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Abstract

In this paper, we consider a nonhomogeneous space-time fractional telegraph equation defined in a bounded space

domain, which is obtained from the standard telegraph equation by replacing the first- or second-order time deriva-

tive by the Caputo fractional derivative Dαt , α > 0; and the Laplacian operator by the fractional Laplacian (−∆)β/2,

β ∈ (0, 2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary

conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate

Mittag-Leffler type functions. Special cases of solutions are also discussed.

Keywords: Fractional telegraph equation, Fractional Laplacian, Caputo fractional derivative, Multivariate

Mittag-Leffler type functions, Method of separating variables
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1. Introduction and main results

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest both in mathemat-

ics and in applications. For example, fractional derivatives have been used successfully to model frequency dependent

damping behavior of many viscoelastic materials, modeling of anomalous diffusive and subdiffusive systems and

description of fractional random walk. They are also used in modeling of many chemical processed, mathematical

biology and many other problems in engineering (see e.g. [2, 4, 7, 10, 11, 19, 20]). We offer a simple heuristic discus-

sion to motivate the use of fractional derivatives. Let X1, . . . , Xn, . . . be independent, identically distributed symmetric

random variables with the property that for each n = 1, 2, . . . and for suitable positive constants an, an

∑n
j=1 X j has the

same distribution as X1, and this holds for all n. Thus the distribution of
∑n

i=1 Xi, suitably scaled, is that of X1. This

is a kind of self-similarity, independent of the sample size. Necessarily (see [16]) the distribution of X1 has Fourier

transform e−c|ξ|β , for ξ ∈ R, for certain constants c > 0 and β ∈ (0, 2]. These are precisely the symmetric stable

laws, including the normal distribution (β = 2) and the Cauchy distribution (β = 1). The infinitesimal generator of

the corresponding Feller-Markov semigroup is given by a positive multiple of the fractional Laplacian −(−d2/dx2)β/2.

The history and a comprehensive treatment of FDEs are provided by Podlubny [25] and a review of some applications

of FDEs are given by Mainardi [20].

Roughly speaking, FDEs can be classified into three principal kinds: space-fractional equation, time-fractional

equation and space-time fractional equation. One of the interest FDEs is the study of the space-time fractional

telegraph equation which is a linear integro partial differential equation obtained from the classical telegraph equation

by replacing the time and space derivative terms by fractional derivatives, for example by replacing the first- or

second-order time derivative by the Caputo fractional derivative Dαt , α > 0 and the Laplacian operator by the fractional

Laplacian (−∆)β/2, β ∈ (0, 2]. This kind of equations has recently been considered by many authors. Cascaval et al.

[8] discussed the time-fractional telegraph equations, dealing with well-posedness and presenting a study involving
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asymptotic by using the Riemann-Liouville approach. Orsingher and Beghin [23] studied the fundamental solutions

to time-fractional telegraph equations of order 2α. They obtained the Fourier transforms of the solutions for any

α and gave a representation of their inverses in terms of stable densities. For the special case α = 1/2, they also

showed that the fundamental solution is the probability density of a telegraph process with Brownian time. Chen et

al. [9] also discussed and derived the analytical solution of the time-fractional telegraph equation with three kinds of

nonhomogeneous boundary conditions, by the method of separating variables. The analytical solution of the time-

fractional telegraph equation considered by Chen et al. [9] is derived by Huang [13] in the whole space domain.

Orsingher and Zhao [24] considered the space-fractional telegraph equations, obtaining the Fourier transform of its

fundamental solution and presenting a symmetric process with discontinuous trajectories, whose transition function

satisfies the space-fractional telegraph equation. Momani [22] discussed analytic and approximate solutions of the

space-time fractional telegraph differential equations, with some special initial and boundary conditions, by means

of the so-called Adomian decomposition method. Camargo et al. [6] discussed the so-called general space-time

fractional telegraph equations by the methods of differential and integral calculus, discussing the solution by means

of the Laplace and Fourier transforms in variables t and x, respectively.

We consider the following generalized space-time fractional telegraph equation























Dαt u(x, t) + 2λDδt u(x, t) = −c2(−∆)β/2u(x, t) + f (x, t), x ∈ Ω, t > 0,

∂
(k)
t u(x, 0) = φk(x), k = 0, . . . ,mα − 1, x ∈ Ω,

(1.1)

where Ω ⊆ R
N , N ≥ 1, is a smooth and bounded domain; ∂

(k)
t := ∂m

∂tm , and

mα − 1 < α ≤ mα, mδ − 1 < δ ≤ mδ, α > δ ≥ 0, mα ∈ N
∗, mδ ∈ N, 0 < β ≤ 2, λ ≥ 0, c ∈ R.

We also suppose that f and φk, k = 0, . . . ,mα − 1, are continuous functions. For γ ≥ 0, Dγ is the Caputo fractional

derivative defined by

D
γ
t u(t) =































1

Γ(m − γ)

∫ t

0

(t − s)−γ+m−1u(m)(s) ds, m − 1 < γ < m,

u(m)(t), γ = m,

where u(m) := dm

dtm u, m ∈ N, and Γ is the Euler gamma function. The fractional Laplacian operator (−∆)β/2 in a bounded

domain is defined by (see Theorem 6 below)

(−∆)β/23(x) :=

∞
∑

k=1

λ
β/2

k

∫

Ω

3(y)ϕk(y) dyϕk(x), 3 ∈ D((−∆)β/2),

where {λn}n≥1 and {ϕn}n≥1 are the eigenvalues and eigenvectors associated to −∆ in L2(Ω), and

D((−∆)β/2) =















3 ∈ L2(Ω);

∞
∑

k=1

∣

∣

∣

∣

∣

λ
β/2

k

∫

Ω

3(y)ϕk(y) dy

∣

∣

∣

∣

∣

2

< ∞















.

The goal of this paper is to provide analytical solutions of equation (1.1) under nonhomogeuous Dirichlet and Neu-

mann boundary conditions. The existence is ensured via the method of separation of variables. Precisely, we prove

the following theorems:

Theorem 1. (Telegraph equation with Dirichlet conditions)

Let Ω ⊆ R
N be a smooth bounded domain. There exists an analytical solution u of problem (1.1) under the following

Dirichlet boundary conditions

u(x, t) = g1(x)g2(t), x ∈ ∂Ω, t ≥ 0, (1.2)

where g1 and g2 are nonzero smooth functions defined, respectively, on Ωc
= R

N \ Ω and [0,∞), and satisfying the

compatibility condition ϕ0(x) = g1(x)g2(0) for all x ∈ ∂Ω.
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Theorem 2. (Telegraph equation with Neumann conditions)

Let Ω ⊆ R
N be a smooth, convex and bounded domain. There exists an analytical solution u of problem (1.1) under

the following Neumann boundary conditions

∂u

∂n
(x, t) = g1(x)g2(t), x ∈ ∂Ω, t ≥ 0, (1.3)

where n = ~n is the outward-pointing unit normal vector on the boundary ∂Ω, g1 and g2 are nonzero smooth functions

defined, respectively, on ∂Ω and [0,∞).

The organization of this paper is as follows. In Section 2, we present some definitions and basic theorems that are

needed in the proofs of Theorems 1 and 2. The proofs of Theorem 1 and Theorem 2 are presented, respectively, in

Section 3 and Section 4. Finally, some conclusions are given in Section 5.

2. Basic concepts

In this section we present the main tools concerning the fractional Laplacian and fractional derivatives that will be

used throughout our analysis. We start with some definitions.

Definition 1 (see [18]). A real or complex-valued function f (t), t > 0, is said to be in the space Cα, α ∈ R, if there

exists a real number p > α such that

f (t) = tp f1(t)

for some function f1 in C[0,∞).

Clearly, Cα is a vector space and the set of spaces Cα is ordered by inclusion according to

Cα ⊆ Cβ ⇔ α ≥ β.

Definition 2 (see [18]). A function f (t), t > 0, is said to be in the space Cm
α , m ∈ N, if and only if f (m) ∈ Cα.

For example, the function f defined by f (t) = 1, t > 0, is in C1
0
.

Definition 3 (see [15, 18]). A multivariate Mittag-Leffler function E(a1,...,an),b(z1, . . . , zn) of n complex variables z1, . . . , zn ∈

C with complex parameters a1, . . . , an, b ∈ C (of positive real parts), is defined as

E(a1,...,an),b(z1, . . . , zn) =

∞
∑

k=0

∑

l1 + . . . + ln = k

l1, . . . , ln ≥ 0

(k; l1, . . . , ln)

∏n
i=1 z

li
i

Γ(b +
∑n

i=1 aili)
,

in terms of the multinomial coefficients

(k; l1, . . . , ln) :=
k!

l1! . . . ln!
(k, l1, . . . , ln ∈ N).

In particular, if n = 1, the multivariate Mitteg-Leffler function is reduced to the Mitteg-Leffler function

Ea1,b(z1) =

∞
∑

k=0

zk
1

Γ(b + ka1)
, a1, b, z1 ∈ C; R(a1),R(b) > 0,

where R(z), z ∈ C, is the complex real part of z.

The separation of variables method used in this paper leads to two FDEs in time and space. The next theorem

ensures the existence of the fractional differential equation involving the time variable.
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Theorem 3 (see [18]). Let µ > µ1 > . . . > µn ≥ 0, mi − 1 < µi ≤ mi, mi ∈ N, λi ∈ R, i = 1, . . . , n. Consider the initial

value problem


































D
µ
t y(t) −

n
∑

i=1

λiD
µi

t y(t) = g(t),

y(k)(0) = ck ∈ R, k = 0, . . . ,m − 1, m − 1 < µ ≤ m,

(2.1)

where g is assumed to lie in C−1 if µ ∈ N
∗ or in C1

−1
if µ < N

∗. Then (2.1) has a unique solution in the space Cm
−1

of

the form

y(t) =

∫ t

0

sµ−1E(µ−µ1,...,µ−µn),µ(λ1sµ−µ1 , . . . , λnsµ−µn )g(t − s) ds +

m−1
∑

k=0

ckuk(t), t ≥ 0,

with

uk(t) =
tk

k!
+

n
∑

i=lk+1

λit
k+µ−µi E(µ−µ1,...,µ−µn),k+1+µ−µi

(λ1tµ−µ1 , . . . , λntµ−µn ), k = 0, . . . ,m − 1,

fulfills the initial conditions u
(l)

k
(0) = δkl, k, l = 0, . . . ,m − 1.

Remark 1. In Theorem 3, the natural numbers lk, k = 0, . . . ,m − 1, are determined from the condition mlk ≥ k + 1

and mlk+1 ≤ k. In the case mi ≤ k, i = 0, . . . ,m − 1, we set lk := 0, and if mi ≥ k + 1, i = 0, . . . ,m − 1, then lk := n.

The existence of the fractional differential equation involving the space variable is guaranteed through the following

theorems.

Theorem 4. ([3, Theorem 3.6.1]) Let Ω ⊆ R
N be an open bounded domain of class C1. Then there exists a complete

system {ϕ j}
∞
j=1

of eigenvectors, orthonormal in L2(Ω) and orthogonal in H1
0
(Ω), and of eigenvalues λ j for the following

problem


















−∆u = λu, in Ω,

u = 0, on ∂Ω,
(2.2)

where D(−∆) = H2(Ω) ∩ H1
0
(Ω). Moreover, λ j > 0, j = 1, . . . ,∞, and lim

j→∞
λ j = +∞.

Theorem 5. ([3, Theorem 3.6.2]) Let Ω ⊂ R
N be an open bounded domain of class C2. Then there exists an

orthonormal complete system {ϕ j}
∞
j=0

of eigenvectors in L2(Ω) and a corresponding sequence λ j of eigenvalues for the

following problem


























−∆u = λu, in Ω,

∂u

∂n
= 0, in Ωc,

(2.3)

where D(−∆) = {u ∈ H2(Ω); ∂u
∂n
= 0 on ∂Ω}. Moreover, λ j ≥ 0, j = 0, . . . ,∞, and lim

j→∞
λ j = +∞.

The next theorem is already known in the literature (eg. [21]). However, for the sake of completeness, we hereby

present the proof.

Theorem 6. Let H be a Hilbert space. If {λn}n≥1 and {ϕn}n≥1 are the eigenvalues and eigenvectors associated to

an operator A in H, then {λαn }n≥1 and {ϕn}n≥1 are the eigenvalues and eigenvectors to the fractional operator Aα,

−1 < α ≤ 1.

Proof. Since H is a Hilbert space, we can extract an orthonormal complete system {ϕi}i≥1 in H. Let {λn}n≥1 ⊆ R such

that inf
k≥1
λk > 0. For x ∈ H, t ≥ 0, we define a new operator S (t) as follows

S (t)x =

∞
∑

k=1

e−λk t < x, ϕk > ϕk.
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Then S (t) is a strongly continuous semigroup on H whose infinitesimal generator A is defined by

Ax =

∞
∑

k=1

λk < x, ϕk > ϕk

and

D(A) =
{

x ∈ H; ‖Ax‖2H < ∞
}

.

By [3, Theorem 1.4.1], we have

‖Ax‖2H =

∞
∑

k=1

|λk < x, ϕk > |
2,

which implies that

D(A) =















x ∈ H;

∞
∑

k=1

|λk < x, ϕk > |
2 < ∞















.

Let x = ϕl, l ≥ 1, then, as {ϕl}l≥1 is an orthonormal system,

Aϕl =

∞
∑

k=1

λk < ϕl, ϕk > ϕk = λlϕl,

hence {λl}l≥1 and {ϕl}l≥1 are the eigenvalues and eigenvectors associated to A in H. Let α ∈ (−1, 1], we have two cases

to distinguish:

• If −1 < α < 0, we have (see [1])

Aαx =
1

Γ(−α)

∫ ∞

0

t−α−1S (t)x dt, ∀ x ∈ D(Aα),

where D(Aα) := {x ∈ H; Aα−1x ∈ D(A)}. Therefore

< Aαx, ϕk > =
1

Γ(−α)

∫ ∞

0

t−α−1 < S (t)x, ϕk > dt

=
1

Γ(−α)

∫ ∞

0

t−α−1e)λk t < x, ϕk > dt

=
< x, ϕk >

Γ(−α)

∫ ∞

0

t−α−1e)λk t dt

= λαk < x, ϕk > .

This implies that

Aαx =

∞
∑

k=1

λαk < x, ϕk > ϕk.

Take x = ϕl, it follows

Aαϕl =

∞
∑

k=1

λαk < ϕl, ϕk > ϕk = λ
α
l ϕl.

• If 0 < α < 1,

Aαϕl = A−(1−α)Aϕl = A−(1−α)λlϕl = λlA
α−1ϕl.

Using the first case, we get

Aα−1ϕl = λ
α−1
l ϕl

which implies

Aαϕl = λ
α
l ϕl.
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The last formula still true for the cases α = 0 and α = 1. As a conclusion, {λα
l
}l≥1 and {ϕl}l≥1 are the eigenvalues and

eigenvectors associated to Aα, ∀ α ∈ (−1, 1]. Moreover, using [3, Theorem 1.4.1], we obtain

‖Aαx‖2H =

∞
∑

k=1

|λαk < x, ϕk > |
2,

which yields

D(Aα) =















x ∈ H;

∞
∑

k=1

|λαk < x, ϕk > |
2 < ∞















.

3. Proof of Theorem 1

This section is devoted to derive the analytical solution of problem (1.1) with nonhomogeneous Dirichlet boundary

conditions (1.2). Indeed, we present the

Proof of Theorem 1. We proceed in three steps.

Step 1 (Change of variables). In order to solve the problem with nonhomogeneous boundary conditions, we firstly

transform it into a problem with homogeneous boundary conditions. Let

u(x, t) = 3(x, t) + 4(x, t),

where 3 is a new unknown function and

4(x, t) = y(x)g2(t) (3.1)

with y is a solution of the following β-harmonic equation

{

(−∆)β/2y(x) = 0, in Ω,

y(x) = g1(x), in Ωc.
(3.2)

The existence of y can be found in [12, 27]. However, in the case where Ω = Br = B(0, r), the solution y can be

expressed explicitly by [17]

y(x) =

∫

RN\Br

P(x, y)g1(y) dy,

where

P(x, y) := CN,β

(

r2 − |x|2

|y|2 − r2

)β/2
1

|x − y|N
, for x ∈ Br and y < Br,

is the Poisson Kernel with CN,β = Γ(N/2)π−N/2−1 sin(πβ/2).

The function 4 satisfies the boundary conditions

4(x, t) = y(x)g2(t) = g1(x)g2(t) = u(x, t), for all x ∈ ∂Ω, t ≥ 0,

which implies

3(x, t) = u(x, t) − 4(x, t) = 0, for all x ∈ ∂Ω, t ≥ 0.

Therefore 3(x, t) satisfies the following problem with homogeneous boundary conditions











































Dαt 3(x, t) + 2λDδt 3(x, t) = −c2(−∆)β/23(x, t) + f̃ (t, x), x ∈ Ω, t > 0,

∂
(k)
t 3(x, 0) = φ̃k(x), k = 0, . . . ,mα − 1, x ∈ Ω,

3(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(3.3)

6



where

f̃ (t, x) = −Dαt 4(x, t) − 2λDδt4(x, t) + f (t, x),

ϕ̃k(x) = ϕk(x) − ∂
(k)
t 4(x, 0), k = 0, . . . ,mα − 1.

Step 2 (Separation of variables). We solve problem, (3.3) with zero function replacing f̃ (t, x), by the method of

separation of variables. If we let 3(t, x) = X(x)T (t) and substitute it in (3.3), we obtain a fractional differential

equation in X(x):














(−∆)β/2X(x) =
a

c2
X(x), in Ω,

X(x) = 0, on ∂Ω,
(3.4)

and a fractional linear differential equation with the Caputo derivative in T (t):

Dαt T (t) + 2λDδt T (t) + aT (t) = 0, (3.5)

where the parameter a is a positive constant. Applying Theorem 6 with A = −∆, α = β/2, H = L2(Ω) and D(A) =

H2(Ω) ∩ H1
0
(Ω), there exists {λ

β/2
n }n≥1, {ϕn}n≥1 eigenvalues and eigenvectors of problem (3.4) where {λn}n≥1, {ϕn}n≥1

are the eigenvalues and eigenvectors of (3.4) with β = 2 (see Theorem 4). Note that for a = an, n ≥ 1, we have

X = Xn = ϕn and an

c2 = λ
β/2
n .

We now seek a solution of (3.3) of the form

3(t, x) =

∞
∑

n=1

Bn(t)ϕn(x), (3.6)

where we assume that the series can be differentiated term by term. In order to determine Bn(t), we expand f̃ (t, x) in

the orthonormal complete system {ϕn}n≥1 (see proof of Theorem 6):

f̃ (t, x) =

∞
∑

n=1

f̃n(t)ϕn(x), (3.7)

where

f̃n(t) =< f̃ (t, x), ϕn(x) >=

∫

Ω

f̃ (t, x)ϕn(x) dx.

Substituting (3.6), (3.7) into (3.3) yields

∞
∑

n=1

ϕn(x)
[

Dαt Bn(t) + 2λDδt Bn(t)
]

=

∞
∑

n=1

ϕn(x)
[

−anBn(t) + f̃n(t)
]

, (3.8)

where we have used the fact that ϕn(x) is a solution of (3.4). Since {ϕn}n≥1 is an orthonormal system, multiplying both

members of (3.8) by ϕn and integrating on R
N lead to

Dαt Bn(t) + 2λDδt Bn(t) + anBn(t) = f̃n(t). (3.9)

On the other hand, since v(t, x) satisfies the initial conditions in (3.3), we must have

∞
∑

n=1

∂
(k)
t Bn(0)ϕn(x) = ϕ̃k(x), k = 0, . . . ,mα − 1 x ∈ Ω,

which implies

∂
(k)
t Bn(0) =< ϕ̃k(x), ϕn(x) >=

∫

Ω

ϕ̃k(x)ϕn(x) dx =: ck,n, n ≥ 1, k = 0, . . . ,mα − 1. (3.10)

Finally, for each value of n, (3.9) and (3.10) constitute a fractional initial value problem.
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Step 3 (Analytical solution). According to Theorem 3, the fractional initial value problem (3.9)-(3.10) has the

analytical solution

Bn(t) =

∫ t

0

sα−1E(α−δ,α),α(−2λsα−δ,−ansα) f̃n(t − s) ds +

mα−1
∑

k=0

ck,n3k(t), t ≥ 0, (3.11)

where

3k(t) =
tk

k!
+

2
∑

i=lk+1

ξit
k+α−µi E(α−δ,α),k+1+α−µi

(ξ1tα−δ, ξ2tα), k = 0, . . . ,mα − 1, (3.12)

with ξ1 := −2λ, ξ2 = −an, µ1 = δ and µ2 = 0. Note that lk, k = 0, . . . ,mα − 1, are as in Remark 1. Hence we get the

analytical solution of the initial boundary value problem (3.3) under the form

3(t, x) =

∞
∑

n=1

Bn(t)ϕn(x) =

∞
∑

n=1

















∫ t

0

sα−1E(α−δ,α),α(−2λsα−δ,−ansα) f̃n(t − s) ds +

mα−1
∑

k=0

ck,n3k(t)

















ϕn(x), (3.13)

where 3k(t) are given in (3.12), k = 0, . . . ,mα − 1. Therefore the analytical solution of (1.1)-(1.2) is:

u(t, x) = 3(t, x) + 4(t, x),

where 3(t, x) and 4(t, x) are, respectively, given by (3.13) and (3.1).

Remark 2. In problem (3.2), we had to work with boundary conditions defined on Ωc and not only on ∂Ω since the

following β-harmonic equation
{

(−∆)β/2y(x) = 0, in Ω,

y(x) = g1(x), in ∂Ω.

is ill-posed (see [5, 17, 26]. In fact, the probabilistic solution gives the best insight: (−∆)β/2 generates a jump process

and this process may jump from Ω into Ωc, i.e. we need “all of R
N” to understand the corresponding process.

Remark 3. In Theorem 1, the condition on the function g1 being defined over Ωc and not on ∂Ω may seem strange

at the first glance. However, this condition was set in order to be compatible with that required (see the remark above)

for the existence of (3.2). In fact, assuming some regularity on the set Ω allows us to define g1 on ∂Ω and to extend it

suitably over Ωc. For example, if Ω is smooth, convex and bounded, we may choose the same extension as in Step 1

of the proof of Theorem 2 (see Section 4 below)

3.1. Special Cases

The solution of (1.1)-(1.2) can be considered as a generalized solution for a wide variety of evolution equations.

However, we only list here two special cases:

Case 1. Take α = 2δ, mα = 2, mδ = 1, β = 2, N = 1, Ω = (0, L). Then the eigenvalues and the eigenvectors can be

expressed as follows:

an =

(

nπ

L

)2

and ϕn(x) =

√

2

L
sin

(

nπ

L
x

)

,

for all n ≥ 1. Therefore

30(t) = 1 −

(

nπ

L

)2

t2δE(δ,2δ),1+2δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

and

31(t) = t − 2λt1+δE(δ,2δ),2+δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

−

(

nπ

L

)2

t1+2δE(δ,2δ),2+2δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

.
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Moreover the particular solution 4 of (3.1) can be given by

4(t, x) =















































g1(0)g2(t) +
(g1(L)g2(t) − g1(0)g2(t))x

L
, for x ∈ [0, L],

g1(L)g2(t), for x ≥ L,

g1(0)g2(t), for x ≤ 0.

(3.14)

The analytical solution of (1.1)-(1.2) is

u(t, x) = 3(t, x) + 4(t, x),

where

3(t, x) =

√

2

L

∞
∑

n=1

[∫ t

0

s2δ−1E(δ,2δ),2δ(−2λsδ,−
(

nπ

L

)2

s2δ) f̃n(t − s) ds + Bn(0)30(t) + B′n(0)31(t)

]

sin

(

nπ

L
x

)

,

with

Bn(0) =

√

2

L

∫ L

0

ϕ̃0(x) sin(
nπ

L
x) dx, B′n(0) =

√

2

L

∫ L

0

ϕ̃1(x) sin(
nπ

L
x) dx (3.15)

and

f̃n(t) =

√

2

L

∫ L

0

f̃ (t, x) sin(
nπ

L
x) dx. (3.16)

This result is in accord with the result obtained in [9, Section 3].

Case 2. Take α = 2, δ = 1, mα = 2, mδ = 1, β = 2, λ = 0, N = 1, Ω = (0, L). As above, one can choose the following

expression as the eigenvalues and the eigenvectors respectively:

an =

(

nπ

L

)2

and ϕn(x) =

√

2

L
sin

(

nπ

L
x

)

,

for all n ≥ 1. Therefore

30(t) = 1 −

(

nπ

L

)2

t2E(1,2),3

(

0,−
(

nπ

L

)2

t2

)

= 1 −

(

nπ

L

)2

t2E2,3

(

−

(

nπ

L

)2

t2

)

= cos

(

nπ

L
t

)

and

31(t) = t −

(

nπ

L

)2

t3E(1,2),4

(

0,−
(

nπ

L

)2

t2

)

= t −

(

nπ

L

)2

t3E2,4

(

−

(

nπ

L

)2

t2

)

=
L

nπ
sin

(

nπ

L
t

)

.

Since

sE(1,2),2(0,−
(

nπ

L

)2

s2) = sin

(

nπ

L
s

)

,

the solution is given by

u(t, x) = 3(t, x) + 4(t, x)

with

3(t, x) =

√

2

L

∞
∑

n=1

[∫ t

0

sin

(

nπ

L
s

)

f̃n(t − s) ds + Bn(0)30(t) + B′n(0)31(t)

]

sin

(

nπ

L
x

)

,

where Bn(0), B′n(0) and f̃n(t) are, respectively, given by (3.14), (3.15) and (3.16). Indeed, this result is the solution of

the wave equation.
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4. Proof of Theorem 2

In this section, we derive the analytical solution of problem (1.1) with nonhomogeneous Neumann boundary con-

ditions (1.3).

Proof of Theorem 2. We proceed in four steps.

Step 1 (β-harmonic equation with Neumann conditions). Consider the particular extension ξ of g1 over Ωc:

ξ(x) = g1(x)|x − x|, x ∈ Ωc

where x := Pr
Ω

(x) is the orthogonal projection of x on Ω. This function is well-defined by the uniqueness of x due to

the convexity of Ω. Then, for all z ∈ ∂Ω, we have

∂ξ

∂n
(z) = lim

h→0

ξ(z + h~n) − ξ(z)

h

= lim
h→0

g1(z + h~n)|(z + h~n) − (z + h~n)| − g1(z)|z − z|

h

= lim
h→0

hg1(z) − 0

h

= g1(z),

where we have used the fact that z + h~n = z = z. Let y be a solution of the following β-harmonic equation with

Dirichlet conditions
{

(−∆)β/2y(x) = 0, in Ω,

y(x) = ξ(x), in Ωc.

Note that
∂y

∂n
(z) =

∂ξ

∂n
(z) = g1(z), z ∈ ∂Ω.

This yields that y is a solution of the following β-harmonic equation with Neumann conditions



















(−∆)β/2y = 0, in Ω,
∂y

∂n
= g1, on ∂Ω.

(4.1)

Step 2 (Change of variables). We argue in a similar manner as in Step 1 of the proof of Theorem 1.1. In fact, let

u(x, t) = 3(x, t) + 4(x, t),

where

4(x, t) = y(x)g2(t) (4.2)

with y is a solution of (4.1) and consequently

∂4

∂n
(x, t) = g1(x)g2(t), for all x ∈ ∂Ω, t ≥ 0.

The function 3(x, t) is an unknown function satisfying the following problem with homogeneous boundary conditions















































Dαt 3(x, t) + 2λDδt 3(x, t) = −c2(−∆)β/23(x, t) + f̃ (t, x), x ∈ Ω, t > 0,

∂
(k)
t 3(x, 0) = φ̃k(x), k = 0, . . . ,mα − 1, x ∈ Ω,

∂3

∂n
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(4.3)
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where

f̃ (t, x) = −Dαt 4(x, t) − 2λDδt4(x, t) + f (t, x),

ϕ̃k(x) = ϕk(x) − ∂
(k)
t 4(x, 0), k = 0, . . . ,mα − 1.

Step 3 (Separation of variables). Let 3(t, x) = X(x)T (t) (supposing that f̃ (t, x) = 0) and substitute it in (4.3), we get

the following fractional differential equation with Neumann boundary conditions:























(−∆)β/2X =
a

c2
X, in Ω,

∂X

∂n
= 0, on ∂Ω.

(4.4)

Applying Theorem 6 with A = −∆, α = β/2, H = L2(Ω) and D(A) = {u ∈ H2(Ω); ∂u
∂n
= 0 on ∂Ω}, there exists

{λ
β/2
n }n≥1, {ϕn}n≥1 eigenvalues and eigenvectors of (4.4) where {λn}n≥1, {ϕn}n≥1 are the eigenvalues and eigenvectors of

(4.4) with β = 2 (see Theorem 5). Note that for a = an, n ≥ 1, we have X = Xn = ϕn and an

c2 = λ
β/2
n . Hence, the

solution of (4.3) has the form

3(t, x) =

∞
∑

n=1

Bn(t)ϕn(x).

By repeating the same argument as in Step 2 of the proof of Theorem 1.1, we conclude that



























Dαt Bn(t) + 2λDδt Bn(t) + anBn(t) = f̃n(t)

∂
(k)
t Bn(0) =

∫

Ω

ϕ̃k(x)ϕn(x) dx =: ck,n, n ≥ 1, k = 0, . . . ,mα − 1.

Step 4 (Analytical solution). The analytical solution of (1.1)-(1.3) is

u(t, x) = 3(t, x) + 4(t, x),

where 3(t, x) and 4(t, x) are given by (3.13) and (4.2) respectively.

4.1. A Special Case

We give a special case of the solution of (1.1)-(1.3). Take α = 2δ, mα = 2, mδ = 1, β = 2, N = 1, Ω = (0, L)

and g1 = C is a constant function. Then the eigenvalues and the eigenvectors of problem (4.4) can be expressed as

follows:

an =

(

nπ

L

)2

and ϕn(x) =

√

2

L
cos

(

nπ

L
x

)

,

for all n ≥ 1. Therefore

30(t) = 1 −

(

nπ

L

)2

t2δE(δ,2δ),1+2δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

and

31(t) = t − 2λt1+δE(δ,2δ),2+δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

−

(

nπ

L

)2

t1+2δE(δ,2δ),2+2δ

(

−2λtδ,−
(

nπ

L

)2

t2δ

)

.

Moreover the particular solution w of (3.1) is given by

4(t, x) = Cxg2(t) x ∈ [0, L], t ≥ 0. (4.5)

The analytical solution is

u(t, x) = 3(t, x) + 4(t, x),

where

3(t, x) =

√

2

L

∞
∑

n=1

[∫ t

0

s2δ−1E(δ,2δ),2δ(−2λsδ,−
(

nπ

L

)2

s2δ) f̃n(t − s) ds + Bn(0)30(t) + B′n(0)31(t)

]

cos

(

nπ

L
x

)

,
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with

Bn(0) =

√

2

L

∫ L

0

ϕ̃0(x) cos(
nπ

L
x) dx, B′n(0) =

√

2

L

∫ L

0

ϕ̃1(x) cos(
nπ

L
x) dx

and

f̃n(t) =

√

2

L

∫ L

0

f̃ (t, x) cos(
nπ

L
x) dx.

This result is in accord with the result obtained in [9, Section 4].

5. Conclusions

In this paper we have considered the nonhomogeneous space-time fractional telegraph equation (1.1) under Dirich-

let and Neumann boundary conditions (1.2) and (1.3), respectively. We have derived the analytical solutions of prob-

lems (1.1)-(1.2) and (1.1)-(1.3) using the separation of variables method. The time fractional derivative is considered

in the Caputo sense and the space fractional derivative in the sense of fractional Laplacian. The general solutions,

which are given in the form of the multivariate Mittag-Leffler function, reduce to those of the classical telegraph

equation and corresponding diffusion and wave equations.
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