R. Aris and A. Humphrey, Dynamics of a chemostat in which two organisms compete for a common substrate, Biotechnology and Bioengineering, vol.17, issue.9, pp.1375-1386, 1977.
DOI : 10.1002/bit.260190910

G. Butler and G. Wolcowicz, A Mathematical Model of the Chemostat with a General Class of Functions Describing Nutrient Uptake, SIAM Journal on Applied Mathematics, vol.45, issue.1, pp.138-151, 1985.
DOI : 10.1137/0145006

J. Carrayrou, J. Hoffmann, P. Knabner, S. Krautle, C. De-dieuleveult et al., Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems???the MoMaS benchmark case, Computational Geosciences, vol.25, issue.70, pp.483-502, 2010.
DOI : 10.1007/s10596-010-9178-2

URL : https://hal.archives-ouvertes.fr/hal-00505371

A. Chilakapati, A. Yabusaki, J. Szecsody, and W. Macevoy, Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model, Journal of Contaminant Hydrology, vol.43, issue.3-4, pp.303-325, 2000.
DOI : 10.1016/S0169-7722(99)00107-2

T. P. Clement, RT3D-A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater aquifers, PNNL11 Pac. Northwest Natl. Lab, vol.720, 1997.

B. Cochepin, L. Trotignon, O. Bildstein, C. I. Steefel, V. Lagneau et al., Approaches to modelling coupled flow and reaction in a 2D cementation experiment Advances in Water Resources, pp.1540-1551, 2008.

C. De-dieuleveult and J. Erthel, A global approach to reactive transport: application to the MoMas benchmark, Computational Geosciences, vol.30, issue.7, pp.451-464, 2010.
DOI : 10.1007/s10596-009-9163-9

URL : https://hal.archives-ouvertes.fr/hal-00512828

E. Hajji, M. Rapaport, and A. , Practical coexistence of two species in the chemostat ??? A slow???fast characterization, Mathematical Biosciences, vol.218, issue.1, pp.33-39, 2009.
DOI : 10.1016/j.mbs.2008.12.003

URL : https://hal.archives-ouvertes.fr/hal-00858543

F. Gérard, A. Clément, B. Fritz, and J. L. Crovisier, Introduction of transport phenomena into the thermo-kinetic code KINDIS: The code KIRMAT, C.R. Acad. Sci. Paris, vol.322, pp.377-384, 1996.

F. Gérard, A. Clément, and B. Fritz, Numerical validation of a Eulerian hydrochemical code using a 1D multisolute mass transport system involving heterogeneous kinetically controlled reactions, Journal of Contaminant Hydrology, vol.30, issue.3-4, pp.201-216, 1998.
DOI : 10.1016/S0169-7722(97)00047-8

F. Gérard, M. Tinsley, and K. U. Mayer, Preferential Flow Revealed by Hydrologic Modeling Based on Predicted Hydraulic Properties, Soil Science Society of America Journal, vol.68, issue.5, pp.1526-1538, 2004.
DOI : 10.2136/sssaj2004.1526

F. Gérard, K. U. Mayer, M. J. Hodson, and J. Ranger, Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem, Geochimica et Cosmochimica Acta, vol.72, issue.3, pp.741-758, 2008.
DOI : 10.1016/j.gca.2007.11.010

I. Haidar, A. Rapaport, and F. Gérard, Effects of spatial structure and diffusion on the performances of the chemostat, Mathematical Biosciences and Engineering, vol.8, issue.4
DOI : 10.3934/mbe.2011.8.953

URL : https://hal.archives-ouvertes.fr/hal-01001373

D. Jacques, J. Simunek, D. Mallants, and M. T. Van-genuchten, Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil, Geoderma, vol.145, issue.3-4, pp.449-461, 2008.
DOI : 10.1016/j.geoderma.2008.01.009

M. G. Keizer and R. W. Van, ECOSAT, a computer program for the calculation of chemical speciation and transport in soil-water systems, Wageningen Agricultural University, 1995.

L. Perko, Differential Equations and Dynamical Systems, 1991.

P. C. Lichtner, Continuum formulation of multicomponent-multiphase reactive transport, em Ch. 1 in Reactive transport in porous media, Rev. Min, vol.34, pp.1-81, 1996.

R. Lovitt and J. Wimpenny, The Gradostat: a Bidirectional Compound Chemostat and its Application in Microbiological Research, Microbiology, vol.127, issue.2, pp.261-268, 1981.
DOI : 10.1099/00221287-127-2-261

U. Maier, C. Debiase, O. Baeder-bederski, and P. Bayer, Calibration of hydraulic parameters for large-scale vertical flow constructed wetlands, Journal of Hydrology, vol.369, issue.3-4, pp.260-273, 2009.
DOI : 10.1016/j.jhydrol.2009.02.032

Y. Masue-slowey, B. D. Kocar, S. A. Jofre, K. U. Mayer, and S. Fendorf, Transport Implications Resulting from Internal Redistribution of Arsenic and Iron within Constructed Soil Aggregates, Environmental Science & Technology, vol.45, issue.2, pp.582-588, 2011.
DOI : 10.1021/es1027663

K. U. Mayer, S. G. Benner, E. O. Frind, S. F. Thornton, and D. L. Lener, Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer, Journal of Contaminant Hydrology, vol.53, issue.3-4, pp.341-368, 2001.
DOI : 10.1016/S0169-7722(01)00173-5

K. U. Mayer, E. O. Frind, and D. W. Blowes, Multicomponent reactive transport modeling in variably saturated porous media using a generalised formulation for kinetically controlled reactions, Water Resour. Res, vol.38, p.1174, 2002.

K. U. Mayer, S. G. Benner, and D. W. Blowes, Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage, Journal of Contaminant Hydrology, vol.85, issue.3-4, pp.195-211, 2006.
DOI : 10.1016/j.jconhyd.2006.02.006

K. U. Mayer and K. T. Macquarrie, Solution of the MoMaS reactive transport benchmark with MIN3P???model formulation and simulation results, Computational Geosciences, vol.37, issue.HY12, pp.405-419, 2010.
DOI : 10.1007/s10596-009-9158-6

J. C. Meeussen, ORCHESTRA:?? An Object-Oriented Framework for Implementing Chemical Equilibrium Models, Environmental Science & Technology, vol.37, issue.6, pp.1175-1182, 2003.
DOI : 10.1021/es025597s

S. Molins and K. U. Mayer, Coupling between geochemical reactions and multicomponent gas diffusion and advection-a reactive transport modelling study, Water Resour. Res, vol.43, p.5435, 2007.

S. Molins, K. U. Mayer, C. Scheutz, and P. Kjeldsen, Transport and Reaction Processes Affecting the Attenuation of Landfill Gas in Cover Soils, Journal of Environment Quality, vol.37, issue.2, pp.459-468, 2008.
DOI : 10.2134/jeq2007.0250

S. Molins, K. U. Mayer, R. T. Amos, and B. A. Bekins, Vadose zone attenuation of organic compounds at a crude oil spill site ??? Interactions between biogeochemical reactions and multicomponent gas transport, Journal of Contaminant Hydrology, vol.112, issue.1-4, pp.1-4, 2010.
DOI : 10.1016/j.jconhyd.2009.09.002

J. Monod, LA TECHNIQUE DE CULTURE CONTINUE TH??ORIE ET APPLICATIONS, Annales de l'Institut Pasteur, vol.79, pp.390-410, 1950.
DOI : 10.1016/B978-0-12-460482-7.50023-3

S. Nakaoka and Y. Takeuchi, Competition in chemostat-type equations with two habitats, Mathematical Biosciences, vol.201, issue.1-2, pp.157-171, 2006.
DOI : 10.1016/j.mbs.2005.12.011

S. P. Neuman, Saturated-Unsaturated seepage by finite elements, J. Hydraul. Div. Am. Soc. Civ. Eng, vol.99, issue.HY12, pp.2233-2250, 1973.

A. Novick and L. Szilard, Description of the Chemostat, Science, vol.112, issue.2920, pp.715-716, 1950.
DOI : 10.1126/science.112.2920.715

B. Nowack, K. U. Mayer, S. E. Oswald, W. Van-beinum, C. A. Appelo et al., Verification and intercomparison of reactive transport codes to describe root-uptake.Plant Soil, pp.305-321, 2006.

D. L. Parkhust and C. A. Appelo, User's guide to PHREEQC (version2) A computer program fo speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water resources investigations report 99-4259, p.312, 1999.

A. Rapaport, J. Harmand, and F. Mazenc, Coexistence in the design of a series of two chemostats, Nonlinear Analysis: Real World Applications, vol.9, issue.3, pp.1052-1067, 2008.
DOI : 10.1016/j.nonrwa.2007.02.003

URL : https://hal.archives-ouvertes.fr/hal-00857811

H. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge studies in Mathematical Biology, vol.13, 1995.
DOI : 10.1017/CBO9780511530043

. C. Steefel, . D. Depaolo, and P. C. Lichtner, Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth and Planetary Science Letters, vol.240, issue.3-4, pp.539-558, 2005.
DOI : 10.1016/j.epsl.2005.09.017

C. I. Steefel, Crunch-users guide, 2006.

G. Stephanopoulos, R. Aris, and A. Frederickson, A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor, Mathematical Biosciences, vol.45, issue.1-2, pp.99-135, 1979.
DOI : 10.1016/0025-5564(79)90098-1

G. Stephanopoulos and A. Fredrickson, Effect of spatial inhomogeneities on the coexistence of competing microbial populations, Biotechnology and Bioengineering, vol.16, issue.8, pp.1491-1498, 1979.
DOI : 10.1002/bit.260210817

Y. Sun, J. N. Petersen, and T. P. Clement, Analytical solutions for multiple species reactive transport in multiple dimensions, Journal of Contaminant Hydrology, vol.35, issue.4, pp.429-440, 1999.
DOI : 10.1016/S0169-7722(98)00105-3

J. Van-der-lee, V. Langeau, and P. Goblet, Module-oriented modeling of reactive transport with HYTEC, Computers & Geosciences, vol.29, issue.3, pp.265-275, 2003.
DOI : 10.1016/S0098-3004(03)00004-9

URL : https://hal.archives-ouvertes.fr/hal-00564455

M. T. Van-genuchten, Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay, Journal of Hydrology, vol.49, issue.3-4, pp.213-233, 1981.
DOI : 10.1016/0022-1694(81)90214-6

G. T. Yeh, M. D. Siegel, and M. H. Li, Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions, Journal of Contaminant Hydrology, vol.47, issue.2-4, pp.379-390, 2001.
DOI : 10.1016/S0169-7722(00)00164-9