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The evolution of gynodioecy on a lattice

T. Preece∗, Y. Mao

School of Physics and Astronomy, University of Nottingham, University Park,

Nottingham NG7 2RD, United Kingdom

Abstract

Gynodioecy is a breeding system in plants where populations consist of herm-

aphrodites and females. The females result from a genetic mutation which

impairs pollen production in hermaphrodite plants. Most previous models

for the evolution of gynodioecy do not take into account any spatial detail,

which might be expected to play an important role in populations with short

range interactions caused by poor or no locomotion.

In this article we present a generalised mean-field analysis (which ignores

any spatial detail), together with stochastic spatial simulations, to investigate

the spatial effect on the evolution of gynodioecy. We show that, in a popula-

tion of hermaphrodites where male sterility is caused by a dominant allele in a

nuclear gene, mean-field calculations greatly underestimate the reproductive

advantage females require to become viable under spatial constraints. This

suggests that gynodioecy is less likely to evolve in plants with more localised

pollination and seed setting. This may have implications for the evolution of

dioecy, a breeding system in plants where the population consists of males
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and females, as gynodioecy is thought to be a route to dioecy. Our results

also demonstrate that a lower frequency of females should be expected for

gynodioecious populations when interactions are local. This is relevant when

comparing the results of breeding experiments with observations of female

frequency in the wild.

Key words: sexual reproduction, lattice, Gynodioecy

1. Introduction1

Gynodioecy is a breeding system in plants where populations consist of2

hermaphrodite and female individuals. It is both a common and widespread3

polymorphism describing approximately 7% of all flowering plants (Richards,4

1986). Some examples of species that exhibit gynodioecy are the wild straw-5

berry, Fragaria virginiana, (Ashman, 1999) and Cucurbita foetidissima (Cu-6

curbitaceae) (Kohn, 1989). The evolution of gynodioecy also has implications7

for the evolution of dioecy, as gynodioecy is thought to be a route to dioecy.8

A well-known dioecious species is American holly, Ilex aquifolium (Aquifoli-9

aceae) (Obeso et al., 1998).10

Gynodioecy occurs as a result of a genetic mutation which impairs pollen11

production in hermaphrodite plants. This makes gynodioecy an excellent sys-12

tem for studying the interplay of genetic architecture and ecology in evolution13

(Bailey and Delph, 2007). Genetic mutations can impair pollen production in14

several ways but still allow normal female reproduction (Chaudhury, 1993).15

The genetic basis for male sterility can significantly affect whether a muta-16

tion for male sterility can become established. Nuclear genes are inherited17

through both parents whereas cytoplasmic genes are only inherited from the18
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mother. It has been shown that females would need to be at least twice19

as fertile as hermaphrodites (produce twice as many offspring) for a nuclear20

male sterility gene to become established (Lewis, 1941). However, cytoplas-21

mic male sterility can become established when the fertility of the female is22

only slightly larger than that of the hermaphrodite (Lewis, 1941). This is23

because a cytoplasmic gene is not inherited through male function hence has24

nothing to lose if pollen production is stopped. In some species, male sterility25

is complicated further by the evolution of restorer genes which suppress the26

deleterious effects of cytoplasmic male sterility (Schnable and Wise, 1998).27

Most previous models of inherited male sterility assumed that female fit-28

ness is dependent on the availability of pollen in the environment but herm-29

aphrodite fitness is not (Lewis, 1941; Lloyd, 1983), i. e. hermaphrodites30

are self-compatible. However, incompatibility recognition systems prevent-31

ing self-fertilization have evolved several times in independent lineages of32

Angiosperm plants (Charlesworth et al., 2005) and many plants have been33

observed as self-incompatible (Igic and Kohn, 2006). If the case of a self-34

incompatible species is considered, cytoplasmic inherited male sterility is35

only stable if hermaphrodite and female fertility are exactly equal (Charnov,36

1982). In this unlikely case it would be difficult for the cytoplasmic mutation37

to invade from small frequencies as it is neutral in terms of selection. For38

the case of cytoplasmic male sterility in out-crossing hermaphrodites, it was39

shown that if female fertility is larger than hermaphrodite fertility, females40

will spread until scarcity of pollen causes the population to become extinct41

(Stewart-Cox et al., 2005).42

All of the analyses discussed thus far ignore spatial detail, which becomes43
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important in populations with short range interactions between constituents44

and limited mixing caused by poor/no locomotion. These conditions would45

be expected to be particularly prevalent in plant populations. A powerful ap-46

proach for modelling spatial detail is the use of stochastic spatial simulations,47

which have been extensively applied in chemical, ecological and sociological48

systems (Durrett, 1999; Durrett and Levin, 1994).49

A spatial model of cytoplasmic male sterility in self-incompatible herm-50

aphrodites (Stewart-Cox et al., 2005), showed behaviour vastly different from51

the predictions of non-spatial models. Where non-spatial models predicted52

that invasion of females would lead to extinction of the population (female53

fertility > hermaphrodite fertility), the spatial model (Stewart-Cox et al.,54

2005) instead displayed stable nodes, foci, limit cycles or extinction depend-55

ing on the relative fertility of females to hermaphrodites. This demonstrated56

that cytoplasmic male sterility can evolve in self-incompatible hermaphrodite57

populations.58

In this article we present a generalised model for gynodioecy that accom-59

modates male sterility conferred by a cytoplasmic gene or a dominant allele60

in a nuclear gene. This contrasts the aforementioned spatial investigation61

(Stewart-Cox et al., 2005), which solely considered cytoplasmic male steril-62

ity. We present a generalised mean-field analysis (which ignores any spatial63

detail), together with stochastic spatial simulations, to investigate the spatial64

effect on the evolution of gynodioecy in self-incompatible hermaphrodites.65

For established gynodioecious populations we compare the equilibrium66

frequencies of females in spatial and non-spatial models over a range of pa-67

rameter values. A knowledge of the equilibrium frequency of females would68
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be of interest when comparing the results of breeding experiments with ob-69

servations of female frequency in the wild.70

In the following section a stochastic spatial simulation is described that71

is used to simulate the evolution of gynodioecy. A mean-field analysis for72

the evolution of gynodioecy is presented in section 3 and results from the73

stochastic spatial simulations are presented in section 4. The results pre-74

sented for the case of cytoplasmic male sterility show good agreement with75

previous spatial simulations (Stewart-Cox et al., 2005).76

2. Model77

The stochastic spatial simulation described here is continuous in time78

and extends a previous model for the sexual reproductive process (Preece79

and Mao, 2009). The population resides on a two-dimensional square lattice80

of side length L, with periodic boundary conditions. Each lattice site can be81

occupied by either a self-incompatible hermaphrodite, a female or be empty.82

An occupied site becomes vacant at a rate λ, the death rate. The death rate83

is considered to be equal for hermaphrodites and females for the purposes of84

our investigation.85

A hermaphrodite produces an offspring at a rate equal to jκ1/4, where j86

is the number of nearest neighbour sites occupied by hermaphrodites and κ187

is the birth rate. This positive relationship between individual fitness and the88

density of conspecifics demonstrates the well-known Allee effect(Odum and89

Allee, 1954). A nearest neighbour site is then chosen randomly. If the chosen90

site is empty the offspring is placed on the site. If the site is occupied the91

offspring is deleted. Similarly, a female produces a hermaphrodite offspring92
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at a rate, jκ2/4, and a female offspring at a rate, jκ3/4. Thus, a female93

produces offspring at a total rate, j(κ2 + κ3)/4.94

Genetics can be explicitly defined in this model for the case of a dominant95

allele in a nuclear gene that causes male sterility, or a cytoplasmic gene that96

causes male sterility. Consider a dominant nuclear allele for male sterility,97

B. Thus, Bb = female, and, bb = hermaphrodite. Since females produce no98

pollen, no homozygous BB individuals are formed and there are only two99

genotypes in the population (Lewis, 1941). κ2 �= κ3, represents the case of100

differential mortality between male and female offspring due to their own sex101

genotypes (Lloyd, 1974).102

The case of cytoplasmic male sterility is modelled by setting κ2 = 0.103

Hence, females always produce females and the hermaphrodite population is104

not increased through mating with females.105

3. Mean-field Analysis106

The mean-field kinetics of the hermaphrodite and female populations are107

described by,108

dh

dt
= h

[
−λ +

3 (hκ1 + fκ2) (1− h− f)

4

]
(1)

df

dt
= f

[
−λ +

3hκ3 (1− h− f)

4

]
(2)

where h and f are the densities of hermaphrodites and females respectively.109

The derivation of equations (1) and (2) is explained in appendix A. By scaling110

time (τ = λt), the system can be simplified by introducing the parameters;111

K1 = 3κ1/4λ, K2 = 3κ2/4λ and K3 = 3κ3/4λ.112
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In the following mean-field analysis, the case of nuclear male sterility113

(K1 > 0, K2 > 0 and K3 > 0) will be considered first and the case of114

cytoplasmic male sterility (K1 > 0, K2 = 0 and K3 > 0) will be considered115

second.116

3.1. Nuclear male sterility.117

Equilibria for equations (1) and (2) were found by setting the time deriva-118

tive equal to zero, then solving the resulting two equations simultaneously.119

The nature of these equilibria was characterised by linear stability analysis of120

the system of equations (1) and (2). As h ≥ 0, f ≥ 0 and h + f ≤ 1, the re-121

gion of interest on the (h,f)-plane is the triangle with vertices (h = 0, f = 0),122

(h = 1, f = 0) and (h = 0, f = 1). The trivial equilibrium (h = 0, f = 0) is123

stable provided λ > 0. For (K1 > 0, K2 > 0, K3 > 0), equations (1) and (2)124

have four equilibria besides the trivial one. Two equilibria are located on the125

boundary (f = 0) with,126

h2 =
1

2

(
1−

√
K1 − 4

K1

)
, (3)

h3 =
1

2

(
1 +

√
K1 − 4

K1

)
. (4)

The remaining two equilibria are,127

h4 =
K2K3 −

√
A

2K3 (K2 + K3 −K1)
, (5)

f4 =
(K3 −K1)

(
K2K3 −

√
A
)

2K2K3 (K2 + K3 −K1)
, (6)

h5 =
K2K3 +

√
A

2K3 (K2 + K3 −K1)
, (7)
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f5 =
(K3 −K1)

(
K2K3 +

√
A
)

2K2K3 (K2 + K3 −K1)
, (8)

where A = K2K3 [4 (K1 −K2 −K3) + K2K3]. Eigenvalues and eigenvectors128

from the linear stability analysis of these equilibria can be found in appendix129

B.130

Equilibria (h2, 0) and (h3, 0) are real and positive only if K1 > 4. The131

eigenvalues from the linear stability analysis of these equilibria are only de-132

pendent on K1 and K3 (see appendix B). If K1 > K3, equilibria (h2, 0) and133

(h3, 0) are a saddle point and attractor respectively. This marks a regime134

where hermaphroditism is an ESS. Thus, a small number of mutant females135

cannot invade a hermaphrodite population. Later it will be shown that when136

K1 > K3, only equilibria (0, 0), (h2, 0) and (h3, 0) exist in the region of inter-137

est. Typical mean-field dynamics for the regime, where K1 > 4 and K1 > K3,138

are shown in figure 1. The unstable manifold of the saddle point in figure 1139

lies along the boundary (f = 0). Thus, a population of just hermaphrodites140

evolves to the trivial equilibrium if the initial density of the population is141

below the saddle point and evolves to the stable node if the initial density of142

the population is above the saddle point.143

If K3 > K1, equilibria (h2, 0) and (h3, 0) are an unstable node and saddle144

point respectively. The unstable manifold of the saddle point at (h3, 0) points145

in to the interior, (h > 0, f > 0). In the absence of females the dynamics of146

the hermaphrodite population is the same as for the case, K1 > K3. How-147

ever, a small number of mutant females can now invade the hermaphrodite148

population. Thus, Hermaphroditism is no longer an ESS.149

By inspecting equations (5)-(8) it can be seen that equilibria (h4, f4) and150
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(h5, f5) are real only if A ≥ 0. Using this condition, it can be shown that151

equilibria (h4, f4) and (h5, f5) are positive, real, and distinct if,152

K3 > 4,

K3 > K1,

and K2 > S, (9)

where,153

S =
4K3 − 4K1

K3 − 4
. (10)

When they exist in the region of interest, equilibria (h4, f4) and (h5, f5) are154

a saddle point and stable node respectively. The condition, in equation (9),155

that K3 > K1, means that the boundary equilibria (h2, 0) and (h3, 0) are an156

unstable node and a saddle point respectively. Typical mean-field dynamics157

for this regime are shown in figure (2). In the absence of females, the dy-158

namics of hermaphrodite population is similar to the case where K1 > K3:159

a population of just hermaphrodites evolves to the trivial equilibrium if the160

initial density of hermaphrodites is below the unstable node and evolves to161

the boundary saddle point if the initial density of hermaphrodites is above162

the unstable node. However, females can now invade a population of herm-163

aphrodites. The population can then evolve to the stable node (h5, f5), which164

represents a stable coexisting population of hermaphrodites and females. As165

can be seen in figure(2), mixed populations with low densities evolve to the166

trivial equilibrium.167

The conditions in equations (9) also reveal that a coexisting population of168

females and hermaphrodites can be stable even when a population consisting169

solely of hermaphrodites is not stable (when K1 < 4).170
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Whilst obeying equations (9), reducing K3 (or increasing K1) brings equi-171

libria (h4, f4) and (h5, f5) closer to the boundary (f = 0). When K3 = K1,172

equilibria (h4, f4) and (h5, f5) collide with the boundary equilibria, (h2, 0)173

and (h3, 0) respectively, here a transcritical bifurcation occurs. As discussed174

above, when K1 > K3, the boundary equilibria (h2, 0) and (h3, 0) are a saddle175

point and attractor respectively. Thus hermaphroditism is the ESS.176

Decreasing K2, whilst obeying the conditions in equation 9, brings equi-177

libria (h4, f4) and (h5, f5) closer together. At K2 = S, equilibria (h4, f4) and178

(h5, f5) collide and annihilate. This is a saddle-node bifurcation point. If179

K3 > K1 and K2 < S; the boundary equilibria, (h2, 0) and (h3, 0), are a180

node and saddle point respectively and no equilibrium for coexistence exists.181

Under these conditions females could invade the hermaphrodite population.182

As the only stable equilibrium is the trivial equilibrium the population will183

then converge on the trivial equilibrium, resulting in extinction. Typical184

mean-field dynamics for this regime are shown in figure 3.185

All possible evolutionary outcomes for the case K1 > 0, K2 > 0 and186

K3 > 0 are summarised in table (1). At equilibrium the frequency of females187

in the population is given by,188

f5

f5 + h5

=
K3 −K1

K3 + K2 −K1

. (11)

Note that equation (11) is only valid if the (h5, f5) is real and positive, there-189

fore if the conditions in equation 9 are satisfied. Equation 11 differs from the190

result of Lewis (1941) as Lewis’s model considers self-compatible hermaph-191

rodites.192
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K1 > 4 K1 < 4

K1 > K3 Hermaphroditism Extinction

is ESS (only trivial equilibrium)

(K3 > K1) Female invasion Extinction

& (S > K2) leads to extinction (only trivial equilibrium)

(K3 > K1)

& (K2 > S) Gynodioecy Gynodioecy

& (K3 > 4)

Table 1: Evolutionary outcomes in mean-field analysis, for nuclear male sterility

(K1 > 0,K2 > 0,K3 > 0), where K1, K2 and K3 are the scaled reproductive rates for

the following processes: H + H → H, H + F → H, and H + F → F respectively (H

represents a hermaphrodite and F a female).

3.2. Cytoplasmic male sterility193

For the case of cytoplasmic male sterility, the behaviour of equilibria194

(h2, 0) and (h3, 0) is the same as in the previous section: for K1 > K3195

equilibria (h2, 0) and (h3, 0) are a a saddle point and stable node respectively,196

for K3 < K1 equilibria (h2, 0) and (h3, 0) are an unstable node and saddle197

point respectively.198

If K2 = 0 and K1 > K3, hermaphroditism is an ESS and similar dynamics199

to those shown in figure 1 are observed. For K2 = 0 and K3 > K1, females200

can invade a hermaphrodite population but the population then converges201

on the trivial equilibria and becomes extinct. The dynamics observed for202

this case are similar to those shown in figure 3.203

For the special case K2 = 0 and K3 = K1, there is a curve of equilibrium204
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points given by,205

f =
K1h−K1h

2 − 1

K1h
. (12)

Eigenvalues and eigenvectors from the linear stability analysis of this equi-206

librium curve are given in appendix C. The first eigenvalue for points on this207

equilibrium curve is zero with corresponding eigenvector along the curve.208

The second eigenvalue is negative for h > 2/K1 and positive for h < 2/K1.209

Typical mean-field dynamics for this regime is shown in figure 4. The be-210

haviour observed here for the case K2 = 0 is in agreement with previous211

results from similar evolutionary models (Stewart-Cox et al., 2005; Charnov,212

1982).213

4. Results of lattice simulation214

All simulations were run on lattices of side length L = 100 for 100 gen-215

erations, where the time in generations is given by τ = λt, and t is in Monte216

Carlo steps. For hermaphrodite populations (with no females), previous in-217

vestigations for this lattice model (Preece and Mao, 2009) have shown that a218

discontinuous phase transition occurs between an active phase (finite popula-219

tion) and an absorbing phase (extinction) at K1 ≈ 6. Thus values of K1 > 6220

are required for a sustainable hermaphrodite population.221

The simulation results for the case of cytoplasmic male sterility (K2 = 0)222

show good qualitative agreement with previous spatial simulations (Stewart-223

Cox et al., 2005). Simulations (for K2 = 0) displayed coexistence of females224

and hermaphrodites (not shown) for values of K3 roughly 1.5 times lager than225

K1. Figure 5 shows how behaviour is increasingly cyclic with increased female226

reproductive advantage (increased K3/K1). This contrasts with mean-field227
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kinetics, which predict extinction of the population following the invasion228

of females. Large vales of K3 (K3 > 8K1) result in extinction (not shown)229

showing similar behaviour to mean-field predictions.230

Sample paths from the lattice simulation for the case of nuclear male231

sterility (K2 > 0) are shown in figures 6 and 7. In figure 6, hermaphroditism232

is the ESS. It can be seen from the plot, that the hermaphrodite population233

is robust against invasion by large numbers of females. Simulations started234

with low population densities evolved to the trivial equilibrium (not shown).235

These observations are in agreement with mean-field kinetics. In figure 7,236

coexistence of females and hermaphrodites is evolutionary stable. The paths237

shown in figure 7 converge on an equilibrium at approximately (0.77, 0.12),238

this corresponds to the stable node, (h5, f5), in the mean-field analysis. This239

is difficult to see from figure 7 due to slow dynamics close to the equilibrium.240

Simulations started with low population densities evolved to the trivial equi-241

librium (not shown).242

Breaking the condition K2 > S (equation (9)) with K3 > K1 does not243

result in extinction following female invasion, as predicted by mean-field244

analysis. Instead simulations display coexistence with increasingly cyclic be-245

haviour as K2 is decreased and/or K3 increased. This result is not surprising246

given the observations for K2 = 0 shown earlier (figure 5).247

The frequency of females in natural gynodioecious populations is often248

used as an indicator of the genetic mechanism responsible for male steril-249

ity in a particular species (Bailey and Delph, 2007). For cases of nuclear250

male sterility where K2 > S, spatial simulations arrive at equilibria which251

are fairly static in (h, f)-space. Thus, equilibrium frequencies of females in252
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the population are easily calculated. Figure 8 plots the equilibrium female253

frequencies for spatial simulation and mean-field analysis as a function of254

K3/K1, with K2 = K3. For each set of results K1 was fixed while K2 and255

K3 were incremented. By testing several values of K1, the plots show that256

the relative magnitudes of K1, K2 and K3 are dominant in determining the257

behaviour of the system and not their absolute values. Though birth rates258

do need to be of sufficient magnitude to avoid extinction. Reproductive rates259

used for the simulations in figures 5–8 are larger than those use for mean-260

field dynamics (figures 1–4). This because the strictly local interactions of261

the simulation make the population more vulnerable to extinction at low262

birth rates (Preece and Mao, 2009).263

Mean-field analysis predicted that nuclear male sterility could evolve if264

K3 > K1. Figure 8 shows that the condition for nuclear male sterility to265

evolve in a spatial simulation with (K2 = K3) is approximately K3 > 3K1.266

This infers that nuclear male sterility is less likely to evolve in species with267

local pollination and seed setting, as is the case in the simulation, than268

in than in a well mixed/widely dispersing population. Results from lattice269

simulations are summarised in table 2.270

Figure 8 also shows that female frequency is lower in the spatial simulation271

than predicted by mean-field analysis. Thus, it may be expected that gyn-272

odioecious plant species with local pollination and seed setting should have273

lower female frequencies in the wild compared to species with long range274

interactions. The difference between mean-field and simulation is likely to275

be due to local variation in the concentration of females. As offspring are276

placed on nearest neighbour sites females with easy access to pollen can-277
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Male Sterility Parameters Evolutionary Outcome

Nuclear 3K1 > K3 & K3 = K2 Hermaphroditism is ESS

Nuclear K3 > 3K1 & K3 = K2 Gynodioecy

Cytoplasmic 1.5 > K3

K1

& K2 = 0 Hermaphroditism is ESS

Cytoplasmic 8 > K3

K1

> 1.5 & K2 = 0 Gynodioecy

Cytoplasmic K3

K1

> 8 & K2 = 0 Female invasion leads

to extinction

Table 2: Evolutionary outcomes for lattice simulations, where K1, K2 and K3 are the

scaled reproductive rates for the following processes: H + H → H, H + F → H, and

H + F → F respectively (H represents a hermaphrodite and F a female). A value of

K1 > 6 is required for a sustainable hermaphrodite population.

not compensate for females being starved of pollen in regions of high female278

concentration. This would result in regions with high female concentration279

dying off due to a shortage of pollen.280

In many hermaphrodite plant populations individuals are self-incompatible281

(Igic and Kohn, 2006), which is the focus of the model presented above. In282

other species some self-fertilisation is observed in addition to out-crossing283

(Kohn, 1989; Ashman, 1999). Though selfing would alter the details of the284

model presented in this article, we would still expect the main conclusions285

of our investigation to stand. Namely, females require a greater fertility286

advantage to become established when interactions are local, and the equi-287

librium frequency of females is lower when interactions are local. This may288

account for observations of Ashman (1999) that observed female frequencies289

are generally lower than those predicted by the equation of Lewis (1941) in290
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a gynodioecious species of wild strawberry.291

As pointed out in the introduction, male sterility has also been observed292

to be controlled by more complex genetic interactions than studied here. For293

example male sterility due to recessive genes (Lewis, 1941) and the evolution294

of restorer genes which counter male sterility (Schnable and Wise, 1998).295

Spatial simulations similar to the one presented here could easily be applied296

to these systems.297

5. Conclusions298

The population dynamics for a stochastic spatial simulation and its mean-299

field approximation have been presented for a gynodioecious population where300

male sterility is conferred by a dominant nuclear allele. It was demonstrated301

that a female needs a much greater fertility advantage to become established302

in the stochastic spatial simulation when compared with the mean-field ap-303

proximation. This result suggests that gynodioecy is less likely to evolve in304

plants with local pollination and seed setting, and may also contribute to the305

observation that a relatively small percentage of plant species exhibit gyn-306

odioecy (Richards, 1986) and dioecy (Dellaporta and Calderonurrea, 1993).307

The equilibrium frequency of females in the population was found to be308

lower in the stochastic spatial simulation than in the mean-field approxima-309

tion. This suggests that a lower frequency of females should be expected for310

gynodioecious populations with local pollination and seed setting.311
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A. Derivation of mean-field dynamics316

According to the reproductive process described in section 2, a hermaph-317

rodite produces offspring via its female sexual function at a mean rate,318

r =
κ1

4

4∑
j=0

[jP (j)P (x = �|j)] , (13)

where j is the number of nearest neighbour sites occupied by hermaphrodites,319

κ1 is the birth rate, P (j) is the probability a hermaphrodite has j nearest320

neighbours, and P (x = �|j) is the probability that the site chosen for the321

offspring to reside on, x, is empty given j nearest neighbour sites are occupied322

by hermaphrodites. Applying Bayes’ theorem to equation(13),323

r =
κ1

4

4∑
j=0

[jP (x = �)P (j|x = �)] . (14)

As P (x = �) is not a function of j it can be taken out of sum in equation(14)324

and placed as a prefactor. In the meanfield,325

P (x = �) = (1− h− f), (15)

where h and f are the densities of hermaphrodites and females respectively.326

In the meanfield, the remaining sum from equation (14) is,327

4∑
j=0

[jP (j|x = �)] = 3h. (16)
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The factor of 3 arises because P (j|x = �) = 0 for j = 4. Substituting328

equations(15) and (16) into equation(13) gives,329

r =
3h (1− h− f)

4
. (17)

Equation(17) is the meanfield reproductive rate per hermaphrodite via its330

female sexual function. A similar derivation can be used to calculate the331

meanfield rates that hermaphrodites and females are produced by female332

individuals.333

B. Stability analysis — nuclear male sterility334

The equilibrium points for nuclear male sterility are given in equations335

(3) – (8). The eigenvalues for the trivial equilibrium (0, 0) are,336

ν1

1
= −1, (18)

ν2

1
= −1, (19)

with corresponding eigenvectors,337

z1

1
= (0, 1), (20)

z2

1
= (1, 0). (21)

The eigenvalues for (h2, 0) are,338

ν1

2
=

4−K1 +
√

K1 (K1 − 4)

2
, (22)

ν2

2
=

K3

K1

− 1, (23)

with corresponding eigenvectors,339

z1

2
= (1, 0) , (24)

18



z2

2
=

⎛
⎝K1

(
2−K1 +

√
K1 (K1 − 4)

)
+ 2K2

K1

(
K1 − 6−√K1 (K1 − 4)

)
+ 2K3

, 1

⎞
⎠ . (25)

The eigenvalues for (h3, 0) are,340

ν1

3
=

4−K1 −
√

K1 (K1 − 4)

2
, (26)

ν2

3
=

K3

K1

− 1, (27)

with corresponding eigenvectors,341

z1

3
= (1, 0) (28)

z2

3
=

⎛
⎝K1

(
2−K1 −

√
K1 (K1 − 4)

)
+ 2K2

K1

(
K1 − 6 +

√
K1 (K1 − 4)

)
+ 2K3

, 1

⎞
⎠ . (29)

The eigenvalues of (h4, 0) are,342

ν1

4
=

K1

K3

− 1, (30)

ν2

4
=

2

1 + K2K3A−1/2
, (31)

where A = K2K3 [4 (K1 −K2 −K3) + K2K3]. The corresponding eigenvec-343

tors are,344

z1

4
=

(
−K2

(
2K1 + K2 (K3 − 2)− 4K3 + A1/2

)
K3 (2K1 + K2 (K3 − 4)− 2K3 + A1/2)

, 1

)
, (32)

z2

4
=

(
K2

K3 −K1

, 1

)
. (33)

The eigenvalues of (h5, 0) are,345

ν1

5
=

K1

K3

− 1, (34)

ν2

5
=

2

1−K2K3A−1/2
, (35)
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where the corresponding eigenvectors are,346

z1

5
=

(
−K2

(
2K1 + K2 (K3 − 2)− 4K3 − A1/2

)
K3 (2K1 + K2 (K3 − 4)− 2K3 − A1/2)

, 1

)
, (36)

z2

5
=

(
K2

K3 −K1

, 1

)
. (37)

C. Stability analysis — cytoplasmic male sterility347

(h2,0) and (h3,0) are still equilibria for the case of cytoplasmic male steril-348

ity (K1 > 0, K2 = 0 and K3 > 0). Though, (h4,f4) and (h5,f5) are not. For349

the special case K3 = K1, a curve of equilibrium points exists given by equa-350

tion (12). The eigenvalues from the linear stability analysis of points on this351

curve are given by,352

ν1

6
= 0, (38)

ν2

6
= 2−K1h, (39)

where the hermaphrodite density h refers to the hermaphrodite density on353

the equilibrium curve. The corresponding eigenvectors are,354

z1

6
=

(
K1h

2

1−K1h2
, 1

)
, (40)

z2

6
=

( −K1h
2

1 + K1h (h− 1)
, 1

)
, (41)

again the hermaphrodite density h refers to the hermaphrodite density on355

the equilibrium curve.356
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Figure 1: Typical mean-field dynamics for the case where hermaphroditism is the ESS.

Filled circles mark stable nodes, the empty circle marks a saddle point. The arrows indicate

the direction of evolution. Plot shown for K1 = 5, K2 = 3 and K3 = 3.

23



0 0.2 0.4 0.6 0.8 1
h

0

0.2

0.4

0.6

0.8

1

f

Figure 2: Typical mean-field dynamics for the case where a coexisting population of

hermaphrodites and females is evolutionary stable. Filled circles mark stable nodes, empty

circles mark saddle points and the grey filled circle marks an unstable node. The arrows

indicate the direction of evolution. Plot shown for K1 = 5, K2 = 4 and K3 = 7.
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Figure 3: Typical mean-field dynamics for the case where invasion of females leads to

extinction. Filled circles mark stable nodes, the empty circle marks a saddle points and the

grey filled circle marks an unstable node. The arrows indicate the direction of evolution.

Plot shown for K1 = 5, K2 = 2 and K3 = 7.
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Figure 4: Typical mean-field dynamics for the case where K1 = K3 and K2 = 0. Plot

shown for K1 = K3 = 8, K2 = 0. The solid section of the curve is stable, the dashed section

is unstable. The filled circle indicates the point at which the curve becomes unstable. The

arrows indicate the direction of evolution.
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Figure 5: Lattice simulation for cytoplasmic male sterility; coexistence of females and

hermaphrodites. The arrows indicate the direction of evolution. Simulations were run for

100 generations on a lattice of side length L = 100, with K1 = 10, K2 = 0 and K3 = 40.
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Figure 6: Lattice simulation; hermaphroditism is an ESS. The arrows indicate the direction

of evolution. Simulations were run for 100 generations on a lattice of side length L = 100

with K1 = 10, K2 = 8 and K3 = 8.
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Figure 7: Lattice simulation; coexistence of females and hermaphrodites. The arrows

indicate the direction of evolution. Simulations were run for 100 generations on a lattice

of side length L = 100 with K1 = 10, K2 = 40 and K3 = 40.
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Figure 8: Comparison of equilibrium sex-ratio for mean-field (line) and lattice simulation.

Simulations shown for K2 = K3, and K1 = 10 (�) and K1 = 20 (×). Points shown were

averaged over the last 10 generations of the simulation.
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