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Abstract

An iterative method for solving axisymmetric Cauchy problems in linear

elasticity is presented. This kind of problem consists in recovering missing

displacements and forces data on one part of a domain boundary from the

knowledge of overspecified displacements and forces data on another part of

this boundary. Numerical simulations using the finite element method high-

light the algorithm’s efficiency, accuracy and robustness to noisy data as well

as its ability to deblur noisy data. An application of the inverse technique

to the identification of a friction coefficient is also presented.
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1. Introduction

Inverse problems can be defined by opposition to direct problems (Kubo,

1988) and characterized by the lack of knowledge of one of the following ele-

ments of information: the geometry of the domain, the equilibrium equations,
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the constitutive equations, the boundary conditions on the whole boundary of

the domain and the initial conditions. According to this definition, many me-

chanical problems, for instance, identification of material parameters, iden-

tification of unknown boundaries (such as cracks or cavities), identification

of initial boundary conditions, identification of inaccessible boundary con-

ditions can be considered as inverse problems and more specific examples

relating to elasticity problems can be found in Bonnet and Constantinescu

(2005).

In a mathematical sense, direct problems can be considered as well-posed

problems. In linear cases, these problems have a unique solution which is

stable (continuously dependent on the data). Conversely, inverse problems

are generally ill-posed problems in the Hadamard sense (Hadamard, 1923),

since the existence or uniqueness or the continuous dependence on the data

of their solutions may not be ensured.

This paper examines, in axisymmetric situations, an inverse boundary value

problem in linear elasticity, namely known as a Cauchy problem. It consists

in recovering missing displacement and force data on some part of the bound-

ary of a domain from overspecified displacement and force data on another

part. In this case, the equilibrium equations, the constitutive equations, the

domain and its boundary are known.

In order to solve Cauchy problems in linear elasticity, many regularization

methods have been introduced which can be classified as Tikhonov type

methods (Bilotta and Turco, 2009; Koya et al., 1993; Maniatty et al., 1989;

Marin and Lesnic, 2002, 2003, 2004; Marin, 2005; Schnur and Zabaras, 1990;

Tikhonov and Arsenin, 1977; Yeih et al., 1993; Zabaras et al., 1989) or iter-
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ative methods (Andrieux and Baranger, 2008; Delvare et al., 2010; Ellabib

and Nachaoui, 2008; Marin, 2001; Marin et al, 2002b; Marin and Lesnic,

2005; Marin, 2009; Marin and Johansson, 2010a,b),... Tikhonov regulariza-

tion methods present the advantage of leading to well-posed problems where

the equilibrium equations have been modified. Some iterative methods are

based on the use of a sequence of well-posed problems and others on the

minimization of an energy-like functional. Numerical algorithms are imple-

mented using different numerical methods, such as the finite element method

(FEM) (Andrieux and Baranger, 2008; Bilotta and Turco, 2009; Delvare et

al., 2010; Maniatty et al., 1989; Schnur and Zabaras, 1990), the boundary el-

ement method (BEM) (Ellabib and Nachaoui, 2008; Koya et al., 1993; Marin,

2001; Marin and Lesnic, 2002; Marin, 2002; Marin et al, 2002a,b; Marin and

Lesnic, 2003, 2005; Marin, 2009; Marin and Johansson, 2010a; Yeih et al.,

1993; Zabaras et al., 1989) or meshless methods (Marin and Lesnic, 2004;

Marin, 2005; Marin and Johansson, 2010b). Some papers present compar-

isons between different numerical methods (Marin et al, 2002a; Marin, 2009).

A somewhat different resolution approach was introduced in (Cimetière et

al., 2000, 2001; Delvare et al., 2002) to solve the Cauchy problem for the

Laplace equation and was extended to solve the Cauchy problem in linear

elasticity by Delvare et al. (2010). This approach reduced the resolution of

the Cauchy problem to the resolution of a sequence of optimization problems

under equality constraints. The functional is composed of two terms. At

each step of the resolution, the first term (relaxation term) gives the gap

between the optimal element and the overspecified boundary data, the sec-

ond one (regularization term) gives the gap between the optimal element and

3



the previous optimal element. The equality constraints are the equilibrium

equations. So, at each step an optimal element is obtained which is an exact

solution to the equilibrium equations and is nearer to the overspecified data

than the previous optimal element calculated. In the case of compatible data,

it was also proved that the sequence converges and its limit is the solution

to the Cauchy problem. The additional regularization term tends to zero as

its iterations continue.

In this paper, this inverse technique is extended to solve axisymmetric Cauchy

problems in linear elasticity. Section 2 is devoted to the formulation of the

Cauchy problem in linear elasticity in axisymmetric situations. Section 3

describes the iterative inverse method and Section 4 is devoted to its numer-

ical implementation using the finite element method. In Section 5, several

numerical simulations are presented and in Section 6, the application of the

method to the identification of the friction coefficient is presented.

2. The Cauchy problem in linear elasticity

Let us consider an axisymmetric linear elastic material which occupies

the domain Ω, with a smooth boundary Γ. We assume that the boundary is

divided into three disjoint parts Γd, Γp and Γu, where Γd ∪ Γp∪ Γu = Γ. We

also assume that the loadings are axisymmetric.

With no body force, the equilibrium equations in cylindrical coordinates are

given by:
∂σrr

∂r
+
∂σrz

∂z
+
σrr − σθθ

r
= 0

∂σrz

∂r
+
∂σzz

∂z
+
σrz

r
= 0

(1)
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where r is the radial coordinate, θ is the angular one and z is the longitudinal

one.

The Cauchy stress tensor components σij are related to the infinitesimal

strain tensor components εij by the following constitutive equations:

σij = 2µ εij + λ δij εkk (2)

where λ and µ are the Lamé constants. These are related to Young’s modulus

E and Poisson’s ratio ν as:

λ =
νE

(1 + ν) (1 − 2 ν)

µ =
E

2 (1 + ν)

The strain tensor components εij, related to the displacement components

and to those gradients, are given by:

εrr =
∂ur

∂r
εθθ =

ur

r

εrθ = 0 εθz = 0

2εrz =
∂ur

∂z
+
∂uz

∂r
εzz =

∂uz

∂z

(3)

By substituting Hooke’s law (2) into the governing equations (1), the Lamé

equations are obtained:

(λ+ 2µ)

(

∂2ur

∂r2
+

1

r

∂ur

∂r
−
ur

r2

)

+ (λ+ µ)
∂2uz

∂r∂z
+ µ

∂2ur

∂z2
= 0

(λ+ 2µ)
∂2uz

∂z2
+ (λ+ µ)

(

∂2ur

∂r∂z
+

1

r

∂ur

∂z

)

+ µ

(

∂2uz

∂r2
+

1

r

∂uz

∂r

)

= 0
(4)

These equations can be divided by E and lead to the system of equations

L(u) = 0:

2(1 + ν)

(

∂2ur

∂r2
+

1

r

∂ur

∂r
−
ur

r2

)

+
∂2uz

∂r∂z
+ (1 − 2ν)

∂2ur

∂z2
= 0

2(1 + ν)
∂2uz

∂z2
+

(

∂2ur

∂r∂z
+

1

r

∂ur

∂z

)

+ (1 − 2ν)

(

∂2uz

∂r2
+

1

r

∂uz

∂r

)

= 0
(5)
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At a point x ∈ Γ, n(x) is the outward unit normal vector as well as P(x) is

the stress vector whose components are defined by:

Pi(x) = Pi

(

u(x)
)

= σij

(

u(x)
)

nj(x) x ∈ Γ

We define the adimensional stress vector by:

pi(x) =
Pi(x)

E
x ∈ Γ

It is assumed that both the displacement vector u = (ur, uz) and the adi-

mensional stress vector p = (pr, pz) are given or known on the boundary part

Γd. It is also assumed that only the adimensional stress vector p is given

or known on the boundary part Γp but no condition is prescribed on the

remaining part Γu:

u(x) = φd x ∈ Γd

p(x) = ψd x ∈ Γd ∪ Γp

(6)

where φd and ψd are prescribed vector functions. The Lamé (or Navier)

system (5) and the boundary conditions (6) lead to the formulation of the

Cauchy problem in linear elasticity:



















L(u) = 0 x ∈ Ω

u(x) = φd x ∈ Γd

p(x) = ψd x ∈ Γd ∪ Γp

(7)

This problem is difficult to solve, since it is ill-posed. When it admits a

solution, its solution is unique (Yeih et al., 1993), but it is known to be very

sensitive (Hadamard, 1923) to small perturbations on boundary conditions

(6).
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3. The evanescent regularization method

3.1. The iterative algorithm

Let us introduce the space H(Ω) of solutions of the equilibrium equations

(5):

H(Ω) =
{

v ∈ H1(Ω) satisfying L(v) = 0 in Ω
}

Next, let us denote H(Γ) the space composed of couples of restrictions on Γ

of elements v in H(Ω) and of their associated stress vector p(v).

H(Γ) =
{

U = (u, p) ∈ H
1

2 (Γ) ×H−
1

2 (Γ) ; ∃v ∈ H(Ω) such that v|Γ = u , p(v)|Γ = p
}

An equivalent formulation of problem (7) reads:


















Find U = (u, p) ∈ H(Γ) such as :

u = φd on Γd

p = ψd on Γd ∪ Γp

(8)

The problem (8) is also ill-posed even if it admits a unique solution. So then

an iterative regularizing method is introduced to solve it. Given c > 0 and

U0 ∈ H(Γ) the iterative algorithm reads:

∣

∣

∣

∣

∣

∣

∣

∣

∣

Find Uk+1 ∈ H(Γ) such as :

J(Uk+1) ≤ J(V) ∀V ∈ H(Γ) with

J(V) =
∥

∥v − φd
∥

∥

2

Γd
+

∥

∥p− ψd
∥

∥

2

Γd∪Γp
+ c

∥

∥V −Uk
∥

∥

2

Γ

(9)

where the norms are defined by:

∥

∥v
∥

∥

2

Γd
=

∫

Γd

v2 ds

∥

∥p
∥

∥

2

Γd∪Γp
=

∫

Γd∪Γp

p2 ds
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∥

∥V
∥

∥

2

Γ
=

∫

Γ

v2 ds+

∫

Γ

p2 ds

This iterative process is also used in Delvare et al. (2010) to solve the Cauchy

problem for the linear elasticity and is a generalization of the inverse tech-

nique introduced by Cimetière et al. (2000, 2001) to solve the Cauchy problem

for the Laplace equation. It can be considered as an iterative Tikhonov-type

method.

In this iterative process, the equilibrium equations (5) are taken into account

exactly since at each step the search for the optimal element is performed in

space H(Γ). The functional is composed of three terms which play different

roles. The first one (respectively the second one) acts only on Γd (respectively

only on Γd∪Γp). These terms represent the gap between the optimal element

and the overspecified boundary data. They relax the overspecified data which

can be possibly blurred by measurement noises (relaxation terms). The third

term of the functional acts on the whole boundary Γ and not only on the

boundary Γu where the boundary conditions are to be completed. This term

is a regularization term and controls the distance between the new optimal

element and the previous one. This term tends to zero as the iterations con-

tinue.

So, at each step the optimal element obtained is an exact solution of the

equilibrium equations (5) and is close to the overspecified data Φd =(φd ,

ψd).
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3.2. Convergence results

The unique optimal element Uk+1 = (uk+1, pk+1) is characterized, for all

V = (v, p) ∈ H(Γ), by:

〈

uk+1 − φd, v
〉

Γd
+

〈

pk+1 − ψd, p
〉

Γd∪Γp
+ c

〈

Uk+1 −Uk,V
〉

Γ
= 0 (10)

Theorem: Convergence of the sequence

Let Φd = (φd, ψd) be compatible data associated with the compatible pair Ue

∈ H(Γ). Then the sequence produced by the iterative scheme (9) strongly

converges on Γd and weakly converges to Ue on Γ, where Ue is the solution

of the problem (8).

The proof of the theorem is similar to that established for the algorithm

introduced in Cimetière et al. (2000) to solve the Cauchy problem associated

with the Laplace equation. This proof is valid for all c > 0. The c value only

influences the convergence rate of the algorithm.

3.3. Properties of the iterative process

Some properties of the functional terms in the minimizing sequence can

be easily established without the assumption that the data Φd = (φd, ψd)

are compatible:

• The sum of the relaxation terms SR

(

Uk
)

=
∥

∥uk − φd
∥

∥

2

Γd
+

∥

∥pk − ψd
∥

∥

2

Γd∪Γp

is monotonically decreasing :

SR

(

Uk+1
)

≤ SR

(

Uk
)

(11)
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• The regularization term JΓ(Uk) is monotonically decreasing as soon as

c > 0:
∥

∥Uk+1 −Uk
∥

∥

2

Γ
≤

∥

∥Uk −Uk−1
∥

∥

2

Γ
(12)

• The sequence defined by the values of the functional J for each optimal

element Uk is also monotonically decreasing as soon as c > 0:

J(Uk+1) ≤ J(Uk). (13)

4. The implementation using the Finite Element Method

4.1. Discrete solutions space

The first issue in this section is to discretize space H(Γ). Our main con-

cern has been to make use of any ordinary finite element code. Computations

were run using Cast3M
1 (CAST3M, 1998) and piecewise linear finite elements,

which means a piecewise constant approximation for the stress vector. Let us

now discretize the domain Ω, h being the discretization parameter standing

for the element size, leading to n nodes and n elements on the boundary,

and m nodes inside the domain. Let Vh be the space of continuous piece-

wise linear functions with respect to the mesh, and let us define Vh(Γ) and

Wh(Γ) as the space of continuous piecewise linear functions and the space of

piecewise constant functions on the boundary. Traces of functions belonging

to Vh(Ω) span the space Vh(Γ), whereas the associated stress vectors belong

to the space Wh(Γ) of piecewise constant functions. Defining U and P as

1The FE code Cast3M is developed by the Department of Mechanics and Technology

(DMT) of the French Atomic Energy Agency (CEA - DEN/DM2S/SEMT), http://www-

cast3m.cea.fr
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the 2n vectors standing respectively for the 2n nodal values of u and the 2n

discrete values of p on the boundary, and U∗ the 2m-vector of internal nodal

values of u, the discrete equilibrium equations read as:




Aii AT
ei

Aei Aee









U∗

U



 =





0

−BP



 (14)

Aii is the stiffness matrix corresponding to the Dirichlet problem and is thus

invertible. Expressing the internal unknowns U∗ in terms of the boundary

ones U , i.e performing a condensation, equation (14) reduces to:

(Aee − AeiA
−1
ii AT

ei )U + B P = 0 (15)

The matrix form of (15) reads:

[

A B
]





U

P



 = 0 (16)

The finite element method leads to the definition of the following discrete

compatible pairs space which reads:

Hh(Γ) =







(U, P ) ∈ IR2n × IR2n such that

Eh(U, P ) = AU +BP = 0







(17)

where Eh denotes a linear operator mapping IR2n × IR2n onto IR2n.

4.2. Discretization of the (k + 1)th iteration

Given now c > 0 and (Uk, P k) ∈ Hh(Γ), iteration (k+1) of the discretized

iterative algorithm reads as follows:
∣

∣

∣

∣

∣

∣

∣

∣

∣

Find (Uk+1, P k+1) ∈ IR2n × IR2n such that :

J
(

Uk+1, P k+1
)

≤ J(V,Q) ∀(V,Q) ∈ IR2n × IR2n

under the 2n scalar equality constraints Eh(V,Q) = 0

(18)
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Problem (18) is a minimization problem in R2n × R2n under the 2n equality

constraints expressed by (16). Its solution is given by:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Initializing with (U0 = 0 , P 0 = 0)

Find
(

Uk+1, P k+1, λk+1
)

∈ IR2n × IR2n × IR2n such that :

∇J
(

Uk+1, P k+1
)

+
(

λk+1
)T

∇Eh

(

Uk+1, P k+1
)

= 0

Eh

(

Uk+1, P k+1
)

= 0

(19)

where λk+1 is a 2n−vector of Lagrange multipliers introduced to take the

equality constraints (16) into account. Each iteration in the iterative algo-

rithm needs to solve a system of 6n linear equations with 6n unknowns. The

matrice of this linear system is independent of the iterations and needs to be

computed only once. For this reason, a direct algorithm (the Crout factor-

ization) has been preferred to iterative methods. The factorization, which is

obtained at the first step, is also used at each following step.

In the case of compatible data, the proof of the convergence of the discrete

algorithm is similar to that established for the corresponding algorithm used

to solve the Cauchy problem for the Laplace equation (Cimetière et al., 2000).

This proof is valid for all c > 0 and the c value only influences the convergence

rate of the algorithm.

4.3. Numerical procedure

The procedure used during the numerical simulations is as follows:

i The meshing of the boundary is made using SEG2 elements. The SEG2

element is a finite element with two nodes which leads to a linear in-

terpolation of the displacements. This induces a piecewise constant

interpolation of the stress vector components.
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ii The user specifies the meshing of the boundary specifying the number

and the distribution of the finite elements on each part of the boundary.

iii The mesh of the entire domain is generated automatically by a routine

included in the Cast3m software. This mesh is constituted by 4-node

quadrilaterals.

iv The computation and the assembly of the stiffness matrix correspond-

ing to the domain is performed thanks to the standard routines of the

Cast3m software.

v This software generates a superelement based on the boundary and

computes the corresponding stiffness matrix. This leads to the con-

densed stiffness matrix A.

vi The stiffness matrix A is then used by the specific code that implements

the inverse method introduced.

Note that all numerical computations have been performed on a machine

with a 2.20GHz Intelr CoreTM 2 Duo processor T7500.

The following control quantities are used to estimate the accuracy of the

method:

- the L2(Γ) relative error made on u:

uerror =

√

√

√

√

√

√

√

∫

Γ

(

u− uan
)2
ds

∫

Γ

(

uan
)2
ds
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- the L2(Γ) relative error made on p:

perror =

√

√

√

√

√

√

√

∫

Γ

(

p− pan
)2
ds

∫

Γ

(

pan
)2
ds

where uan and pan denote the analytical solution.

5. Numerical results using analytical reference solutions

The purpose of this section is to present numerical results obtained with

the method introduced. Firstly, different cases are considered for which an

analytical solution is known.

5.1. Examples

A two-dimensional isotropic linear elastic medium in an axisymmetric

stress state characterized by the material constants E = 200 GPa and ν =

0.34 corresponding to a steel is studied.

The domain Ω (Figure 1) is defined by:

Ω =

{

(r, z) /R1 < r < R2 ,−
h

2
< z <

h

2

}

with R1 = 0.01m ,R2 = 0.014m and h = 0.04m.

The boundary part Γd is defined by:

Γd = {(r, z) ∈ Γ/ r = R2}

Γd is discretized using 160 finite elements SEG2. All finite elements have the

same length and the nodes are uniformly distributed. The boundary part Γu

is defined by:

Γu = {(r, z) ∈ Γ/ r = R1}

14



and discretized using a regular mesh with 160 finite elements SEG2. The

boundary part Γp is defined by:

Γp =

{

(r, z) ∈ Γ/ z = ±
h

2

}

and each side is discretized using a regular mesh with 20 finite elements

SEG2. It is used to find the displacement and the stress vectors on Γu, from

the knowledge of the displacement on Γd and the stress vectors on Γd ∪ Γp.

Example 1

The data are built using the following analytical solution for the displace-

ments:

ur(r, z) =
KR1 (1 − ν) r

E∆
+
KR1R

2
2 (1 + ν)

rE∆
(20)

uz(r, z) =
2νKR1 (H − z)

E∆
(21)

where ∆ =
R2

2 −R2
1

R1

and with K = 0.01E. The corresponding components

of the stress tensor are:

σrr (r, z) = K
R1

∆

(

1 −
R2

2

r2

)

(22)

σθθ (r, z) = K
R1

∆

(

1 +
R2

2

r2

)

(23)

σrz (r, z) = 0 (24)

σzz (r, z) = 0 (25)

which correspond to a constant internal radial stress Pr(z) = K (or its

dimensionless expression pr(z) =
K

E
) on Γu and a free-force boundary Γd∪Γp.
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Example 2

The data are built using the following analytical solution for the displace-

ments:

ur(r, z) =
2K (1 + ν)

E∆







A1z
2

(

r +
R2

2

r

)

− A2r
3

+A3R
2
2r ln

r

R2

+ A4R
2
2r






(26)

uz(r, z) =
2K (1 + ν)

E∆







z

(

B1r
2 − B2R

2
2 ln

r

R2

+B3R
2
2

)

−B4z
3






(27)

where ∆ =
R2

2 − R2
1

R1

, A1 =
1

4
, A2 =

1

16
, A3 =

1 + ν

4 (1 − ν)
,

A4 =
2ν2 − 2ν + 1

(1 − ν) (1 − 2ν)
A3 −

3 + ν

16 (1 − ν)
, B1 =

1

4
, B2 =

3

2
,

B3 =
3 (1 − 2ν)

16ν
−

1 − ν

ν
A3 −

1

ν
A4, B4 =

1

6
and with K = 220 GPa.m−1. The corresponding components of the stress

tensor are:

σrr (r, z) =
K

∆









z2

2

(

1 −
R2

2

r2

)

+
3

8

(

R2
2 − r2

)

+
1 − 3ν

2 (1 − ν)
R2

2 ln

(

r

R2

)









(28)

σrz (r, z) =
Kz

∆

(

r −
R2

2

r

)

(29)

σzz (r, z) =
K

∆

(

R2
2 − r2

2
−

3 − ν

1 − ν
R2

2 ln
r

R2

− z2

)

(30)

which correspond to the following stress vector P(z) on Γu:

Pr (z) = −
K

∆









z2

2

(

1 −
R2

2

R2
1

)

+
3

8

(

R2
2 −R2

1

)

+
3ν − 1

2 (1 − ν)
R2

2 ln

(

R2

R1

)









Pz (z) = Kz
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and to its dimensionless expression p(z) =
P(z)

E
.

5.2. Stopping criterion and influence of parameter c

In a first step, a reliable stopping criterion is needed to stop the iterative

process. As in Delvare et al. (2010), the determination of the iteration to

stop the iterative process is made using the quantity J(Uk+1) where Uk+1 is

the optimal element obtained at the (k+1)th step. The evolution of J versus

the number of iterations k follows an L-curve (Hansen, 1992). As expected

from relation (13), the control quantity J decreases and then becomes almost

constant. So the iterative process is stopped when J becomes almost con-

stant. This stopping criterion is blind because when calculating the quantity

J it does not need to know the analytical solution. Indeed, it only needs to

know two successive optimal elements, the displacements data on Γd and the

pressure data on Γd∪Γp. As expected from relation (12), we may also notice

that JΓ (the regularization term) decreases as the iterations continue. This

term becomes negligible compared to the sum SR of the relaxation terms

and tends to zero. This proves that the algorithm converges. As expected

from relation (11), the sum SR decreases during the iterative process. After

convergence, this sum remains constant and corresponds to the approxima-

tion error of the finite element method when the data are not noisy. When

the displacements data φd are noisy, after convergence, the residual value of

the sum SR corresponds to the distance on the supports of data between the

deblurred reconstructions and the noisy data.

It is also necessary to look at the influence of parameter c which defines the

relative weight of the regularization term compared to the relaxation terms.
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Different values of the parameter c are tested. Table 1 lists the results ob-

tained for each value of parameter c by specifying the number of iterations

necessary to achieve convergence, the uerror, the perror and the CPU time.

The errors on u and p are quite identical for each value of the parameter c.

This confirms that the algorithm converges to the same solution whatever

c k uerror in % perror in % CPU time in s

1e-4 182404 0.0138653 0.543446 2103.65

1e-5 18242 0.0138653 0.543447 214.10

1e-6 1825 0.0138649 0.543439 25.21

1e-7 184 0.0138617 0.543480 6.34

1e-8 20 0.0138480 0.544349 4.45

1e-9 3 0.0140402 0.549715 4.23

Table 1: influence of c on the number of iterations k to achieve convergence - influence of

c on the uerror and on the perror

the value of c. However, the choice of the parameter c affects the number k of

iterations needed to obtain convergence. The number of iterations necessary

to achieve convergence evolves linearly with c. From the evolution of the

CPU time with c (or with the number of iterations k) it can be deduced that

the CPU time taken by each iteration for k > 1 is roughly 1.15 10−2 s. This

CPU time is less than the CPU time taken to achieve both the preliminary

computations and the first iteration (roughly 4.23 s). For a small value of c,

the convergence only takes a few iterations, however the perror increases a lit-

tle. This may be explained by the fact that the regularization term becomes

too weak and induces some instabilities on the reconstructions. Moreover, it
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is preferable to have a greater value of the parameter c which induces little

additional CPU time in order to have more accurate reconstructions. Sub-

sequently, the value of c and the number of iterations required to achieve

convergence will be no longer specified.

It can also be observed that the errors in the numerical stresses obtained

(perror) using the iterative method are larger than those corresponding to the

reconstructed displacements (uerror). This last remark is also valid for all the

following numerical examples which will be analysed.

5.3. Reconstruction on Γu with noisy displacement data φd

It is necessary to see how the reconstructions are influenced when both

components of the displacement data φd are noisy. The noisy displacement

data φd are generated by:

φd = φd
an + δ η φd

max (31)

where −1 ≤ η ≤ 1 is a random value, δ is the noise level in % and φd
max is

the maximal value of the data of Γd.

Figure 2 (respectively Figure 3) shows the reconstructions on Γu of the ur-

component (respectively uz-component) of the displacement obtained with

different noise levels (δ = 1% and δ = 5%) for Example 1. On the same

figures, these reconstructions are compared with the reconstruction obtained

with no noisy data. Figure 4 (respectively Figure 5) gives the corresponding

reconstructions of the pr-component (respectivelypz -component) of the stress

vector. Figures 6-9 give the corresponding reconstructions for Example 2.

All the reconstructions of the components of the displacement obtained can

be seen to be very accurate. It can also be observed that the reconstructions
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of the components of the stress vector obtained using the iterative method

are less accurate than those corresponding to the displacement vector.

5.4. Reconstruction on Γd : Deblurring the noisy displacement data φd

The functional is composed of terms which play different roles. As in

most inverse methods, there is a regularization term which tends to zero as

the iterations continue. But, in the present case, there are also relaxation

terms that allow data blurred by noise to be taken into account. We therefore

seek a solution which is close to the data but not a solution that exactly fits

the data. The algorithm then recomputes, at each step, a solution on the

whole boundary.

Figure 10 (respectively Figure 11) gives the reconstruction of the ur-component

of the displacement (respectively the uz-component) on Γd and the noisy data

φd used (δ = 5%) for Example 1. Figures 12 and 13 give the corresponding

reconstructions for Example 2. It can be noted that all these reconstructions

correspond to the analytical solution and that the noise in the data has been

deleted by the algorithm.

Figure 14 represents, for Example 1, the evolution of the functional terms

SR, JΓ and J versus the number of iterations k when the data φd is noisy

(δ = 5%). After convergence, the regularization term JΓ is negligible and the

residual term J is equal to the sum of the relaxation terms. This residual

term corresponds to the distance on Γd between the deblurred reconstruction

and the noisy data. It can also be noted that the relations (11-13) are also

verified when the data φd is noisy. This is not surprising because the inequal-

ities were established without any assumptions on the data (for instance that

Φd is compatible).
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5.5. Behaviour with respect to the mesh refinement

It is necessary to see how the reconstructions are influenced when the

mesh refinement of the boundary Γ increases. In this section, the boundary

part Γd is discretized using 8N finite elements SEG2 where all finite elements

have the same length and the nodes are uniformly distributed. The bound-

ary part Γu is discretized using a regular mesh with 8N finite elements SEG2

and both sides of the boundary part Γp are discretized using a regular mesh

with N finite elements SEG2. The level of noise δ added into the boundary

displacement data φd is fixed to 5%.

Figure 15 shows the reconstructions on Γu of the ur-component of the dis-

placement u obtained with N = 5, N = 10 and N = 20. Figure 16 gives

the corresponding reconstructions of the pr-component of the stress vector.

These figures confirm that the inverse method is stable with respect to the

mesh refinement. Similar results, which are not presented here, are obtained

for the uz-component of the displacement and for the pz-component of the

stress vector.

5.6. Behaviour with respect to the extension of the supports of data

In this section, we look at the influence of the type of prescribed data on

the numerical solution. We investigate the numerically retrieved solutions

corresponding to the following three cases associated with the given data:

case 1: u = φd ∈ Γd and p = ψd ∈ Γd ∪ Γp

case 2: u = φd ∈ Γd ∪ Γp and p = ψd ∈ Γd

case 3: u = φd ∈ Γd ∪ Γp and p = ψd ∈ Γd ∪ Γp
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For the three cases, the same mesh is used and the level of noise δ added into

the boundary displacement data φd is fixed to 5%. The boundary part Γd

is discretized using 160 finite elements with a regular mesh. The boundary

part Γu is discretized using a regular mesh with 160 finite elements and both

sides of the boundary part Γp are discretized using a regular mesh with 20

finite elements.

Figure 17 shows the reconstructions on Γu of the ur-component of the dis-

placement u obtained for the three cases. Figure 18 gives the corresponding

reconstructions of the pr-component of the stress vector. These figures con-

firm that the inverse method is accurate in each case but the reconstructions

are more accurate when the extension of the supports of data is greater (case

3). Similar results, which are not presented here, are obtained for the uz-

component of the displacement and for the pz-component of the stress vector.

6. Application of the method to the identification of a friction co-

efficient

6.1. Scope of the study

Some materials, like concretes, rocks or geomaterials, have a material

behavior which depends on the first invariant I1 = 1

3
Trace σ of the stress

tensor. In order to determine this dependence, some experimental devices

have been developed to perform triaxial tests in quasi-static or dynamic

situations. For one of them, the confining stress is obtained by placing the

specimen in a metallic sleeve to achieve passive confinement (Figure 19a).

The compressive stress is applied directly on the specimen. The metallic

22



ring is then subjected to internal pressure due to the lateral expansion of the

specimen. This technique allows a higher level of I1 to be obtained and has

been used in quasi-static (Forquin et al., 2007) or dynamic situations (Bailly

et al., 2011; Gary et al., 1998; Forquin et al., 2007).

Assuming a frictionless contact between the specimen and the metallic ring

and assuming an elastic or a perfect elastoplastic behavior of the ring, the

analytical solution of a hollow cylinder submitted to inner radial pressure,

enables the radial stress on the inner surface of the ring to be deduced from

the deformation recorded by a unique gauge glued at the outer surface (Bailly

et al., 2011).

The objective is to prove that the inverse data completion method proposed

could be very useful when friction at the inferface between the specimen and

an elastic ring occurs. The specimen could then be replaced by the unknown

loading it applies to the elastic ring (Figure 19b). This unknown loading

must be identified by an inverse technique, leading to a Cauchy problem (7).

6.1.1. Determination of the numerical reference solution using FEM

In order to validate the procedure, we will use a numerical reference

solution to a similar problem. The response of the elastic ring made of steel

(Young’s modulus E = 220GPa and ν = 0.34) is studied. The loading is
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defined by the following dimensionless stress distributions along Γu:

pr (z) =



























a exp

(

−β

(

z +
h

4

))

−
h

2
≤ z ≤ −

h

4

b cosh(αz) −
h

4
≤ z ≤

h

4

a exp

(

β

(

z −
h

4

))

h

4
≤ z ≤

h

2

(32)

pz (z) =























fpr(z) −
h

2
≤ z ≤ −

h

4

c sinh(αz) −
h

4
≤ z ≤

h

4

−fpr(z)
h

4
≤ z ≤

h

2

(33)

where f = 0.13, a = 1.031, b = 0.963, c = −0.350, α = 37.435 m−1 and

β = 13.394 m−1. The values of these parameters are fixed assuming:

- the contact law is governed by a Coulomb-type criterion:

|pz(z)| ≤ f |pr(z)| (34)

where f is the friction parameter.

- the distribution of the radial stress pr and of the axial stress pz are

continuous along Γu

- the zone defined by −
h

4
≤ z ≤

h

4
is an adherence zone

- the zones defined by −
h

2
≤ z ≤ −

h

4
and

h

4
≤ z ≤

h

2
are sliding zones.

The boundary part Γd ∪ Γp is also assumed to be a free-force boundary.

Then, a standard direct finite element simulation is performed determining

a numerical reference solution. The FEM computing code used is always

Cast3m. The boundary and the domain meshes used are the same as those
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used in Section 5. Subsequently, a restriction of this numerical reference

solution will be used to determine the input data for the Cauchy problem

(7).

6.2. Example 3

Given that Γd ∪ Γp is a free-force boundary, ψd is zero. For this example,

only the ur-component of the displacement is noisy. This noisy data ud
r is

generated by:

ud
r = uref

r + η δ (35)

where −1 ≤ η ≤ 1 is a random value, δ is the noise level due to uncertainties

on the radial displacement measurements and uref
r is the restriction to Γd of

the radial displacement obtained by direct simulation.

6.3. Reconstructions on Γu

Figure 20 (respectively Figure 21) shows the reconstructions on Γu of

the ur-component (respectively uz-component) of the displacement obtained

with different uncertainty levels (δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4).

On the same figures, these reconstructions are compared on one side to the

reconstruction obtained with no noisy data and on the other side to the

reference solution obtained by the direct simulations. Each reconstruction of

the components of the displacement can be seen to be very accurate. Figure

22 (respectively Figure 23) gives the corresponding reconstructions of the

component pr (respectivelypz) of the stress vector. The reconstruction of the

components of the load is less accurate because at the end of the boundary

part Γu some instabilities appear in these reconstructions.
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6.4. Reconstructions on Γd: Deblurring the noisy data

As the algorithm recomputes a solution on the whole boundary, Figure

24 gives the reconstruction of the ur-component on Γd and the noisy data ud
r

used (δ = 5.10−4). It can be noted that this reconstruction corresponds to

the reference solution obtained with the direct simulation and that the noise

in the data has been deleted by the algorithm.

6.5. Identification of the friction coefficient f

Figure 25 plots, along the boundary part Γu, the ratio R between the

reconstructions of pz and those of pr obtained by the inverse technique:

R(z) =

∣

∣

∣

∣

pz(z)

pr(z)

∣

∣

∣

∣

(36)

The ratio R obtained is quite accurate and allows the extensions of the sliding

zones where R = f , the extension of the adherence zone where R < f and

the value of the friction parameter f to be identified a posteriori with relative

precision. It may however be noted that some instabilities appear at the ends

of the boundary part Γu.

7. Conclusion

This paper introduces an iterative method for solving the Cauchy prob-

lem in linear elasticity in axisymmetric situations. This problem consists

in recovering missing displacements and forces on some part of a bound-

ary domain from the knowledge of overspecified data on another part of the

boundary.

This approach reduces the resolution of the Cauchy problem to the resolution
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of a sequence of optimization problems under equality constraints. The algo-

rithm reads as a least square fitting. The functional is composed of different

terms. Some terms are relaxation terms which represent the gap between

the optimal element and the overspecified boundary data. The other term

is a regularization term which represents the gap between the optimal ele-

ment and the previous optimal element. At each step, the optimal element

obtained is an exact solution of the equilibrium equations and is close to

the overspecified data. The regularization term vanishes when the iterations

continue.

Numerical simulations using the finite element method have highlighted the

accuracy and robustness of the inverse method to noisy data as well as its

ability to deblur noisy data. For all the situations analysed, it can be ob-

served that the errors in the force reconstructions obtained using the method

are higher than those corresponding to the displacements.

On a numerical aspect, further developments will concern the improvement

of the inverse method in order to obtain more accurate reconstructions at the

ends of the boundary part Γu. For the Cauchy problem for the Laplace equa-

tion, a first order method was introduced in Delvare and Cimetière (2008)

to improve the reconstruction of the normal derivatives when the boundary

part Γu had corners. An extension of this inverse technique to our problem

could be very useful.

On the experimental aspect, in further works, the inverse method will be

combined with experimental techniques like digital image correlation in or-

der to deal with experimental displacement data.
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Figure 1: The domain Ω, the boundary part Γd, the boundary part Γp, the boundary

part Γu and the specified boundary conditions for the inverse problems investigated in

Examples 1 and 2.
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Figure 2: The analytical solution and the numerical reconstructions of the ur-component

of the displacement obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy

problem considered in Example 1.
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Figure 3: The analytical solution and the numerical reconstructions of the uz-component

of the displacement obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy

problem considered in Example 1.
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Figure 4: The analytical solution and the numerical reconstructions of the radial stress pr

obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy problem considered in

Example 1.
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Figure 5: The analytical solution and the numerical reconstructions of the axial stress pz

obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy problem considered in

Example 1.
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Figure 6: The analytical solution and the numerical reconstructions of the ur-component

of the displacement obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy

problem considered in Example 2.
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Figure 7: The analytical solution and the numerical reconstructions of the uz-component

of the displacement obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy

problem considered in Example 2.
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Figure 8: The analytical solution and the numerical reconstructions of the radial stress pr

obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy problem considered in

Example 2.
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Figure 9: The analytical solution and the numerical reconstructions of the axial stress pz

obtained on Γu, for δ = 0%, δ = 1% and δ = 5%, for the Cauchy problem considered in

Example 2.
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Figure 10: The analytical solution, the noisy data used (δ = 5%) and the numerical

reconstruction of the ur-component of the displacement obtained on Γd, for the Cauchy

problem considered in Example 1.
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Figure 11: The analytical solution, the noisy data used (δ = 5%) and the numerical

reconstruction of the uz-component of the displacement obtained on Γd, for the Cauchy

problem considered in Example 1.
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Figure 12: The analytical solution, the noisy data used (δ = 5%) and the numerical

reconstruction of the ur-component of the displacement obtained on Γd, for the Cauchy

problem considered in Example 2.
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Figure 13: The analytical solution, the noisy data used (δ = 5%) and the numerical

reconstruction of the uz-component of the displacement obtained on Γd, for the Cauchy

problem considered in Example 2.

45



 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1  10  100  1000

k

SR

J
JΓ

Figure 14: Evolution of the terms of the functional versus the number of iterations k for

δ = 5% and for the Cauchy problem considered in Example 1.
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Figure 15: The analytical solution and the numerical reconstructions of the ur-component

of the displacement obtained on Γu, for δ = 5% and different mesh refinements N = 5,

N = 10 and N = 20, for the Cauchy problem considered in Example 1.

47



 0.009

 0.0095

 0.01

 0.0105

 0.011

-0.02 -0.015 -0.01 -0.005  0  0.005  0.01  0.015  0.02

p r

z

Analytic solution
N = 5

N = 10
N = 20

Figure 16: The analytical solution and the numerical reconstructions of the radial stress

pr obtained on Γu, for δ = 5% and different mesh refinements N = 5, N = 10 and N = 20,

for the Cauchy problem considered in Example 1.
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Figure 17: The analytical solution and the numerical reconstructions of the ur-component

of the displacement obtained on Γu, for δ = 5% and different types of prescribed data, for

the Cauchy problem considered in Example 1.
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Figure 18: The analytical solution and the numerical reconstructions of the radial stress

pr obtained on Γu, for δ = 5% and different types of prescribed data, for the Cauchy

problem considered in Example 1.
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Figure 19: a) Schematic representation of the confining test, b) The domain Ω, the bound-

ary part Γd, the boundary part Γp, the boundary part Γu and the specified boundary

conditions for the inverse problems investigated in Example 3
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Figure 20: The numerical reference solution and the numerical reconstructions of the ur-

component of the displacement obtained on Γu, for δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4,

for the Cauchy problem considered in Example 3.

52



-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-0.02 -0.015 -0.01 -0.005  0  0.005  0.01  0.015  0.02

u
z

z

direct simulation
δ = 0

δ = 5.10−5

δ = 1.10−4

δ = 5.10−4

Figure 21: The numerical reference solution and the numerical reconstructions of the uz-

component of the displacement obtained on Γu, for δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4,

for the Cauchy problem considered in Example 3.
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Figure 22: The reference value and the numerical reconstructions of the radial stress pr

obtained on Γu, for δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4, for the Cauchy problem

considered in Example 3.
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Figure 23: The reference value and the numerical reconstructions of the axial stress pz

obtained on Γu, for δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4, for the Cauchy problem

considered in Example 3.
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Figure 24: The numerical reference solution, the noisy data used (δ = 5.10−4) and the

numerical reconstruction of the ur-component of the displacement obtained on Γd, for the

Cauchy problem considered in Example 3.
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Figure 25: The reference value and the numerical reconstructions of the ratio R obtained

on Γu, for δ = 5.10−5, δ = 1.10−4 and δ = 5.10−4, for the Cauchy problem considered in

Example 3.
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