3 domains are known to be helical 
and, since we knew that in the structure of SOUL the helix began before, we decided to 
examine the interaction with the anti-apoptotic protein Bcl-xL of a 26 amino acids long 
peptide, spanning residues 147-172, i.e. covering the entire helix and the region 
predicted to be part of the BH3 domain by sequence homology. The sequence of the 
peptide studied is the following: SAQKNQEQLLTLASILREDGKVFDEK. Figure 1D 
represents the SOUL monomer with the BH3 peptide colored light blue for the chain 
predicted to be part of the domain by sequence alignment and yellow for the rest of the 
peptide corresponding to the N terminal portion of the second alpha helix of SOUL. 
The interaction of the peptide and the protein was examined in solution by one and two-
dimensional NMR and by SPR. Figure 2A represents the amidic region of the P

15
PN,1HPH 

HSQC NMR spectrum of P

15
PN labelled human Bcl-xL (lacking the trans-membrane 

domain after amino acid 209) titrated with increasing amounts of the peptide. Note the 
significant changes in some of the peaks of the protein as the interacting BH3 peptide is 
added to the solution. Figure 2B shows the chemical shift displacements in the two 
peaks in fast exchange in the methyl region of the 1H spectrum that were used to 
calculate an approximate dissociation constant of the interaction and Figure 2C shows 
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the fitting of these displacements as a function of equivalents of the BH3 peptide added. 
The dissociation constant values calculated using the two peaks are in reasonable 
agreement with one another and are 47.8 and 41.3 M (see Figure 2C). 
The SOUL BH3 peptide - Bcl-xL interaction was also studied by surface plasmon 
resonance (SPR). Both intact Bcl-xL and a form lacking amino acids 27-82 (27-82) 
that is known to bind BH3 domains like the intact protein [36] were immobilized on a 
sensor chip and the SOUL BH3 domain peptide was used as the analyte. Similar results 
confirming the interaction were observed for both variants of Bcl-xL. Figure 2D shows 
a sensorgram of the 27-82 form of the protein. The dissociation constant estimated 
with this method is about 5 times the values observed in the NMR experiments. The 
discrepancy is probably due to errors in the estimate of the peptide concentration used in 
the experiments. However, we did not detect significant binding between intact SOUL 
and Bcl-xL (data not shown), which may reflect either a lack of interaction under the 
conditions tested or more probably the requirement of drastic structural changes in 
SOUL. 
X-ray structure of the SOUL BH3 domain peptide complexed with Bcl-xL 
The data collection and refinement statistics of the co-crystals of human Bcl-xL (27-
82) with the SOUL BH3 peptide are summarized in Table 1. The crystals are tetragonal, 
space group P43 and present 50% merohedral twinning. The structure was solved by 

molecular replacement, initially assuming that the space group was P43212 but the 

model could not be properly refined. A standard statistical test of the structure factors 
revealed that the correct space group is P43 with the twinning law h, -k, -l. The law was 

introduced in the program Phenix.refine [29] and the model was refined to give the 

statistics listed in Table 1. The asymmetric unit contains four Bcl-xL protomers 

organized as dimers that exhibit domain swapping exchanging their 1 N terminal helix 
(Fig 3A). This kind of domain swapping has been observed in several co-crystals of 

BH3 domains and human Bcl-xL (27-82) [13,37,38,39]. It is considered to be an 

artifact due to the 27-82 deletion but it does not affect in any way the BH3 domain 
binding activity or anti-apoptotic properties of the protein. In fact, the complex in 
solution of the Beclin 1 BH3 domain and another truncated form of Bcl-xL, studied by 
NMR exhibits the same interactions observed in the crystals [40]. The two dimers 
present in the asymmetric unit of the crystals of the SOUL BH3 complex are very 
similar to each other, with a root mean square standard deviation of 0.607 Å over 314 
alpha carbon atoms of Bcl-xL and the BH3 domains. Their Bcl-xL part is also quite 
similar to that of the other domain swapped dimers of human Bcl-xL (27-82) that 
exchange the N terminal 1 helix. The rms deviations for the 276 alpha carbons are 
1.845 Å for the Beclin 1 complex [13, PDB code 2P1L], 2.425 Å for the BIM L12F 
mutant peptide complex [38, PDB code 3IO8] and 2.216 Å for the helical  peptide 
foldamer complex [39, PDB code 3FDM].  
The structures of several BH3 domains in complex with Bcl-xL have been examined. 
They all reveal that the BH3 sequence forms an amphipathic helix that inserts into a 
hydrophobic groove on the surface of the anti-apoptotic protein [41,42,43]. 
The four SOUL BH3 domain peptides observed in the co-crystals with Bcl-xL present 
an ordered structure which in every case contains more amino acids at the N terminus 
than those predicted by sequence similarity (residues 158-172 of the SOUL sequence). 
Of the 26 amino acid long peptide co-crystallized with Bcl-xL, for only the first three 
(S147-A148-Q149) there is no clear electron density in any of the four peptides present 
in the asymmetric unit. In all the four BH3 domain peptides examined the helix 
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observed is at least 18 amino acids long (153 EQLLTLASILREDGKVFD 170). Figure 
3B represents in two colours the BH3 domain peptide bound to a protomer of Bcl-xL 
that more closely corresponds to the prediction (chain E). The extra amino acids at the 
N terminus are represented in a different colour. Figure 3C shows the electron density 
of the BH3 domain peptide oriented as in (B), with the Bcl-xL protomer represented as 
a space-filling model. In intact SOUL, the last amino acid of the second alpha helix is 
Glu164 and thus 8 amino acids with the sequence DGKVFDEK in the loop following 
the helix change their conformation upon interaction with Bcl-xL to become the last 
portion of the BH3 helical domain in the complex. 
The interactions of the SOUL BH3 domain peptide with Bcl-xL are mostly hydrophobic 
(Table S-1 and Fig 4) but they include also other, more specific contacts, due to charged 
residues: Gln154 (BH3) – Gln111 (Bcl-xL), Ser160 (BH3) – Glu129 (Bcl-xL), Arg163 
(BH3) – Glu129 (Bcl-xL), Asp165 (BH3) – Tyr101 (Bcl-xL) and Asp170 (BH3) – 
Tyr195 (Bcl-xL). Residues participating in hydrophobic contacts are Leu 155, 156, 158 
and 162 and Phe172 of the BH3 domain peptide and Leu 108, 112 and 130, Val 126 and 
141, Phe 97 and 105, Tyr 101 and 195 and Trp137 of the Bcl-xL molecule.  
The amino acid contributions to the free energy of binding of BH3 peptides to Bcl-xL 
have been calculated using molecular dynamics simulations coupled with the molecular 
mechanics/Poisson-Boltzmann surface area method [12]. The Bcl-xL residues that give 
important contributions are: Phe97, Tyr101, Leu112, Val126, Leu130, Arg139, Tyr185 
and Phe146. With the exception of the last residue, they all participate in the 
interactions with the SOUL BH3 domain peptide. Leu 158 and 162 of SOUL BH3 
correspond to Leu 112 and 116 of Beclin 1 [13] and to Ile90 and Leu94 of BIM [43], 
Phe169 corresponds to Phe123 in Beclin 1 and Phe101 in BIM. Arg163 of the SOUL 
BH3 domain peptide, one of the residues controlling the specificity of binding, 
corresponds to Lys117 in Beclin 1 and Arg95 in BIM. These three basic amino acids are 
hydrogen bond donors to Glu129 of Bcl-xL. 
Two of the specific charged residue contacts of the SOUL BH3 domain peptide and 
Bcl-xL are represented in Figures 4A and 4B. They involve Arg163 and Asp170 of the 
BH3 domain peptide. The first interaction is established with Glu129 of Bcl-xL while 
the second is with Tyr195. Analogous contacts are found in both Beclin 1 and BIM. The 
sequence of the peptide is aligned to those of several well known BH3 only proteins in 
Fig 4C. Note that some amino acids in the N terminal region of the peptide are also 
present in other members of the family. 
Fig 5A superimposes the domain in intact SOUL with the helical conformation bound to 
Bcl-xL found in the crystals. It is evident that very drastic changes are required to 
transform the structure of the free domain into the bound one. Fig 5B shows that 
binding of the BH3 domain peptide of SOUL to Bcl-xL (27-82) is quite similar to the 
binding of another recognized BH3 domain protein, Beclin1. Only one important 
contact is missing in SOUL, that of an Asp (121 in Beclin 1) with Arg139 of Bcl-xL 
which is conserved in all the BH3 domain peptides studied so far. The absence of this 
interaction in SOUL might explain the relatively high dissociation constant we have 
observed for this complex. 

 
DISCUSSION 
The BH3-only members of the Bcl-2 protein family play a central role in the process 
that leads to programmed cell death or apoptosis. Their effect is due to inhibition 
through binding of their BH3 domain, in the hydrophobic cleft of the anti-apoptotic 
members of the Bcl-2 family like Bcl-2, Bcl-xL or MCL-1. Indeed one of the criteria to 
include a protein in this group is a demonstration of its interaction with one of the pro-
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survival proteins of the Bcl-2 family, in addition to showing that they have a cellular 
death-inducing activity. On the basis of these criteria, since the discovery of the first 
member of the family, BIK [44], many other members have been added to the list 
[9,10]. In many cases the proteins seem to have additional functions, besides their role 
in inducing cellular death. Although a very large number of complexes of BH3 peptides 
with pro-survival proteins of the Bcl-2 family are available [12, 45], only one NMR 
structure of an intact BH3 only protein is known, BID [46, 47]. 
Two different mutually non-excluding functions have been attributed to SOUL: heme-
transport [19] and a role in apoptosis as a BH3 only protein [20, 21]. We have used 
NMR, SPR, UV spectroscopy and crystallography to explore both functions and, in 
addition, we have determined the three-dimensional structure of the protein. Human 
SOUL is a monomer with a fold which is quite different from that of the other BH3 only 
protein whose three-dimensional structure is known, BID, which is similar to Bcl-xL. 
BID contains eight alpha helices, two central, hydrophobic surrounded by six 
amphipathic with their hydrophilic face exposed to the solvent. The SOUL molecule is 
similar to murine p22HBP [  HT33T,34]. 
The interaction of human SOUL with hemin was explored by titrating the latter with the 
former and following the UV spectrum, using as a control albumin. In our experiments 
we made sure that the protein we used did not contain even traces of the histidine tag 
used for purification and that no imidazole, residual from the purification in the affinity 
columns, was present in the samples. We did not find any evidence of an interaction of 
hemin with SOUL. This result was confirmed by the 1

H5

5
PN,1HPH HSQC NMR spectra of 

15N labelled SOUL in the presence of increasing amounts of hemin. We do not have an 
explanation of why our results appear to be at variance with those reported for mouse 
SOUL [19]. The latter is reported to be a dimer in the absence of heme and a hexamer in 
the bound state which is different from both the current work and work on the related 
p22HBP proteins. It is also worth noticing that the histidine residue that Sato et al. 
found to be essential for heme binding does not seem to be involved in heme binding to 
p22HBP that appears to bind this moiety through hydrophobic interactions and not 
metal coordination. 
The interaction of a peptide spanning residues 147-172 of human SOUL with human 
Bcl-xL was also studied with 1

H5

5
PN,1HPH HSQC NMR spectroscopy using two different 

forms of human Bcl-xL, the entire molecule lacking only the hydrophobic trans-
membrane domain after amino acid 209 and another truncated form lacking also amino 
acids 27-82 (27-82). The results were comparable and indicated in both cases that 
there is an interaction of the 26 amino acid SOUL peptide with Bcl-xL with a 
dissociation constant estimated in 40-50 M. These results were confirmed by SPR 
measurements and by preparing co-crystals of the complex and solving their three-
dimensional structure. The new crystal structure revealed swapping of the first helix of 
the Bcl-xL dimer, a phenomenon associated with the presence of the 27-82 truncation. 
The amino acids participating in the interaction of BH3 domain and protein were 
identified. The interactions are mostly hydrophobic but a significant number of specific 
charged residue contacts were also found to be present.  
When the SPR experiments performed to detect the interaction of the SOUL BH3 
domain peptide are repeated using the entire SOUL molecule instead, no interaction is 
detected between ligand and analyte. This result might be explained by the fact that our 
data predict a very drastic conformational change in the protein molecule to allow the 
portion of polypeptide chain involved in the contacts to adopt the conformation required 
for the contacts to be established. The last eight amino acids of the BH3 domain are not 
in helical conformation in intact SOUL and, in addition, side chains that are important 
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for the interaction point towards the interior of the molecule and are not available on the 
protein surface. Conformational changes in the anti-apoptotic members of the Bcl-2 
family upon interaction with BH3 domains have been described [38] as well as changes 
in the interacting BH3 domains [41,46]. In addition, it has been shown that Bim, Bad 
and Bmf have intrinsically unstructured BH3 domains that undergo a localized 
conformational change upon binding to pro-survival Bcl-2 targets [48]. No important 
changes were found in Bcl-xL but the changes in the BH3 domain are remarkable and 
suffice to explain why no interaction is observed with the intact SOUL molecule. These 
drastic modifications might require conditions that have not yet been found but that 
should be further explored given the importance of this interaction in the functionality 
of the two proteins.  
The mechanism of activation of BID, the prototype of BH3 only proteins, involves 
cleavage by caspase 8 in a region with the sequence LQTDG [46]. The second amino 
acid in the sequence can be an E and the last can be any amino acid other than P, E, Q, 
K or R. This cleavage site is not present in SOUL although the similar sequence 
LESDV spans residues 123-127 and is exposed to the solvent in the molecule, in the 
loop connecting strand D to E. However, a test with caspase 8, using human BID as a 
control reveals that SOUL is non a substrate of this enzyme (data not shown). 
The role of SOUL in inducing apoptosis is documented but up to now there was no 
information at the molecular level on the mechanism through which this function is 
accomplished. We have shown that its BH3 domain interacts with a pro-survival 
member of the Bcl-2 family and thus have provided new evidence that SOUL behaves 
like a novel member of the expanding family of BH3-only proteins.  
Two very important questions remain unanswered: the nature of the molecular alteration 
that intact SOUL must undergo for the interaction to take place and the precise 
specificity of the interaction of the SOUL BH3 domain with different members of the 
Bcl-2 family. 
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Figure legends 

UFigure 1.U Overall structure and folding of SOUL 
(A) Stereodiagram of the SOUL molecule. The eight-stranded  sheet is shown in two 
colours, red and blue, to emphasise the presence of two repeated units, each with β-β-α-
β-β topology, related by a pseudo-2-fold axis of symmetry. 
(B) A topological diagram of SOUL. The eight antiparallel β-strands form a distorted β-
barrel with the two α-helices arranged on one face. Strands are labelled in the order of 
their appearance from the N terminus to the C terminus using the letters A-H. The 8 
strands span the following residues: A, 39–43; B, 46–55; C, 89-94; D, 103–110; E, 127–
132; F, 135–142; G, 174–178; H, 190–195. The two helices span residues 58–73 and 
148–164.  
(C) Ribbon representation of the SOUL monomer viewed in a direction rotated 
approximately 90° with respect to Fig 1 (A). The two helices are yellow, and the strands 
of beta sheet have been coloured as in Figs 1 (A & B) to emphasise the presence of the 
pseudo two-fold axis.  
(D) Ribbon diagram of SOUL with the peptide spanning the BH3 domain represented in 
light blue for the portion of the chain identified by sequence similarity with known BH3 
domains and yellow for the rest of the second helix of the molecule.  
(E) Ribbon diagram of the NMR model of BID (lowest energy structure, PDB code 
2BID) with the BH3 peptide and domain oriented and colour coded as in (D). 
The figures of the models were prepared using the program PyMol. 
UFigure 2. Interaction of the SOUL BH3 peptide with human Bcl-xL  
(A) 15N-1H NMR correlation spectra of 15N labelled human Bcl-xL titrated with 
increasing amounts of a 26 amino acid long peptide spanning residues 147-172 of 
human SOUL. The peptide sequence is SAQKNQEQLLTLASILREDGKVFDEK. 
Arrows indicate the direction of peak shifts. Only four spectra are represented in the 
figure; the black one is before any addition, the green after the addition of 0.52 
equivalents of the peptide, the blue after the addition of 1.38 equivalents and the red 
after adding 3.83 equivalents of the BH3 domain peptide. 

(B) Decoupled-1H spectrum showing the shifts in two peaks in fast exchange in the 
methyl region used to calculate an approximate dissociation constant. The colour of the 
spectra is the same as in (A) and correspond to the addition of the same amounts of 
peptide. 
(C) Magnitude of the change in the 1H chemical shift of the two selected peaks plotted 
as a function of the total number of equivalents of BH3 domain peptide added. The 

curve best fit is shown along with the coefficient of determination (R2) and the 
calculated dissociation constants. The values determined using the two peaks are 47.8 
and 41.3 M. The equation used to fit the data is given in the Experimental section 
under NMR measurements. 
(D) Surface plasmon resonance studies of the same interaction. The sensorgram shows 
the binding of the BH3 peptide to truncated immobilized Bcl-xL. Relative units (RU, 
vertical) are plotted as a function of time (in seconds, horizontal).  
(E) A plot of the response as a function of the peptide concentration used to estimate the 
dissociation constant. The diagram is the result of several experiments and higher 
peptide concentrations could not be used because the BH3 peptide had a tendency to 
aggregate. 
Figure 3. Crystal structure of the SOUL BH3 domain peptide complexed with Bcl-
xL. 
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(A) A dimer of human Bcl-xL (27-82) showing swapping of the alpha1 domains. The 
two helical SOUL BH3 peptides are represented red.  
(B) A protomer of Bcl-xL and the SOUL BH3 peptide in contact with it. The portion of 
the peptide predicted by sequence homology to be the BH3 domain is blue while the 
yellow part is the additional portion of the peptide, the beginning of the second helix of 
SOUL.  
(C) Electron density of the SOUL BH3 peptide bound to Bcl-xL oriented as in (B). The 
molecular surface of Bcl-xL shows the negatively charged residues red and those 
positively charged blue. The 2Fobs –Fc map was contoured at a 1.2  level. Selected 
BH3 peptide amino acids participating in important contacts with Bcl-xL have been 
labeled. The figure was prepared using the program Pymol.  
Figure 4.U SOUL BH3 peptide side chains that interact with Bcl-xL.  
(A) Diagram representing Arg 163 and other side chains participating in one of the 
specific contacts of the SOUL BH3 peptide with Bcl-xL. Hydrogen bonds are indicated 
with green dotted lines whereas the amino acids that make hydrophobic contacts are 
only indicated but not represented as ball and stick models.  
(B) The same type of diagram as (A) but with another specific contact in which the key 
residue is Asp 170 of the SOUL BH3 peptide.  
(C) Sequence alignment of the SOUL BH3 peptide and eight BH3 only proteins. The 
BH3 domains are boxed and the amino acids that are identical in SOUL and at least two 
other sequences are red whereas those that are identical in at least three sequences are 
blue. The leucine conserved in all the sequences is indicated on a green background. 
Figures 4 (A) & (B) were prepared using the visualization program LIGPLOT [49]. 
Figure 5.U Structural changes in the BH3 peptide of SOUL upon binding to Bcl-xL.  
(A) Comparison of the peptide bound to Bcl-xL (27-82) (blue) and the same sequence 
in the intact SOUL molecule (red). Eight amino acids change their conformation to 
extend the BH3 helix towards its C terminus. The coordinates were superimposed by 
using the CCP4 suit of programs. Three charged amino acids that give specificity to the 
interaction are represented as stick models in the two conformations.  
(B) Superposition of the SOUL BH3 peptide Bcl-xL (27-82) complex (the peptide is 
yellow and Bcl-xL is orange) and the same complex of Bcl-xL (light blue) and the 
Beclin 1 BH3 peptide (green). The PDB code of model the Beclin 1 peptide complex is 
2P1L (reference 13). The interactions of the SOUL amino acids Arg163 and Asp170 
(shown in Figure 4) are indicated with dotted lines. The Asp is conserved in Beclin 1 
and the equivalent of the Arg is a Lys. Note that the important contact of Arg139 of 
Bcl-xL with an Asp in Beclin 1 (conserved in all BH3 domain Bcl-xL complexes) is 
missing in the SOUL peptide. 
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Table 1 Data collection and refinement statistics. 
 
 

Data set Human SOUL 
Native 

 

Human SOUL  
Native 

Complex Human Bcl-
XL – Human Soul 

BH3 peptide 
Space group C2221 P6122 P43 

a (Å) 137.72 143.92 66.83 
b (Å) 114.66 143.92 66.83 
c (Å) 67.42 242.12 175.22 

 90.0 90.0 90.0 

 90.0 90.0 90.0 

 90.0 120.0 90.0 
Molecules in the  
asymmetric unit 

2 4 4 

Resolution Range (Å) 24.9 - 1.60 80.0 - 2.85 53.1 - 1.95 
Observed reflections 470,976 723,081 276,588 
Independent reflections 69,663 35,317 54,709 
Multiplicity* 6.8 (6.5) 20.5 (20.4) 5.1 (5.2) 

Rmerge (%)a 6.5 (38.1) 8.5 (38.8) 7.3 (32.0) 

I/ 18.3 (4.6) 25.7 (8.3) 17.6 (6.0) 
Completeness (%) 98.9 (98.0) 99.9 (100.0) 98.0 (96.5) 
    
Reflections in refinement 69,648 35,223 54,700 

Rcryst. (%)b 17.5  23.5  21.1 

Rfree (%) (test set 5%)c 19.7  26.8 26.3  

Protein atoms  2,974 5,631 5,132 
Ligand atoms  5 (phosphate) - 5 (sulphate) 
Water molecules 395 - 172 

r.m.s.d. on bond lengths (Å)d  0.008 0.008 0.009 

r.m.s.d. on bond angles (°) 1.250 1.169 1.124 
Planar groups (Å) 0.006 0.006 0.004 
Chiral volume dev. (ÅP

3
P) 0.081 0.074 0.068 

Average B factor (ÅP

2
P) 21.2 73.3 36.4 

Protein atoms 20.1 73.3 36.8 

Ligand atoms 26.7 - 49.2 

Solvent atoms 29.4 - 27.3 
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* The values in parentheses refer to the highest resolution shells. For the data collection of the 
orthorhombic form, the highest resolution interval is 1.69–1.60 Å and for the hexagonal form 3.00-
2.85 Å whereas for the cocrystals of the BH3 domain with Bcl-xL it is 2.05–1.95 Å.  
The highest resolution shells used in the refinements are: 1.66–1.60 Å,  2.95-2.85 Å and 1.98–1.95 
Å for the co-crystals of the BH3 domain.  
The ligand of the SOUL crystals is phosphate and that of the complex sulphate. 
 
P

a
P Rmerge = ΣhΣi | Iih – <Ih> |  ∕ ΣhΣi <Ih> where <Ih> is the mean intensity of the i observations 

of reflection h.  
P

b
P Rcryst = Σ | |Fobs| - |Fcalc| | / Σ |Fobs|, where |Fobs| and |Fcalc| are the observed and calculated 

structure factor amplitudes, respectively. Summation includes all reflections used in the refinement. 
P

c
P Rfree = Σ | |Fobs| - |Fcalc| | / Σ |Fobs|, evaluated for a randomly chosen subset of 5% of the 

diffraction data not included in the refinement.  
P

d
P Root mean square deviation from ideal values. 
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