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Force chains and contact network topology in packings of elongated particles

Emilien Azéma and Farhang Radjäı
LMGC, Université Montpellier 2, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 05, France.∗

(Dated: August 13, 2011)

By means of contact dynamic simulations, we investigate the contact network topology and force
chains in two-dimensional packings of elongated particles modeled by rounded-cap rectangles. The
morphology of large packings of elongated particles in quasistatic equilibrium is complex due to
the combined effects of local nematic ordering of the particles and orientations of contacts between
particles. We show that particle elongation affects force distributions and force/fabric anisotropy
via various local structures allowed by steric exclusions and the requirement of force balance. As
a result, the force distributions become increasingly broader as particles become more elongated.
Interestingly, the weak force network transforms from a passive stabilizing agent with respect to
strong force chains to an active force-transmitting network for the whole system. The strongest
force chains are carried by side/side contacts oriented along the principal stress direction.

PACS numbers: 45.70.-n,83.80.Fg,61.43.-j

I. INTRODUCTION

Most remarkable properties of granular materials are
closely related to their specific disorder induced essen-
tially by steric exclusions and the force balance condition
for each particle. The broad and strongly inhomogeneous
distribution of contact forces, as a hallmark of granular
disorder, has been a subject of extensive investigation [1–
10]. In spite of particle mobility and disorder, granular
materials exhibit a finite shear strength due to a gen-
uine anisotropic two-phase organization of the contact
network involving strong force chains propped by weak
forces [11].

The robustness of these micro-structural features with
respect to particle geometry and interactions has been
addressed only recently by discrete-element numerical
simulations. For example, it is found that in highly poly-
disperse systems the force chains are mainly captured
by large particles so that the shear strength of a non-
cohesive granular material is practically independent of
particle size distribution [12]. As another important ex-
ample, a parametric study shows that when the particles
interact by both sliding friction and high rolling resis-
tance at their contacts, the nature of the weak network
is affected by the formation of columnar structures which
do not need to be propped by a particular class of weak
contacts [13].

The particle shape is another major characteristic of
granular material. Most applications of real granular ma-
terials involve some degree of deviation with respect to
simple circular or spherical shapes often used in simula-
tions by the discrete-element method. While the numeri-
cal treatment of large packings of complex particle shapes
was until very recently out of reach due to demanding
computational resources, there is presently considerable
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scope for the numerical investigation of complex granular
packings. This is not only due to the enhanced computer
power and memory but also because during more than
two decades of research in this field, many properties of
granular media have been investigated for model packings
composed of circular and spherical particle shapes. Such
properties provide thus a rich guideline for the analysis
of specific behaviors arising from particle geometry.

Systematic studies of particle shape dependence in
granular materials have been recently reported for polyg-
onal/polyhedral [14–18], elliptical/ellipsoidal [19–22] and
non-convex shapes [23]. The force chains are found to be
reinforced in packings of polygonal and polyhedral parti-
cles leading to enhanced shear strength [15, 22, 24]. The
effect of shape elongation was investigated for packings
of rectangular-shaped particles deposited under gravity
[25]. The preparation under gravity has strong influ-
ence on the particle orientations and thus on the force
distributions. On the other hand, a systematic study of
the shear behavior of 2D packings of rounded-cap rectan-
gles (RCR) under homogeneous boundary conditions in-
dicates that the shear strength increases with elongation
whereas the packing fraction varies unmonotonically [22],
as also found for packings of ellipsoidal shapes [20, 21].
In all reported cases, the networks resulting from various
shapes appear to be highly complex and hardly amenable
to simple statistical modeling.

In this paper, we use contact dynamics simulations
to investigate the contact and force networks in sheared
granular packings of RCR particles with increasing as-
pect ratio in 2D. We focus more specifically on the orga-
nization of the contact force network in correlation with
the fabric anisotropy described in terms of branch vec-
tors joining particle centers. Our data reveal a bimodal
force network as in disk packings but with qualitatively
different roles of fabric and force anisotropies. This be-
havior involves a short-range nematic ordering of the par-
ticles with side/side contacts that capture stronger force
chains. On the other hand, the friction mobilization is
shown to be anisotropic and it plays a major role for the



2

stability of elongated particles.
In the following, we first briefly describe the numeri-

cal procedures, which are essentially the same as those
reported in [22]. Then, we analyze the branch vectors
and their correlations with the contact forces. Finally,
we present a detailed analysis of the partial stresses and
fabric anisotropies sustained by force sub-networks. We
conclude with salient results of this work its possible
prospectives.

II. MODEL DESCRIPTION AND NUMERICAL
SIMULATIONS

The simulations were carried out by means of the con-
tact dynamics (CD) method with irregular polyhedral
particles. The CD method is a discrete element approach
for the simulation of nonsmooth granular dynamics with
contact laws expressing mutual exclusion and dry fric-
tion between particles without elastic or viscous regular-
ization [10, 26–32]. Hence, this method is particularly
adapted for the simulation of perfectly rigid particles.
Nonsmoothness refers to various degrees of discontinu-
ity in velocities arising in a system of rigid particles. In
this method, the equations of motion for each particle
are formulated as differential inclusions in which velocity
jumps replace accelerations [26]. The unilateral contact
interactions and Coulomb friction law are treated as com-
plementarity relations or set-valued contact laws. The
time-stepping scheme is implicit but requires explicit de-
termination of the contact network. Due to implicit time
integration, inherent in the CD method, this scheme is
unconditionally stable.
At a given step of evolution, all kinematic constraints

implied by lasting contacts and the possible rolling of
some particles over others are simultaneously taken into
account, together with the equations of dynamics, in or-
der to determine all velocities and contact forces in the
system. This problem is solved by an iterative process
pertaining to the non-linear Gauss-Seidel method which
consists of solving a single contact problem, with other
contact forces being treated as known, and iteratively up-
dating the forces and velocities until a convergence crite-
rion is fulfilled. The iterations in a time step are stopped
when the calculated contact forces are stable with respect
to the update procedure. To check convergence we thus
use the relative variation of the mean contact force be-
tween two successive iterations. We require this relative
variation to be below a given value which sets the preci-
sion of the calculation. In this process, no distinction is
made between smooth evolution of a system of rigid par-
ticles during one time step and nonsmooth evolutions in
time due to collisions or dry friction effects. The unique-
ness of the solution at each time step is not guaranteed
by CD method for perfectly rigid particles. However, by
initializing each step of calculation with the forces calcu-
lated in the preceding step, the set of accessible solutions
shrinks to fluctuations which are basically below the nu-
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FIG. 1: Shape of a Rounded-Cap Rectangle (RCR).

merical resolution. In this way, the solution remains close
to the present state of forces.
For our simulations, we used the LMGC90 which is

a multipurpose software developed in Montpellier, ca-
pable of modeling a collection of deformable or unde-
formable particles of various shapes (spherical, polyhe-
dral, or polygonal) by different algorithms [30, 32].

A. Simulation of RCR particles

We model the RCR particle as a juxtaposition of two
half-disks of radius R′ with one rectangle of length L
and width 2R′; see Fig. 1. The shape of a RCR parti-
cle is a circle of radius R′ for L = 0. The aspect ratio
α = (L+2R′)/(2R′) is 1 in this limit and increases with
L for a fixed value of R′. In this paper, we use an alter-
native parameter describing the deviation of the particle
shape from a circle. Let R be the radius of the circle
circumscribing the particle. We have R = L/2+R′. The
radius R′ is also that of the inscribed circle. Hence, the
deviation from a circular shape can be characterized by
∆R = R−R′ = L/2. We use the dimensionless parame-
ter η defined by

η =
∆R

R
=

α− 1

α
. (1)

It varies from η = 0, for a circle, to 1 corresponding to a
line. We will refer to η as the elongation parameter as in
rock mechanics [33].
The contacts between RCR particles belong to differ-

ent categories, namely cap-to-cap (cc), cap-to-side (cs)
and side-to-side (ss); see Fig. 2. Side-to-side contacts re-
sults from contacts between two rectangles as well as two
contacts resulting from cap-to-side. In the CD method
the case of side-to-side contacts for rectangular particle is
represented by two points. Hence, for RCR particles, ss
contact is composed of four point contacts : two points
due to the rectangle-rectange interface and two points
due to the cs contacts. In the iterative procedure of
determination of the contact forces and velocities, the
points representing the contact between two particles are
treated as independent points but the resultant of the
calculated forces are attributed to the contact with its
application point located on the contact plane.
The detection of line contacts between rectangles

was implemented through the so-called shadow overlap
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FIG. 2: Representation of cap-to-cap, cap-to-side and side-
to-side contact and they will be referred as cc contacts, cs
contacts and ss contact, respectiveley.

method devised initially by Moreau [32, 34] for polygons.
The reliability and robustness of this method have been
tested in several years of previous applications to granu-
lar materials [15, 16, 32, 34–37]. This detection procedure
is fairly rapid and allows us to simulate large samples
composed of RCR particles.

B. Packing preparation and bi-axial test

We prepared 8 different packings of 13000 RCR par-
ticles with η varying from 0 to 0.7 by steps of 0.1. The
radius R of the circumscribing circle defines the size of
a RCR particle. In order to avoid long-range ordering in
the limit of small values of η, we introduce a size poly-
dispersity by taking R in the range [Rmin, Rmax] with
Rmax = 2Rmin with a uniform distribution in particle
volume fractions.
All samples are prepared according to the same pro-

tocol. A dense packing composed of disks (η = 0) is
first constructed by means of a layer-by-layer deposition
model based on simple geometrical rules [38–40]. The
particles are deposited sequentially on a substrate. Each
new particle is placed at the lowest possible position at
the free surface as a function of its diameter. This proce-
dure leads to a random close packing in which each parti-
cle is supported by two underlying particles and supports
one or two other particles. For η > 0, the same packing
is used with each disk serving as the circumscribing circle
of a RCR particle. The RCR particle is inscribed with
the given value of η and random orientation in the disk.
Following this geometrical process, the packing is com-

pacted by isotropic compression inside a rectangular
frame of dimensions l0×h0 in which the left and bottom
walls are fixed, and the right and top walls are subjected
to a compressive stress σ0. The gravity g and friction
coefficients µ between particles and with the walls are
set to zero during the compression in order to avoid force
gradients and obtain isotropic dense packings. Fig. 3
displays snapshots of the packings for several values of η
at the end of isotropic compaction.
The isotropic samples were sheared by applying a

downward displacement on the top wall at constant ve-
locity for a constant confining stress acting on the lat-
eral walls; see http://cgp-gateway.org/ref010 for video

η = 0.1

η = 0.3

η = 0.6

FIG. 3: Examples of the generated packings at the initial
state.

samples. During shear, the friction coefficient µ between
particles was set to 0.5 and to zero with the walls. The
strain rate was low so that the shearing is basically of
quasi-static nature. The internal angle of friction ϕ at
every stage of shearing is given by

sinϕ =
q

p
=

σ1 − σ2

σ1 + σ2
, (2)

with σ1 > σ2 are the principals values of the stress tensor
σ. sinϕ increases with shear strain and saturates to a
constant value corresponding to the critical state which
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FIG. 4: Local contact frame (n, t)

is a state independent of the initial configuration of the
packing. The critical-state value of sinϕ represents the
shear strength of the packing and it increases linearly
with η from ∼ 0.3 (for η = 0.0) to ∼ 0.51 (for η = 0.7)
[22].
In granular media, the expression of stress tensor σ in

the volume V is an arithmetic mean involving the branch
vectors ℓc (joining the centers of the two touching parti-
cles) and contact force vectors fc at contact c, and it is
given by [41, 42]:

σ =
1

V

∑

c∈V

f c
αℓ

c
β , (3)

For the analysis of stress transmission from a particle-
scale viewpoint we need a statistical description of these
quantities.
A common approach used by various authors is to ex-

press branch vectors and contact force orientations in
terms of the contact direction, i.e. in the local contact
frame (n, t), where n is the unit vector perpendicular
to the contact plane, and t is an orthonormal unit vec-
tor oriented along the tangential force; see figure 4. The
components of the branch vector and contact force are
expressed in the following frame:

{

ℓ = ℓnn+ ℓtt,
f = fnn+ ftt,

(4)

where ℓn and ℓt are the normal and tangential compo-
nents of the branch vectors, and fn and ft the normal
and tangential components of the contact force. Remark
that only for disks or spherical particles we have ℓ = ℓn
where ℓ is the length of the branch vector.
In the following we study the shapes of the normal and

tangential force and branch distributions in the residual
state.

III. DISTRIBUTIONS OF CONTACT FORCES
AND BRANCH VECTORS

A specific feature of the contact network of a packing of
elongated particles is that the length ℓ of branch vectors

strongly varies throughout the network depending on the
relative particle orientations. From the definition of η
(Eq. (1)) and for given values of Rmin and Rmax, it is
easy to see that

ℓ

Rmax
∈

[

2
Rmin

Rmax
(1− η), 2

]

(5)

In our simulations, since Rmin/Rmax = 0.5, we have
(1−η)Rmax ≤ ℓ ≤ 2Rmax. With increasing elongation η,
the range of ℓ becomes significant and its statistics can
be used as a meaningful characterization of the texture
as a function of η. On the other hand, the correlation of ℓ
with the total reaction force f between neighboring par-
ticles seems to be a good descriptor of the organization
of forces for particles of non circular shape. The branch
vectors are also important as they enter the expression
of the stress tensor given by Eq. (3). In Ref. [22], a
different point of view was adopted: the contact forces
were projected along and perpendicular to the branch
vectors and their statistics were investigated. The same
framework was used for the decomposition of the total
stress tensor. Here, we focus on the distribution of con-
tact forces and their correlation with the branch vector
as η is increased.

A. Contact forces and friction mobilization

The probability density function (pdf) of normal forces
normalized by the mean normal force 〈fn〉 is shown in
Fig. 5 in log-linear and log-log scales at large strains
(the data are cumulated from several snapshots in the
critical state) for all simulated values of η. As usually
observed, in all packings the number of forces above the
mean 〈fn〉 falls off exponentially whereas the number of
forces below the mean varies as a power-law:

P (fn) ∝

{

e−αn(η)(fn/〈fn〉) , fn > 〈fn〉,
(

fn
〈fn〉

)βn(η)

, fn < 〈fn〉,
(6)

where αn(η) and βn(η) whose variations are shown in
the insets as a function of η. We see that αn decreases
with increasing η, implying that the inhomogeneity of
normal forces becomes higher as the particles become
more elongated. On the other hand, βn declines from
0.1 to −0.4 with η which means that the proportion of
weak contacts (carrying a normal force below the mean)
increases with elongation. The proportion of weak forces
grows from 60% for η = 0 to 70% for η = 0.7. In other
words, while the proportion of strong contacts declines
with increasing η, stronger force chains occur at the same
time.
Figure 6 shows the pdf P (ft) of tangential forces nor-

malized by the mean tangential force 〈|ft|〉 in each pack-
ing. These distributions show also an exponential falloff
for the forces above the average force 〈|ft|〉 and a power
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(a)

(b)

FIG. 5: Probability distribution function of normal forces fn
normalized by the average normal force 〈fn〉 in log-linear (a)
and log-log (b) scales for different values of η.

law for the forces below 〈|ft|〉:

P (ft) ∝

{

e−αt(η)(|ft|/〈|ft|〉) , |ft| > 〈|ft|〉,
(

|ft|
〈|ft|〉

)βt(η)

, |ft| < 〈|ft|〉,
(7)

the corresponding exponents αt(η) and βt(η) decreasing
with η. We observe that, in contrast to αn and βn, the ex-
ponents αt and βt saturate beyond η = 0.4. This means
that the friction forces do not follow the normal forces as
η increases. In other words, the most mobilized (largest)
friction forces do not occur necessarily at the contacts
where the normal forces are higher.
In order to investigate the properties of friction mo-

bilization, we consider the friction mobilization index

Im = |ft|/µfn. Its average IM = 〈 |ft|
µfn

〉 increases from

0.4 for η = 0 to 0.6 for η = 0.7 as we see in Fig. 7. This
increase underlies to a large extent the increase of the
shear strength with η, as we shall see below in Sec. IV.
However, the friction force is not uniformly mobilized at
all contacts. Fig. 8 shows a map of weak (fn < 〈fn〉)
and strong (fn > 〈fn〉) normal forces, represented by
the thickness of vectors joining the particle centers to
the contact points, and the corresponding values of Im,
represented by circles of diameter proportional to Im for
η = 0.1 andη = 0.7. Visual inspection reveals that most
mobilized contacts belong to the weak force network. In
fact, the average friction mobilization Imf defined as the
average by force class, plotted as a function of fn in Fig.

(a)

(b)

FIG. 6: Probability distribution function of tangential forces
ft normalized by the average tangential force 〈ft〉 in log-linear
(a) and log-log (b) scales for different values of η.

-0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
η

0,3

0,4

0,5

0,6

0,7

I M

FIG. 7: Friction mobilization IM averaged in the steady state
as function of η.

9 for all values of η, declines as fn increases. We also see
that the friction mobilization increases with η at all force
levels.
Figure 10 displays the pdf of Im for different values of

η in the critical state. For the disks, the pdf is a nearly
decreasing linear function of Im, which means that the
proportion of weakly mobilized contacts is larger than
that of strongly mobilized contacts. As η is increased, the
distribution becomes more uniform, and at even larger η
a class of highly mobilized contacts (with Im close to 1)
appears whereas the distribution is nearly uniform for all
other contacts. This class belongs to weak force network
as was shown previously, so that not only the friction
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(a)

(b)

FIG. 8: A snapshot of the force-bearing particles at η = 0.2(a)
and η = 0.7(b) and normal forces represented by the thickness
of the segments joining the particle centers to the application
point of the force. The strong and weak forces are in back and
red, respectively. The diameter of yellow circle is proportional
to Im at the contact.

FIG. 9: Friction mobilization Imf as the average by force
class, as a function of fn for all η.

mobilization Im but also the number of highly mobilized
contacts are larger in the weak force network. A class of
very weak forces was also evidenced in [43] in a packing
of disks deposited under gravity and tilted towards its
angle of stability. This subclass of the weak network
can be defined as the class of contacts where the normal
force is below the mean but the friction is highly or fully
mobilized.

This enhanced friction mobilization implies that the

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
I
m

10
-3

10
-2

10
-1

pd
f

η = 0.0
η = 0.1
η = 0.2
η = 0.3
η = 0.4
η = 0.5
η = 0.6
η = 0.7

FIG. 10: Probability distribution function of the friction mo-
bilization index Im.

FIG. 11: A snapshot of the force-bearing particles at η = 0.7
and normal forces represented by the thickness of the seg-
ments joining the particle centers to the application point of
the force. The color level for the particles is proportional
to the orientation of the major particle axis for the particles
with at least one side/side contact. The particles having no
side/side contacts are in gray. The strong and weak forces are
in back and red, respectively.

equilibration of the particles is more complex than in
disk packings. In particular, the nematic ordering due
to the “geometrical” chains of side/side contacts between
particles means that the statistics of forces and the mobi-
lization of friction are closely related to the equilibrium
of such chains rather than that of individual particles.
These chains are evidenced in Fig. 11 for η = 0.7 where
the force bearing particles belonging to the chains are
represented by a color level proportionally to their orien-
tations. The friction needs to be highly mobilized inside
the chains in order to ensure their stability.

B. Branch vectors

The branch vectors in a packing of elongated particles
reflect both the relative orientations of the particles in
contact and their size distribution. The latter may be in-
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(a) (b) (c)

FIG. 12: Principals modes of contacts : cap-cap (a), side-side
(b) and cap-side (c).

FIG. 13: Probability distribution function of the reduced
branch-vector lengths ℓr for all values of η in the critical state.

tegrated out by simply dividing the branch vector length
ℓ between two touching particles by the sum R1 +R2 of
the radii R1 and R2 of their circumscribing circles. This
reduced branch-vector length ℓr = ℓ/(R1 + R2) varies
in the range [1 − η, 1]. We have ℓr = 1 at η = 0 (for
disks). For elongated particles, ℓr = 1 corresponds to
a cap/cap contact between two aligned particles, Fig.
12(a), whereas ℓr = 1 − η corresponds to a centered
side/side contact between two parallel particles, Fig.
12(b). Such contact configurations, when they exist, can
be evidenced from the probability density function of ℓr
and its possible modes at ℓr = 1 or ℓr = 1− η.
Figure 13 displays the pdf of reduced branch-vector

lengths for all values of η in the critical state. These
pdf’s are nothing but normalized radial functions with
ℓr varying in a limited range as only the touching parti-
cles are considered. They are nearly similar for all values
of η. The first mode, centered on ℓr = 1 − η reveals
the presence of a broad population of side/side contacts
with a peak increasing in amplitude with η as displayed
in Fig. 14 (b). We also observe a less pronounced mode,
centered on ℓr ≃ 1, corresponding to a distinct popu-
lation of aligned cap/cap contacts, also marked in Fig.
14 (a). The intermediate mode occurs approximately at
ℓr ≃ 1−η/2 which is the midpoint of the interval [1−η, 1].
This length corresponds to an orthogonal side/cap con-
tact as shown in Fig. 12(c). The presence of such a
distinct mode, through decreasing in amplitude as η in-
creases, is a clear proof of the occurrence of orthogonal
layers some of which are observed in Fig. 14. This mode
is also characterized by a broad extension reflecting the
intermediate angles between the orientations of touching

FIG. 14: A snapshot of cap-cap modes contact (blue),
side-side modes contacts (red) and cap-side modes contacts
(green).

particles.
We expect the branch vectors lengths to be correlated

with contact forces because of either the contact con-
figurations they represent or simply the fact that force
chains tend to be captured by larger particles (hence,
longer branch vectors) [12]. This correlation can be esti-
mated with the Pearson coefficient, which for two random
variables x and y is defined by the scalar

Cxy =
〈(x − 〈x〉)(y − 〈y〉)〉

√

〈(x− 〈x〉)2〉
√

〈(y − 〈y〉)2〉
, (8)

Note that C = 1 corresponds to a full inter-dependence
whereas C = 0 means full statistical independence of the
two variables. Fig. 15 shows the Pearson coefficients
Cfℓr , between the force amplitude f and ℓr, as well as
Cfℓ, between f and ℓ, as a function of η. Both coeffi-
cients decrease with η from positive values for η ≤ 0.3 to
negative values down to −0.22. The positive correlation
(larger forces at longer branch vectors) is a consequence
of the fact that the distribution of branch lengths at low
values of η is governed by particles sizes. On the other
hand, the negative correlation (larger forces at shorter
branch vectors) reflects the effect of the increasing num-
ber of side/side contacts as the particles become more
elongated.
Further insight into this force/branch-length correla-

tion can be obtained from the average force amplitude
〈f〉ℓr , calculated by taking the average force in a class
of contacts in the interval [ℓr −∆ℓr/2, ℓr +∆ℓr/2], as a
function of ℓr, shown in Fig. 16(a) for all values of η.
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FIG. 15: Correlation CℓRf and Cℓf as a function of η averaged
in the critical state.

This plot shows that for all contact classes the associ-
ated mean force 〈f〉ℓr is nearly equal to the global mean
force 〈f〉 except to the class of the shortest branch vectors
(side/side mode), which concentrates a mean force above
〈f〉, and the class of the longest branch vectors (cap/cap
mode), which seem to carry a considerably lower force on
the average. In his way, the rather weak correlation be-
tween the reduced branch length and force appears here
to be governed by the two afore-mentioned modes. In or-
der to evidence the effect of particle size distribution, let
us consider the average force amplitude 〈f〉ℓ as a function
of ℓ as shown in Fig. 16(b) for all values of η. For η ≤ 0.3,
the contact force is on the average an increasing function
of ℓ. For disks (η = 0), the variation of ℓ is a consequence
only of the particle size distribution and, therefore, the
increase of the mean force with ℓ means that the larger
particles, involved in the longer branch vectors, capture
higher forces. The same effect seems thus to underly also
the increasing mean force with η for elongated particles
with η ≤ 0.3. But at larger elongations, the trend is
reversed and we see that the mean force declines as ℓ in-
creases, reflecting thus the effect of the side/side contact
mode as discussed previously.

IV. WEAK AND STRONG FORCE NETWORKS

The complex network of contact forces in a packing
of elongated particles can also be analyzed by consider-
ing the contribution of various classes of forces and/or
branch vectors to stress transmission. Indeed, according
to equation (3), the stress tensor is expressed as an aver-
age involving branch vectors and contact forces, so that
partial summations allow one to define partial stress ten-
sors that have been applied in the past to investigate the
scale-up of local quanties [11]. For example, the subset of
contacts carrying a force below a threshold, reveals the
respective roles of weak and strong force chains with re-
spect to the overall shear strength of granular materials
[11]. In this section, we apply this methodology to ana-
lyze the stress and other texture-dependent quantities in
view of elucidating the effect of particle elongation.

(a)

(b)

FIG. 16: Linear correlation between contact force f and
branch length ℓ as a function of η.

In what follows, we consider various fabric and force
parameters for the “ξ-networks” defined as the subsets
S(ξ) of contacts which carry a force below a cutoff force ξ
normalized by the mean force (ie f/〈fn〉 ∈ [0, ξ]), where
ξ is varied from 0 to the maximal force in the system.
The weak network corresponds to S(1) whereas the strong
network is its complement. In section III, we focused on
scalar descriptors of granular texture such as the distri-
butions and correlations of force magnitudes and branch
lengths. Beyond these low-order quantities, the granular
texture is characterized by a disordered but anisotropic
structure of both the contact and force networks, which
require higher-order description in terms of various fabric
and force tensors. We analyze below different parameters
pertaining to this tensorial organization of our packings
as a function of ξ and for increasing elongation η.

A. Granular texture

A relevant description of granular texture is given by
the probability distribution P (n) of the contact normals
n ; see Fig. 4. In two dimensions, the unit vector n

is described by a single angle θ ∈ [0, π]. The distribu-
tion Pθ(θ) of contact orientations can be evaluated from
the numerical data at different stages of its evolution. In
our simulations, all numerical samples are prepared in
an isotropic state so that Pθ = 1/π in the initial state.
This distribution evolves with shear strain and becomes
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FIG. 17: Distributions of contact orientations (symbols) in
polar coordinates for η = 0.5 and several values of the force
cutoff ξ together with their Fourier fits (11) (full lines).

increasingly more anisotropic as the critical state is ap-
proached. By restricting the data to those belonging to
the ξ-networks, we obtain a continuous family of distri-
butions Pθ(θ, ξ) that describe the geometrical state of
the system. In practice, however, such functions can be
estimated with meaningful statistics only in the critical
state where the data can be cumulated from independent
configurations representing all the same state.
Figure 17 shows the distributions Pθ(θ, ξ) in polar co-

ordinates for η = 0.5 and for several values of ξ. The
distributions are similar with nearly the same privileged
direction aligned with the principal stress direction θσ
but with increasing anisotropy as a function of ξ. They
all can be approximated by their truncated Fourier ex-
pansion [11, 13, 15]:

Pθ(θ, ξ) = 1
2π{1 + ac(ξ) cos 2(θ − θσ)}, (9)

where ac(ξ) is the amplitude of contact anisotropy in the
ξ-network. In practice, it is more convenient to estimate
ac(ξ) through the partial fabric tensors F (ξ) defined by
[44]:

Fαβ(ξ) =
1

π

∫ π

0

nα(θ, ξ)nβ(θ, ξ)Pθ(θ, ξ)dθ, (10)

where α and β design the cartesian components. By def-
inition, we have tr(F (ξ)) = 1. Introducing the harmonic
expression (9) in (10), we get

ac(ξ) = 2(F1(ξ)− F2(ξ)) cos 2[θc(ξ)− θσ], (11)

where the subscripts 1 and 2 refer to the principal values
of F (ξ) and θc(ξ) represents the privileged direction of
the partial fabric tensors F (ξ). Note that, up to statis-
tical fluctuations, the principal directions of the fabric
and stress tensors coincide in the critical state for each
ξ-network, so that the phase factor cos 2[θc(ξ) − θσ] is
either equal to 1 when θc(ξ) = θσ or equal to −1 when
θ(ξ) = θσ + π/2.
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FIG. 18: Partial fabric anisotropy ac as a function of force
cutoff ξ normalized by the mean force 〈f〉 for different values
of η.

Fig.18 displays ac as a function of ξ for all values of
η. For the disk packings (η = 0), the anisotropy of weak
contacts is negative but increases in absolute value and
reaches its peak value at ξ ∼ 1. This negative value
indicates that in disk packings the weak contacts are ori-
entated preferentially perpendicular to the major prin-
cipal stress direction [11]. As more contacts come into
play with increasing ξ, the partial anisotropy ac(ξ) be-
comes less negative and finally changes sign, showing that
the strong contacts are mainly along the major prin-
cipal stress direction. This bimodal behavior of stress
transmission is a nontrivial organization of the force net-
work and holds also in 3D in the case of sphere pack-
ings [16]. However, it is remarkable that for elongated
particles (η > 0), the partial anisotropies of both weak
and strong networks are positive, as observed in Fig. 18.
This means that, in contrast to the disk packings, the
weak and strong contacts in packings of elongated parti-
cles can not be differentiated on the basis of their roles
in the ξ-networks. Physically, this behavior may be in-
terpreted by stating that the static equilibrium of the
chains of elongated particles does not require the stabi-
lizing effect of the weak contacts. A similar result was
observed by Estrada et al. for disk packings at large val-
ues of rolling resistance, which allows for the equilibrium
of long chains of particles inter-connected by only two
contacts [13]. But, as we shall see below, for our elon-
gated particles the differentiation between the two net-
works operates via the forces carried by the ξ-networks.
The information involved in the angular distribution

Pθ may be enriched by accounting for the branch vectors
ℓ which, as seen in section III, reflects both the parti-
cle size distribution and local contact modes. We thus
consider here the average normal and tangential branch
vector components 〈ℓn〉(θ, ξ) and 〈ℓt〉(θ, ξ) defined in (4),
obtained by averaging ℓn and ℓt over the contacts ori-
ented along θ within a centered angular interval ∆θ. As
for Pθ, we evaluate these functions in the critical state,
for different values of η and as ξ. Fig. 19 shows the
functions 〈ℓn〉(θ, ξ) and 〈ℓt〉(θ, ξ) in polar coordinates for
η = 0.5 and for several values of ξ. These functions are
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anisotropic with an anisotropy which depends on ξ. We
introduce here their truncated expansion on an orthonor-
mal Fourier basis:

{

〈ℓn〉(θ, ξ) = 〈ℓ〉{1 + aln(ξ) cos 2(θ − θσ)},
〈ℓt〉(θ, ξ) = 〈ℓ〉alt(ξ) sin 2(θ − θσ),

(12)

where aln(ξ) and alt(ξ) are the normal and tangential
branch anisotropies in the ξ-networks. Note that, by
construction we have alt = 0 for disks (η = 0). The
analytical form of 〈ℓt〉(θ, ξ) results from the orthonormal
nature of the Fourier basis and the fact that the mean
value of ℓt vanishes due to disorder:

∫ π

0

〈ℓt〉(θ, ξ) Pθ(θ, ξ) dθ = 0. (13)

Fig. 19 shows that this functional form provides a good
approximation of the data.
For the calculation of aln(ξ) and alt(ξ), we introduce

the following branch tensors [22]:















χln
αβ(ξ) = 1

〈ℓ〉

π
∫

0

〈ℓn〉(θ, ξ)nα(ξ)nβ(ξ)Pθ(θ, ξ)dθ,

χlt
αβ(ξ) = 1

〈ℓ〉

π
∫

0

〈ℓt〉(θ, ξ)nα(ξ)tβ(ξ)Pθ(θ, ξ)dθ,

(14)
The following relations are then easily obtained:

{

aln(ξ) = 2[χln
1 (ξ)− χln

2 (ξ)]/tr[χln(∞)]− ac(ξ),
alt(ξ) = 2[χl

1(ξ)− χl
2(ξ)]/tr[χ

l(∞)]− ac(ξ)− aln(ξ),
(15)

where χl = χln + χlt, and the subscripts 1 and 2 refer
to the principal values of each tensor. By construction,
we have trχl = (χl

1 + χl
2) = 〈ℓ〉. Note also that the two

partial branch vector anisotropies aln and alt may take
positive or negative values depending on the orientations
θln and θlt of the two tensors with respect to θσ.
Figure 20 shows the branch-vector anisotropies aln(ξ)

and alt(ξ) as a function of ξ in the critical state for all
values of η. aln(ξ) is positive for η = 0 and η = 0.1 and
increases slightly with ξ, but for more elongated particles
it takes negative values, which means that the particles
tend to form longer branch vectors with their neighbors in
the direction of extension. As ξ increases, this anisotropy
increases in absolute value and reaches a plateau after
passing by a peak value at a point in the range ξ ∈ [1, 2].
This behavior suggests that the particles touch preferen-
tially along their minor axes when the contact orientation
is close to the compression axis (in the strong network),
and along their major axis when the contact orientation
is close to the extension axis (in the weak network), in
agreement with the fact that the longest branches are in
the weak network ; see Sec. III. As to alt(ξ), its value
is always negative and increases monotonically with ξ in
absolute value. Note also that, for all values of ξ, alt(ξ)
is much higher than aln(ξ) while both remain weak com-
pared to ac(ξ).

FIG. 19: Distributions of 〈ℓn〉(θ, ξ)(a) and 〈ℓt〉(θ, ξ)(b) (sym-
bols) in polar coordinates for η = 0.5 and several values of the
force cutoff ξ together with their Fourier fits (19) (full lines).
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FIG. 20: Partial normal and tangential branch vector length
anisotropies aln and alt as a function of force cutoff ξ normal-
ized by the mean force 〈f〉 for different values of η.

B. Force anisotropies

We now consider the angle-averaged normal and tan-
gential forces, 〈fn〉(θ, ξ) and 〈ft〉(θ, ξ) in the ξ-network.
A second order Fourier expansion provides an adequate
representation of these distributions for all values of ξ as
shown in Fig. 21:

{

〈fn〉(θ, ξ) = 〈f〉{1 + afn(ξ) cos 2(θ − θσ)}
〈ft〉(θ, ξ) = 〈f〉aft(ξ) sin 2(θ − θσ),

(16)

where afn(ξ) and aft(ξ) are the amplitudes of normal
and tangential force anisotropies in the ξ-networks. No-
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FIG. 21: Distributions of 〈fn〉(θ, ξ)(a) and 〈ft〉(θ, ξ)(b) (sym-
bols) in polar coordinates for η = 0.5 and several values of the
force cutoff ξ together with their Fourier fits (16) (full lines).

tice that we have 〈ft〉 = 0 as a consequence of weak cor-
relation between the branch vectors and contact forces
as shown in Fig. 15 and the balance of force moments.
Morevover, the orthogonality between the normal and
tangential forces implies that the peak value of 〈ft〉(θ, ξ)
occurs at an angle rotated by π/4 with respect to that of
are rotated to those of 〈fn〉(θ, ξ).
As for the branch length vectors, the calculation of the

anisotropy parameters afn(ξ) and aft(ξ) can be done by
means of the following force tensors [11, 22]:















χfn
αβ(ξ) = 1

〈f〉

π
∫

0

〈fn〉(θ, ξ)nα(ξ)nβ(ξ)Pθ(θ, ξ)dθ,

χft
αβ(ξ) = 1

〈f〉

π
∫

0

〈ft〉(θ, ξ)nα(ξ)tβ(ξ)Pθ(θ, ξ)dθ.

(17)
With these definitions, the following relationships can
easily be established:

afn(ξ) = 2
χfn
1 (ξ) − χfn

2 (ξ)

tr[χfn(∞)]
− ac(ξ), (18)

aft(ξ) = 2
χf
1(ξ) − χf

2 (ξ)

tr[χf(∞)]
− ac(ξ) − afn(ξ), (19)

where χf = χfn + χft and the indices 1 and 2 refer to
the principal values of each tensor. By construction, we

have tr(χf ) = χf
1 + χf

2 = 〈f〉. The two partial force
anisotropies afn and aft may take positive or negative
values depending on the orientations θfn and θft of the
two tensors with respect to θσ.
The normal and tangential force anisotropies are plot-

ted in Fig.22 as a function of ξ for all values of η. A
remarkable feature of afn(ξ) is that its value is negative
in the weak network (ξ < 1) for all elongated particles,
i.e. for all values of η in exception to η = 0 where it
remains positive for all ξ. Hence, the weak forces in a
packing of elongated particles occur at contacts prefer-
entially oriented orthogonally to the principal stress di-
rection θσ whereas in a disk packing they are parallel.
As we saw before, an inverse behavior occurs for the con-
tact anisotropies, i.e. the weak contacts in the packings
of elongated particles are parallel to the principal stress
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FIG. 22: Partial normal and tangential force anisotropies afn

and aft as a function of force cutoff ξ normalized by the mean
force 〈f〉 for different values of η.

direction and orthogonal for the disk packings. afn(ξ)
increases in absolute value as ξ increases and passes by
a peak at exactly ξ = 1, then declines as more contacts
from the strong network with a positive contribution to
the anisotropy are included in the ξ-network. At larger
values (beyond ξ ≃ 2 for nearly all values of η), afn(ξ)
becomes positive as the strong forces tend to be paral-
lel to the principal stress direction. This unmonotonic
behavior of the partial force anisotropies for the elon-
gated particles and the partial contact anisotropies for
the disk packings underlies the differentiation between
the weak and strong networks according to the values of
the normal contact forces with respect to the mean force
(ξ = 1). The difference between the elongated particle
packings and disk packings reflects the formation of side-
side contacts oriented along the principal stress direction
tending to capture the strong force chains.

The tangential force anisotropy aft(ξ) is an increasing
function of both ξ and η. Its value is generally below
afn(ξ), but becomes comparable for the most elongated
particles for which the friction mobilization plays a key
role as discussed previously. This is plausible as the tan-
gential force anisotropy represents friction mobilization
at contacts oriented at π/4 with respect to the major
principal stress direction.
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C. Stress tensor

The physical importance of geometrical and mechan-
ical anisotropies becomes clear when it is considered in
connection with the stress tensor. As shown by Eq. 3, the
stress tensor is a function of discrete microscopic parame-
ters attached to the contact network. It is also possible to
attribute a stress tensor to each ξ-network by restricting
the summation to the corresponding contacts:

σ(ξ) =
1

V

∑

c∈V

f c
α(ξ)ℓ

c
β(ξ). (20)

For sufficiently large systems, the dependence of volume
averages on individual discrete parameters vanishes [22,
45] and the discrete sums can be replaced by integrals as
follows:

σαβ(ξ) = nc

∫

Ω

fα(ξ)ℓβ(ξ) Pℓf (ξ)df dℓ, (21)

where Pℓf is the joint probability density of forces and
branch vectors in the ξ-networks, nc is the number den-
sity of contacts for the whole system and Ω is the inte-
gration domain in the space (ℓ,f).
The integral appearing in Eq. (21) can be reduced by

integrating first with respect to the forces and branch
vector lengths. Considering the components of the forces
and branch vectors in contact frames (n, t), and neglect-
ing the branch/force correlations (see Fig.16), we get
[16, 22, 45]:

σαβ(ξ) = nc

π
∫

0

{〈ℓn〉(θ, ξ) nα(θ, ξ) + 〈ℓt〉(θ, ξ) tβ(θ, ξ)}

× {〈fn〉(θ, ξ) nα(θ, ξ) + 〈ft〉(θ, ξ) tβ(θ, ξ)}

× P (θ, ξ) dθ. (22)

The expression of the stress tensor by this equation makes
appear explicitly the average directional functions repre-
senting the fabric and force states.
Using the harmonic approximation introduced before,

Eq. (22) can be integrated with respect to space direction
θ and we get the following simple relation:

q(ξ)

p
≃

1

2
{ac(ξ)+aln(ξ)+alt(ξ)+afn(ξ)+aft(ξ)}, (23)

where the cross products among the anisotropy param-
eters have been neglected. This relation expresses the
normalized shear stress as a half-sum of texture and
force anisotropies. Fig.23 displays the partial shear stress
q(ξ)/p as a function of ξ together with the approximation
given by Eq. 23. As we see, equation (23) provides an
excellent fit to the data for all values of ξ and η. Interest-
ingly, q(ξ < 1)/p is zero for disk packings, implying that
strong forces carry the whole deviatoric load. The partial
stress deviator q(ξ = 1)/p in the weak network increases
slightly with η but remains in all cases weak (below 0.1).
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FIG. 23: Partial shear stress q/p as a function of force cutoff
ξ for different values of η (plain line) together with approxi-
mation given by Eq. 23 (points).

This transition reflects a qualitative change in the condi-
tion of local force balance in the presence of clusters as
shown in Fig. 11. In other words, for these packings the
weak network sustains also partially the deviatoric load
applied to the system. The weak values of q/p in the
weak network is a consequence of the large positive value
ac(ξ = 1) = 0.3 which compensates the negative values
of afn(ξ = 1), aln(ξ = 1) and alt(ξ = 1).

V. SUMMARY

In summary, using contacts dynamics simulations, we
analyzed the granular texture and topology of forces
chains in various packings composed of elongated par-
ticles under biaxial compression. As compared to disk
packings, the effect of particle elongation is to enhance
the heterogeneity of the packings by the clustering of the
particles according to their contact modes. In particu-
lar, the side/side contacts tend to capture strong force
chains and be oriented orthogonally to the major princi-
pal stress direction. These features are reinforced as the
particle elongation is increased. The probability densities
of the normal forces become broader with stronger force
chains characterized by an exponential distribution as in
disks packings, and with higher number of weak forces
decreasing as a power law with the force.
An interesting finding of this work concerns the dif-

ferentiation between the strong and weak force networks
for elongated particles. In contrast to disks packings,
where the contacts in the weak network are on the aver-
age perpendicular to the contacts in the strong network,
the contacts in a packing of elongated particles are, on
the average, oriented along the major principal stress di-
rection both in the weak and strong networks. But, the
weak forces in the case of elongated particles show a neg-
ative anisotropy in the sense that the average normal
force in the weak network has its maximum value in the
contacts perpendicular to the strong network. In other
words, while in the disk packings the strong forces chains
are propped by many weak lateral contact, for elongated
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particles the strong force chains are laterally sustain by
less contact but larger weak forces. A harmonic decom-
position of the stress tensor shows, however, that for both
disks and elongated particles, the compensating effects of
force and contact anisotropies lead to small shear stress
deviator carried by the weak network.
Our simulation data indicate that the larger global

shear strength of a packing of elongated particles in-
creases with elongation mainly due to the increase of
friction mobilization and friction force anisotropy. The
normal force anisotropy is large but nearly independent
of elongation. On the other hand, the correlation be-
tween contact forces and branch vectors joining particle
centers reveal a sub-network of weak contacts with hight
friction mobilization and small branch vector length.
In conclusion, the packings of elongated particles in

2D reveal a nontrivial texture allying the geometry of
the particles with the preferred orientations of the con-
tacts induced by shearing and equilibrium of particles.

Some features are reminiscent of disk packings but are
strongly modulated by the particle shape. More work is
underway to clarify the effect of particle shape by focus-
ing on the local structures. On the other hand, many
aspects of the packings analyzed in this paper are spe-
cific to two dimensions. The side/side contacts in 3D be-
tween particles of spherocylindrical shape do not give rise
to nematic ordering and the particle rotations and forces
moments play a major role in the equilibrium of such
particles. This point can only be analyzed by performing
3D simulations of large packings of sphero-cylinders of
varying elongation. However, since the class of side/side
contacts controls to a large extent the specific behavior
of elongated particles in 2D, we believe that similar fea-
tures should occur in 3D for platy particles, which may
give spontaneously rise to geometrical chains of face/face
contacts. Such simulations require, however, much more
computational effort.
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