
HAL Id: hal-00613254
https://hal.science/hal-00613254

Submitted on 3 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Must Physics Be Constrained by the Archimedean
Axiom ? Relativity and Quanta with Scalars given by

Reduced Power Algebras
Elemer Elad Rosinger

To cite this version:
Elemer Elad Rosinger. Must Physics Be Constrained by the Archimedean Axiom ? Relativity and
Quanta with Scalars given by Reduced Power Algebras. 2011. �hal-00613254�

https://hal.science/hal-00613254
https://hal.archives-ouvertes.fr


Must Physics Be Constrained by

the Archimedean Axiom ?

Relativity and Quanta with Scalars

given by Reduced Power Algebras

Elemér E Rosinger

Department of Mathematics
and Applied Mathematics
University of Pretoria
Pretoria
0002 South Africa
eerosinger@hotmail.com

Dedicated to Marie-Louise Nykamp

Abstract

It is shown that, unknown to nearly everyone, modern theoretical
Physics is significantly constrained by the tacit acceptance of the an-
cient Archimedean Axiom imposed upon Geometry by Euclid more
than two millennia ago, an axiom which does not seem to have any
modern physical motivation. By freeing oneself of this axiom a large
variety of scalar fields and algebras other, and larger than the usual
fields R and C of real, respectively complex numbers becomes avail-
able for mathematical modelling in theoretical Physics. This paper
shows the validity of such modelling in Special Relativity and Quan-
tum Mechanics, namely, in the case of the Lorentz transformations,
the Heisenberg Uncertainty and the No Cloning property. The advan-
tages in using such alternative scalars, specifically, given by reduced
power algebras or ultrapower fields, are multiple. Among them, one
can in a simple and direct way eliminate the so called “infinities in
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physics”. More generally, one can introduce many levels of precision
in theoretical Physics. This is much unlike the present situation when,
with the use of R as the only basic scalar field, there can exist only
one single level of precision. Also, one can establish a Second Rel-
ativity Principle in which the covariance of the equations of Physics
and of basic physical phenomena and properties is considered not only
with respect to changes of reference frames, but also with changes of
algebras or fields of scalars. In this regard, this paper shows that
the Lorentz transformations, the Heisenberg Uncertainty and the No
Cloning property are indeed covariant with respect to a large variety of
scalars given by reduced power algebras, or in particular, ultrapower
fields.

“History is written with the feet ...”

Ex-Chairman Mao, of the Long March fame ...

Science is not done scientifically, since it is mostly
done by non-scientists ...

Anonymous

Physics is too important to be left to physicists ...

Anonymous

Is the claim about the validity of the so called
“physical intuition” but a present day version of
medieval claims about the sacro-sant validity of
theological revelations ?

Anonymous
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A “mathematical problem” ?
For sometime by now, American mathematicians
have decided to hide their date of birth
and not to mention it in their academic CV-s.
Why ?
Amusingly, Hollywood actors and actresses have their
birth date easily available on Wikipedia.
Can one, therefore, trust American
mathematicians ?
Why are they so blatantly against transparency ?
By the way, Hollywood movies have also for long
been hiding the date of their production ...

A bemused non-American mathematician

Part I : Special Relativity in

Reduced Power Algebras

1. A Well Known Usual Deduction of the Lorentz
Coordinate Transformations

Here, the Lorentz coordinate transformations, fundamental in Special
Relativity, are extended to versions of Special Relativity that are re-
formulated in terms of scalars in reduced power algebras, instead of
the usual real or complex scalars.

The following elementary way to obtain the Lorentz coordinate trans-
formations is well known, [1]. Given two coordinate systems S and
S ′ with respective coordinates (x, t) and (x′, t′) in which the space
x-axis and x′-axis are along the same line. We suppose that at time
t = t′ = 0 the origins O and O′ of the two coordinate systems co-
incide, thus x = x′ = 0. Let now S ′ move along thex-axis in the
positive direction with the constant velocity v, and let two observers
be respectively at O and O′.
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In that setup, at the initial moment t = t′ = 0 and when O and O′

coincide, a light signal is emitted from O. Its propagation within S is
then given by

(1.1) x2 = c2t2

where c > 0 is the velocity of light.

Now, in view of the Principle of Constancy of the Velocity of Light,
in the coordinate system S ′ the propagation of that light signal is ac-
cording to

(1.2) x′ 2 = c2t′ 2

Consequently, one must have

(1.3) x2 − x′ 2 = c2(t2 − t′ 2)

However, at least for small values of v, when compared with c, we
must have

(1.4) x′ = k(c, v)(x− vt)

for some positive k(c, v) ∈ R that does not depend on x, t, x′, t′, and
which in addition is such that

(1.5) limv→0 k(c, v) = 1

since (1.4) and (1.5) are implied by the respective non-relativistic
Galilean coordinate transformation.
Now in view of the Principle of Relativity of Motion, we can suppose
that S ′ is fixed, and S is moving along the x′-axis and in the negative
direction, with velocity −v. In that case, similar with (1.4), we obtain

(1.6) x = k(c, v)(x′ + vt′)

By squaring (1.4) and (1.6), we obtain
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(1.7) x′ 2 + k(c, v)2x2 − 2k(c, v)xx′ = k(c, v)2v2t2

(1.8) x2 + k(c, v)2x′ 2 − 2k(c, v)xx′ = k(c, v)2v2t′ 2

thus by subtracting the (1.7) from (1.8), it follows that

(1.9) (x2 − x′ 2)(k(c, v)2 − 1) = k(c, v)2v2(t2 − t′ 2)

and then in view of (1.3), we obtain

(1.10) c2(k(c, v)2 − 1) = k(c, v)2v2

or

(1.11) (c2 − v2)k(c, v)2 = c2

In this way

(1.12) k(c, v) = c/(c2 − v2)1/2 = 1/(1− v2/c2)1/2

which obviously satisfies (1.5).

The space coordinate Lorentz transformation results now from (1.4)
and (1.12), namely

(1.13) x′ = (x− vt)/(1− v2/c2)1/2

In order to obtain the time coordinate Lorentz transformation, it will
be convenient to proceed in full algebraic detail, and with a special
attention to the operations of division and square root involved. For
that purpose, we replace x′ in (1.6) with its value from (1.4). The
result is

(1.14)
x = k(c, v)(k(c, v)(x− vt) + vt′) =

= k(c, v)2x− k(c, v)2vt+ k(c, v)vt′
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or

(1.15) k(c, v)vt′ = k(c, v)2vt− (k(c, v)2 − 1)x

Thus dividing by k(c, v)v, one has

(1.16) t′ = k(c, v)t− (k(c, v)2 − 1)/(k(c, v)v))x

Dividing in (1.11) by c2 − v2, results that

(1.17) k(c, v)2 = c2/(c2 − v2)

and then

(1.18) k(c, v)2 − 1 = v2/(c2 − v2)

Now (1.16), (1.12) yield the desired time coordinate Lorentz transfor-
mation

(1.19) t′ = (t− vx/c2)/(1− v2/c2)1/2

2. Extending the Lorentz Coordinate Transformations to
Reduced Power Algebras

Let us consider instead of the field R of usual real numbers an ar-
bitrary reduced power algebra AF , see (A.1.4) in the Appendix. In
other words, we shall model both space and time with such algebras
AF , instead of modelling them with the field R of usual real numbers.
Here it is important to note that, in general, such algebras AF need not
be linearly or totally ordered, see (A.4.1) - (A.4.4) in the Appendix.
Furthermore, when they are not linearly or totally ordered, that is,
when the respective filters F are not ultrafilters, then the correspond-
ing algebras AF need not be one dimensional vector spaces, as is of
course the case of R.
It follows that the extension of the Lorentz coordinate transforma-
tions to reduced power algebras opens up a rather wide realm, one
in which time, as much as each individual coordinate, may be multi-
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dimensional, and in fact, even infinite dimensional.
Speculations regarding the possible meaning of such considerable ex-
tensions can, therefore, be diverse and rather numerous. One of them,
coming from the multi-dimensionality of time, may be that it could
possibly model parallel universes ...

And now, let us return to the aimed extension the Lorentz coordinate
transformations to arbitrary reduced power algebras.

In this regard, it is sufficient to note that all the algebraic operations
in section 1 above, operations leading to the usual Lorentz coordinate
transformations in (1.13), (1.19), can automatically be replicated in
all the reduced power algebras AF , except when divisions and square
roots are involved. Indeed, when divisions are involved in these al-
gebras one has to consider the presence in them of zero divisors and
non-invertible elements, see section A.2. in the Appendix. As for
square roots, one has to proceed according to section A.5. in the Ap-
pendix.

3. Comments

3.1. Why Hold to the Archimedean Axiom ?

It is seldom realized, especially among physicists, that ever since an-
cient Egypt and the axiomatization of Geometry by Euclid, we keep
holding to the Archimedean Axiom. This axiom, in simplest terms,
such as of a partially ordered group G, for instance, means the follow-
ing property

(3.1.1) ∃ u ∈ G, u ≥ 0 : ∀ x ∈ G : ∃ n ∈ N : x ≤ nu

or in other words, there exists a ”path length” u, so that every element
x in the group can be ”overtaken” by a finite number n of ”steps” of
”length” u. Clearly, if G is the set R of usual real numbers considered
with the usual addition, then one can take as u any positive number.
As is known, Geometry in ancient Egypt was important in connec-
tion with the yearly flood of the Nile and the subsequent need to
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redraw the boundaries of agricultural land. And for such a purpose,
the Archimedean Axiom is obviously useful.

The question, however, is :

Why hold to that axiom when dealing with such modern
and highly non-intuitive theories of Physics, as Special and
General Relativity, or Quantum Mechanics and Quantum
Field Theory ?
Is there any physical type reason in such modern theories
for holding to the Archimedean Axiom ?

Indeed, one of the inevitable consequences of the Archimedean Axiom
is that ”infinity” is not a usual scalar, be it real or complex. Thus
all usual algebraic and other operations do rather as a rule break
down when reaching ”infinity”. And this elementary and inevitable
fact leads to the long festering problem of the so called ”infinities in
Physics”, a problem which is attempted to be dealt with by various
”re-normalization” methods, or by what is an exceedingly complex
and so far not yet successful venture, namely, String Theory.

On the other hand, the moment one simply frees oneself from the
Archimedean Axiom, and starts to deal with scalars such as those
given by various reduced power algebras, the mentioned troubles with
”infinity” disappear. Indeed, since the Archimedean Axiom is no
longer present in such algebras, these algebras have a rich structure
of ”infinitesimals” and ”infinitely large” scalars, all of which are sub-
jected to the usual algebraic and other operations, just as if they were
usual real or complex numbers.

3.2. Two Alternatives When Freed From the Archimedean
Axiom

The above way the Lorentz Coordinate Transformations have been
extended to space-times built upon scalars given by reduced power al-
gebras may at first seem to be both trivial and without interest. And
the same appearance may arise with the extension to such space-times
of the Heisenberg Uncertainty and No-Cloning, in [10], respectively,
[11].
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Here however, one should note the following.

First, even the multiplication in such reduced power algebras is no
longer trivial. Indeed, such algebras can have zero divisors, see sec-
tion A.2. in the Appendix. Consequently, it may easily happen that,
although c, v, x, t, k(c, v) 6= 0, we will nevertheless have the products
in which such quantities appear, and the respective products vanish,
contrary to what happens in the usual case when scalars given by
real numbers are employed. And clearly, such a vanishing of certain
products may invalidate subsequent formulas, or at best, give them a
different meaning from the usual one.
Also, mathematical expressions in various theories of Physics can con-
tain operations other than mere multiplication, and such operations
can have new properties and meanings, when performed in reduced
power algebras.

Therefore, here, we may obviously face two rather different alterna-
tives, namely

• the new properties and meanings in reduced power algebras do
not correspond to any possible physical meaning,

or on the contrary

• such new properties and meanings which appear in reduced power
algebras may possibly correspond to not yet explored physical
realities.

We shall in the sequel mention several possible such new physical in-
terpretations, if not in fact, possible realities.

3.3. Increased and Decreased Precision in Measurements

As a general issue, relating not only to Relativity or the Quanta, the
presence of infinitesimal and infinitely large scalars in reduced power
algebras may correspond to a new possibility of having no less than
two radically different kind of measurements when it comes to their
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relative precision.

Namely, one has an increased precision in measurement, when mea-
surement is done in terms of usual finite scalars, and one obtains as
result some infinitesimal scalar in such algebras.

Alternatively, the presence of infinitely large scalars in such algebras
may simply indicate that they were obtained in terms of finite scalars,
and thus are but the result of a measurement with decreased precision.

In this regard, we can therefore have the following relative situations

• infinitesimal scalars are the result of increased precision mea-
surements done in terms of finite or infinite scalars,

• finite scalars are the result of increased precision measurements
done in terms of infinite scalars,

• finite or infinitely large scalars are the result of decreased preci-
sion measurements done in terms of infinitesimal scalars,

• infinitely large scalars are the result of decreased precision mea-
surements done in terms of infinitesimal or finite scalars.

and surprisingly, one can also have the following relative situations

• infinitesimal scalars are the result of increased precision mea-
surements done in terms of some less infinitesimal scalars,

• infinitesimal scalars are the result of decreased precision mea-
surements done in terms of some more infinitesimal scalars,

• infinitely large scalars are the result of increased precision mea-
surements done in terms of some more infinitely large scalars,

• infinitely large scalars are the result of decreased precision mea-
surements done in terms of some less infinitely large scalars.

Indeed, one of the basic features of reduced power algebras is precisely
their complicated and rich self-similar structure which distinguishes
not only between infinitesimal, finite and infinitely large scalars, but
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also within the infinitely small scalars themselves, and similarly, within
the infinitely large scalars. Specifically, infinitesimal scalars can be
infinitely smaller, or on the contrary, infinitely larger than other in-
finitesimals. And similarly, infinitely large scalars can be infinitely
smaller, or on the contrary, infinitely larger than other infinitely large
scalars.

Here, however, we can note that such a possible interpretation of in-
creased, or decreased precision which is relative, is in fact not new.
Indeed, in terms of usual scalars, be they real or complex, there is
a marked dichotomy between finite scalars, and on the other hand,
the so called ”infinities” which may on occasion arise from operations
with finite scalars. And such simple ”formulas” like ∞ + 1 = ∞, are
in fact expressing that fact. Namely, on one hand, from the point of
view of ”infinity”, the finite number 1 has such an increased precision
as to be irrelevant with respect to addition, while on the other hand,
from the point of view of the finite number 1, the ”infinity” has such
a decreased precision as to alter completely the result when involved
in addition.

3.4. The Issue of Universal Constants

Given the above possibilities in interpretation leading to relative pre-
cision measurement - be it as such an increased or a decreased one -
one can reconsider the status of certain universal physical constants,
such as for instance, the Planck constant h and the constant c giving
the velocity of light in vacuum.
Indeed, when considered from our everyday macroscopic experience,
h is supposed to be unusually small, while on the contrary, c is very
large. Consequently, one may see h as a sort of ”infinitesimal”, while
c then looks like ”infinitely large”.
The fact is that, within reduced power algebras, such an alternative
view of h and c is possible. Therefore, one may find it appropriate to
explore the possible physical meaning, or otherwise, that may possibly
be associated with such an interpretation.
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Appendix : Zero Divisors, Units and other Properties
in Reduced Power Algebras

A.1. Construction of Reduced Power Algebras

The general construction of reduced power algebras goes as follows,
[2-11]. Let Λ be any infinite set. Let F be any filter on Λ, such that

(A.1.1) Fre(Λ) ⊆ F

where

(A.1.2) Fre(Λ) = { I ⊆ Λ | Λ \ I is finite }

is called the Frechèt filter on Λ.

We define on RΛ the corresponding equivalence relation ≈F by

(A.1.3) x ≈U y ⇐⇒ { λ ∈ Λ | x(λ) = y(λ) } ∈ F

where x, y ∈ RΛ.

Then, through the usual quotient construction, we obtain the reduced
power algebra

(A.1.4) AF = RΛ/ ≈F

which has the following two properties.

The mapping

(A.1.5) R 3 r 7−→ (ur)F ∈ AF

is an embedding of algebras in which R is a strict subset of AF , where
ur ∈ RΛ is defined by ur(λ) = r, for λ ∈ Λ, while (ur)F is the coset of
ur with respect to the equivalence relation ≈F .

Further, on AF we have the partial order which is compatible with the
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algebra structure, namely

(A.1.6) (x)F ≤ (y)F ⇐⇒ { λ ∈ Λ | x(λ) ≤ y(λ) } ∈ F

where x, y ∈ RΛ.

As is well known

(A.1.7) AF is a field ⇐⇒ F is an ultrafilter on Λ

consequently

(A.1.8) AF has zero divisors ⇐⇒ F is not an ultrafilter on Λ

It will be useful to consider the non-negative elements in AF , given by

(A.1.9) A+
F = { (x)F | x ∈ R, { λ ∈ Λ | x(λ) ≥ 0 } ∈ F }

A.2. Zero Divisors and Units in AF

Let F be a filter on Λ which satisfies (A.1.1) and is not an ultrafilter
on Λ. Given any x ∈ RΛ, we denote

(A.2.1) Z(x) = { λ ∈ Λ | x(λ) = 0 } ⊆ Λ

and obviously, we have the following four alternatives

(A.2.2.1) Z(x) ∈ F

(A.2.2.2) Z(x) /∈ F

(A.2.2.3) Λ \ Z(x) ∈ F

(A.2.2.4) Λ \ Z(x) /∈ F

Since F is not an ultrafilter, alternatives (A.2.2.1) and (A.2.2.3) are
not incompatible. Therefore, the same applies to alternatives (A.2.2.2)
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and (A.2.2.4). It follows that we have the mutually exclusive four al-
ternatives

(A.2.3.1) Z(x) ∈ F and Λ \ Z(x) ∈ F

(A.2.3.2) Z(x) ∈ F and Λ \ Z(x) /∈ F

(A.2.3.3) Z(x) /∈ F and Λ \ Z(x) ∈ F

(A.2.3.4) Z(x) /∈ F and Λ \ Z(x) /∈ F

Now in view of (A.1.3), we have

(A.2.4) Z(x) ∈ F ⇐⇒ (x)F = 0 ∈ AF

thus alternatives (A.2.3.1) and (A.2.3.2) are clarified in their conse-
quence.

Let us now consider (A.2.3.3) and define y ∈ RΛ by

(A.2.5) y(λ) =
1/x(λ) if λ ∈ Λ \ Z(x)

arbitrary otherwise

then (A.1.3), (A.2.4) give

(A.2.6) (x)F , (y)F 6= 0 ∈ AF , (x)F (y)F = 1 ∈ AF

thus (x)F is an invertible element, or a unit in AF , and ((x)F)−1 = (y)F
.

In the case of (A.2.3.4), let us define y ∈ RΛ by

(A.2.7) y(λ) =
0 if λ ∈ Λ \ Z(x)

1 if λ ∈ Z(x)

then (A.1.3), (A.2.4) give
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(A.2.8) (x)F , (y)F 6= 0 ∈ AF , (x)F (y)F = 0 ∈ AF

thus (x)F is a zero divisor in AF .

It follows that the set of units, or invertible elements in AF is given
by

(A.2.9) Au
F = { (x)F | x ∈ RΛ, Z(x) /∈ F , Λ \ Z(x) ∈ F }

while the set of zero divisors in AF is given by

(A.2.10) Azd
F = { (x)F | x ∈ RΛ, Z(x) /∈ F , Λ \ Z(x) /∈ F }

and clearly, we have the following partition in three disjoint subsets

(A.2.11) AF = {0}
⋃

Azd
F

⋃
Au
F

A.3. Infinitesimals and Infinitely Large Scalars

The reduced power algebras AF contain strictly as a subfield the field
R of usual real numbers. In addition, the reduced power algebras AF
contain vast amounts of infinitesimal, as well as infinitely large scalars.

In case in (A.1.3), and in the sequel, we replace R with C, and thus CΛ

takes the place of RΛ, then we obtain reduced power algebras which
contain strictly the field C of usual complex numbers. And again, the
reduced power algebras will contain vast amounts of infinitesimal, as
well as infinitely large scalars.

A.4. Reduced Power Fields

The following properties are equivalent :

(A.4.1) F is an ultrafilter on Λ

(A.4.2) Azd
F = φ, AF = {0}

⋃
Au
F is a field
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(A.4.3) For every x ∈ RΛ, the four alternatives (A.2.3.1) - (A.2.3.4)
reduce to the following two, namely, (A.2.3.2), (A.2.3.3), that is :

Z(x) ∈ F and Λ \ Z(x) /∈ F

Z(x) /∈ F and Λ \ Z(x) ∈ F

(A.4.4) The partial order ≤F in (A.1.6) is a linear, or total order on
the reduced power field AF

A.5. Exponential Functions

In view of (A.1.9), one can obviously define the exponentiation

(A.5.1) A+
F × A+

F 3 ((x)F , (y)F) 7−→ (z)F = ((x)F)((y)F ) ∈ A+
F

by

(A.5.2) z(λ) = (x(λ))(y(λ)), λ ∈ I

where I ∈ F is such that

(A.5.3) x(λ), y(λ) ≥ 0, λ ∈ I
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Part II : Heisenberg Uncertainty in

Reduced Power Algebras

1. Preliminaries

The Heisenberg uncertainty relation is known to be obtainable by a
purely mathematical argument. Based on that fact, here it is shown
that the Heisenberg uncertainty relation remains valid when Quantum
Mechanics is re-formulated within far wider frameworks of scalars,
namely, within one or the other of the infinitely many reduced power
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algebras which can replace the usual real numbers R, or complex num-
bers C. A major advantage of such a re-formulation is, among others,
the disappearance of the well known and hard to deal with problem
of the so called ”infinities in Physics”. The use of reduced power al-
gebras also opens up a foundational question about the role, and in
fact, about the very meaning and existence, of fundamental constants
in Physics, such as Planck’s constant h. A role, meaning, and exis-
tence which may, or on the contrary, may not be so objective as to
be independent of the scalars used, be they the usual real numbers
R, complex numbers C, or scalars given by any of the infinitely many
reduced power algebras, algebras which can so easily be constructed
and used.

A remarkable feature of the Heisenberg uncertainty relation is that
it can be obtained following a purely mathematical argument of a
rather simple statistical nature, [1, pp. 67-70]. Based on that fact,
here we shall show that the Heisenberg uncertainty relation remains
valid when Quantum Mechanics is re-formulated within what appears
to be a far more wide and appropriate framework of scalars, namely,
those in any of the infinitely many algebras which belong to the class
of reduced power algebras, [3-10].

As argued in [3-10], there are a number of important advantages in
re-formulating the whole of Physics in terms of scalars given by re-
duced power algebras. Related to Quantum Theory, and specifically,
to Quantum Field Theory, one of the major advantages of such a re-
formulation is the complete and automatic disappearance of the well
known and hard to deal with problem of the so called ”infinities in
Physics”.

In this regard, let us recall that in [3-10] it was shown how to construct
in a simple way as reduced powers a large class of algebras which ex-
tend the field R of usual real numbers, or alternatively, the field C of
usual complex numbers. A remarkable feature of these reduced power
algebras is that they contain infinitesimal, as well as infinitely large
elements, consequently, these algebras are non-Archimedean. Some of
these algebras are in fact fields. Also, among them is the field ∗R of
nonstandard real numbers.
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In [3-10] it was suggested and argued that much of present day Physics
should be re-formulated in terms of such reduced power algebras, one
of the main reasons for that being the considerably increased richness
and complexity of their non-Archimedean self-similar mathematical
structures, as opposed to the much simpler structures imposed on
Physics by the Archimedean field R of the usual real numbers, and by
the structures built upon it, such as the field C of complex numbers,
various finite or infinite dimensional manifolds, Hilbert spaces, and so
on. And in this regard, it was argued that one of the main advantages
of such a re-formulation would be the automatic disappearance of the
difficulties related to the so called ”infinities in Physics”, as a result of
the presence of infinitely large elements in the reduced power algebras.

It was also pointed out that the present limitation to the exclusive
use of scalars, vectors, etc., which belong to Archimedean mathemat-
ical structures is the result not of absolutely any kind of conscious
and competent choice in Physics, but on the contrary, of the millen-
nia long perpetuation of a mere historical accident, namely that in
ancient Egypt the development of Geometry chose the Archimedean
route, due to specific practical needs at those times, needs hardly at
all related to those of modern Physics.

However, as not seldom happens in human affairs, accidentally ac-
quired habits can become second nature. This may explain, even if
not excuse as well, why for more than two millennia by now we have
been so happily wallowing in the ancient Egyptian bondage, or rather
slavery of Archimedean space-time structures ...

For convenience, we shall recall in a particular case the construction,
[3-10], of reduced power algebras. Given any filter F on N, we define

(1.1) IF = { v = (vn)n∈N ∈ RN | { n ∈ N | vn = 0 } ∈ F }

which is a proper ideal in the algebra RN. Thus we obtain the reduced
power algebra associated to F as the quotient algebra

(1.2) RF = RN/IF
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Furthermore, this algebra which is commutative, is also a strict ex-
tension of the field R of the usual real numbers, according to the
embedding of algebras

(1.3) R 3 x 7−→ (x, x, x, . . .) + IF ∈ RF = RN/IF

In a similar manner one can obtain reduced power algebras extend-
ing the field C of the usual complex numbers. Namely, let us denote by

(1.4) JF = { w = (wn)n∈N ∈ CN | { n ∈ N | wn = 0 } ∈ F }

which is a proper ideal in the algebra CN. Thus we obtain the reduced
power algebra associated to F as the quotient algebra

(1.5) CF = CN/JF

Furthermore, this algebra which is commutative, is also a strict ex-
tension of the field C of the usual complex numbers, according to the
embedding of algebras

(1.6) C 3 z 7−→ (z, z, z, . . .) + IF ∈ CF = CN/JF

We now establish a natural connection between the algebras RF and
CF .

In this regard, we note the following connection between the ideals IF
and JF . Namely

(1.7)
w = (wn = un + ivn)n∈N ∈ JF ⇐⇒

⇐⇒ u = (un)n∈N, v = (vn)n∈N ∈ IF
where un, vn ∈ R. It follows that we have the algebra homomorphisms

(1.8)
Re : CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ u = (un)n∈N + IF ∈ RF
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(1.9)
Im : CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ v = (vn)n∈N + IF ∈ RF
as well as the algebra embeddings

(1.10) RF 3 u = (un)n∈N + IF 7−→ u = (un)n∈N + JF ∈ CF

(1.11) RF 3 v = (vn)n∈N + IF 7−→ iv = (ivn)n∈N + JF ∈ CF

Let us also define the surjective linear mapping

(1.12)
CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ w = (wn = un − ivn)n∈N + JF ∈ CF
As a consequence, we obtain

(1.13) w = (wn = un+ ivn)n∈N +JF ∈ CF , w = w =⇒ w ∈ RF

Lastly, we can define the absolute value on CF , by the mapping

(1.14)

CF 3 z = (wn = un + ivn)n∈N + JF 7−→

7−→ |z| = (|wn| =
√

(u2
n + v2

n))n∈N + IF ∈ RF
Let us denote

(1.15) R+
F = { u = (un)n∈N + IF ∈ RF | { n ∈ N | un ≥ 0 } ∈ F }

then we obtain the surjective mapping

(1.16) CF 3 z 7−→ |z| ∈ R+
F

and for z ∈ CF , we have

(1.17) |z| = 0 ⇐⇒ z = 0

Now, in view of (1.8), (1.9), (1.14), we have for z ∈ CF the relations
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(1.18) |Re z |, | Im z | ≤ | z |

For further convenience, we shall consider a quantum configuration
space which is one dimensional.

Here however, there are two ways to proceed.

The simpler one is to model the one dimensional configuration space
by the usual R, in which case the wave functions will be given by

(1.19) ψ : R −→ CF

This means that the only difference with the usual quantum mechan-
ical setup is that, this time, the wave functions can take values in the
reduced power algebra extension CF of C.

Alternatively, one can be more consistent in the re-formulation of
Physics in terms of reduced power algebras, and model not only the
values of the wave functions, but also their one dimensional configu-
ration space variables with the reduced power algebra RF which is an
extension of R. Thus in this second case, the wave functions would be

(1.20) ψ : RU −→ CF

where U is an ultrafilter on N.

The first of these two alternatives will be developed in the next section.
The second and yet more general alternative is treated elsewhere.

2. An Extension of the Heisenberg Uncertainty

In order to avoid unnecessary technical complications concerning the
integrations related to wave functions ψ in (1.19), we shall only con-
sider those of them which are of the following particular step function
type

(2.1) ψ =
∑

1≤h≤m γhHh
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where m ≥ 1, and γh ∈ CF , while Hh : R −→ {0, 1} are step functions
such that Hh(x) = 1, when x ∈ Ih, and Hh(x) = 0, when x /∈ Ih. Here
Ih = [ah−1, ah) ⊂ R are usual intervals, where ∞ ≤ a0 < a1 < a2 ≤
. . . < am ≤ ∞ are usual real numbers, with a0 and am possibly minus
and plus infinity, respectively.

The set of all such functions wave functions ψ in (2.1) is denoted by

(2.2) SF(R)

and this set replaces the usual Hilbert space L2(R) of complex valued
square integrable wave functions ψ defined on the configuration space
R of a one dimensional quantum system.

We note here one of the major advantages in the above use of reduced
power algebras. Namely, each of the wave functions ψ ∈ SF(R) can
easily be integrated on the whole of R regardless of the possible infi-
nite length of some of the intervals Ih, or of the infinite value of some
of the γh. Indeed, owing to the reduced power algebra structure of
CF , one simply obtains in CF the algebraically perfectly well defined
value

(2.3)
∫

R ψ(x)dx =
∑

1≤h≤m(ah − ah−1)γh ∈ CF

which is always a well defined element in CF , and thus available in
a correct and rigorous manner for all the algebraic operations in the
algebra CF , even if that value may turn out to be an infinitesimal,
finite, or an infinitely large element in CF . In this way there is no
need to impose any integrability type conditions on the wave func-
tions ψ ∈ SF(R), much unlike in the usual case, where the square
integrability condition

∫
R |ψ(x)|2dx <∞ is required, since within the

usual Archimedean framework of C, or R, one cannot perform most
of the usual algebraic operations with infinitely large quantities.

Now it follows easily that SF(R) is a vector space over C, and in fact,
it is a commutative algebra over C. Furthermore, one can define on it
the extension of the usual scalar product given by
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(2.4) < ψ, χ > =
∫

R ψ(x)χ(x)dx ∈ CF

for all ψ, χ ∈ SF(R). This extended scalar product has the following
properties :

(2.5) It is linear over CF , therefore also over C, in the second
argument.

(2.6) < χ,ψ > = < ψ, χ >, ψ, χ ∈ SF(R)

(2.7) < ψ,ψ > ∈ R+
F , ψ ∈ SF(R)

and for ψ ∈ SF(R), one has

(2.8) < ψ,ψ > = 0 ⇐⇒ ψ = 0 ∈ SF(R)

Also, we have the extension of the classical Schwartz inequality

(2.9) | < ψ, χ > | ≤ < ψ,ψ >1/2 < χ, χ >1/2, ψ, χ ∈ SF(R)

Lastly, we can consider the set

(2.10) L(SF(R))

of all linear operators A : SF(R) −→ SF(R). Such an operator will be
called Hermitian, if and only if

(2.11) < Aψ, χ > = < ψ,Aχ >, ψ, χ ∈ SF(R)

and we denote by

(2.12) H(SF(R))

the set of all such Hermitian operators.

With these preparations, we can now proceed to obtain the Heisen-
berg uncertainty relation for arbitrary operators A,B ∈ H(SF(R)).
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Given A ∈ L(SF(R)) and ψ ∈ SF(R), we denote

(2.13) < A >ψ = < ψ,Aψ > ∈ CF

and call it the expectation value of A in the state ψ. Further, we denote

(2.14) ∆ψA = (< A2 >ψ − (< A >ψ)2 )1/2

and call it the uncertainty of A in the state ψ.

Theorem 2.1. (Extended Heisenberg Uncertainty Relation)

Given A,B ∈ H(SF(R)) and ψ ∈ SF(R) such that < ψ,ψ >= 1, then
we have

(2.15) ∆ψA ∆ψB ≥ | < [A,B] >ψ |/2

where [A,B] = AB −BA.

Proof.

We start with

Lemma 2.1.

Let A ∈ H(SF(R)), ψ ∈ SF(R), then

(2.16) < A >ψ ∈ RF

Proof.

We have in view of (2.13), (2.11)

< A >ψ = < ψ,Aψ > = < ψ,Aψ >

thus (2.4), (2.3) imply
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< ψ,Aψ > = < ψ,Aψ >

hence (1.13) completes the proof.

�

Let us now denote

(2.17) A1 = A − < A >ψ I, B1 = B − < B >ψ I

where I ∈ H(SF(R)) is the identity operator. Then

(2.18) A1, B1 ∈ H(SF(R))

Indeed, let η, χ ∈ SF(R), then in view of (2.11) and Lemma 2.1., we
have

< A1η, χ > = < Aη, χ > −< A >ψ < η, χ > =

= < η,Aχ > − < A >ψ < η, χ > = < η,Aχ > − < η,< A >ψ χ > =

= < η,A1χ >

and similarly with B1.

Next we prove

(2.19) [A1, B1] = [A,B]

which is obtained as follows. We have from (2.17)

A1B1 = AB − < A >ψ B − < B >ψ A + < A >ψ < B >ψ I

thus

B1A1 = BA − < B >ψ A − < A >ψ B + < B >ψ < A >ψ I

hence (2.19).
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Further, for ψ ∈ SF(R) with < ψ,ψ >= 1, we have

(2.20) < A1ψ,A1ψ > = (∆ψA)2

Indeed, in view of (2.18), we obtain

< A1ψ,A1ψ > = < ψ, (A1)2ψ > = < ψ, (A − < A >ψ I)2 ψ > =

= < ψ, (A2 − 2 < A >ψ A+ (< A >ψ)2I)ψ > =

= < ψ,A2ψ > − 2 < A >ψ < ψ,Aψ > + (< A >ψ)2 < ψ,ψ > =

= < A2 >ψ − 2(< A >ψ)2 + (< A >ψ)2 = < A2 >ψ −(< A >ψ)2

In view of the above, we have for ψ ∈ SF(R) with < ψ,ψ >= 1, the
relations

< ψ, [A,B]ψ > = < ψ, [A1, B1]ψ > = < ψ,A1B1ψ > − < ψ,B1A1ψ > =

= < A1ψ,B1ψ > − < B1ψ,A1ψ > = < A1ψ,B1ψ > −< A1ψ,B1ψ > =

= 2i Im < A1ψ,B1ψ >

Consequently

| < ψ, [A,B]ψ > | = 2| Im < A1ψ,B1ψ > |

However, in view of (1.8), (1.9), (1.14), we have for z ∈ CF the rela-
tions

|Re z |, | Im z | ≤ | z |

3. The Extended Wintner Theorem on Unbounded
Operators

In the context of the Heisenberg uncertainty relation, the non-commutativity
of operators involved is crucial, since for commutative operators the
respective inequality is obviously trivially satisfied, thus there is never
any uncertainty, see (2.15).
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Within the usual mathematical context of Quantum Mechanics given
by complex Hilbert spaces H and linear operators on them, it turns
out that certain simple non-commutativity relations for linear opera-
tors, such as (3.1) below, necessarily imply their unboundedness. Thus
the need to consider unbounded, however, densely defined and closed
operators on such Hilbert spaces, and the fundamental operators of
position and momentum are well known to be among them.

Needless to say, this fact is a rather inconvenient one, since it compli-
cates considerably the mathematical apparatus involved in Quantum
Mechanics. And it was precisely the avoidance of such a complica-
tion which led von Neumann to his second mathematical model for
Quantum Mechanics, namely, the one based on starting with alge-
bras of observables, and then defining the states. Such an approach
is obviosuly a reversal of the way in von Neumann’s first model based
on Hilbert spaces of states, where the observables are then defined as
Hermitian operators.

The classical result regarding the inevitability of unbounded operators
in von Neumann’s first model of Quantum Mechanics is given in

Wintner’s Theorem

Let H be a complex Hilbert space and A,B two bounded linear oper-
ators on it. Then there cannot be any nonzero constant c ∈ C, such
that the non-commutation relation holds

(3.1) [A,B] = AB −BA = cI

where I is the identity operator on H.

�

The special relevance of this result is in the fact that the position and
momentum operators do satisfy a non-commutation relation of type
(3.1), this therefore being the reason they cannot be given by bounded
operators.
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Here, we give an extended version of Wintner’s Theorem to the case
of linear operators in L(SF(R)), see (2.2), (2.10), which are defined
based on scalars given by reduced power algebras RF or CF .

The following simple linear functional analytic notions, extended to
the case of reduced power algebras, will be needed.

For any wave function ψ =
∑

1≤h≤m γhHh ∈ SF(R), see (2.1), (2.2),
we define its norm by

(3.2) ||ψ || = sup1≤h≤m | γh | ∈ R+
F

We note that, with values in R+
F , and not merely in R+ = [0,∞), as

is the usual case with wave functions ψ ∈ L2(R), this norm (3.2) is
always well defined, regardless of the γh being infinitesimal, finite or
infinitely large elements in CF .

Now, a linear operator A ∈ L(SF(R)) is called bounded, if and only if
there exists M ∈ R+

F , such that

(3.3) ||Aψ || ≤ M ||ψ ||, ψ ∈ SF(R)

and in this case we denote by

(3.4) MA ⊆ R+
F

the set of all such M .

We will also need the following partial order relation on RF . Given
u = (un)n∈N + IF , v = (vn)n∈N + IF ∈ RF , we define

(3.5) u ≤ v ⇐⇒ v − u ∈ R+
F

Clearly, with the partial order (3.5), MA has the property

(3.6) M ′ ∈ R+
F , M

′ ≥M ∈MA =⇒ M ′ ∈MA

The interest in dealing withMA is that, in this way, we can avoid the
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issue of considering the existence, and of the properties of inf MA

in the reduced power algebra RF . Here we note that in the usual
case of operators on Hilbert spaces, instead of (3.4) one obviously has
MA ⊆ R+ = [0,∞), thus inf MA ∈ R+ always exists, and it is de-
noted by ||A||, hence the above issue simply does not arise.
However, as the following two easy to prove Lemmas show it, we can
to a good extent avoid that issue even in the general case of arbitrary
reduced power algebras RF .

Lemma 3.1.

Let ψ, ψ ′ ∈ SF(R) and c ∈ CF , then

1) ||ψ + ψ ′ || ≤ ||ψ ||+ ||ψ ′ ||

2) || c ψ || = | c | ||ψ ||

3) ||ψ || = 0 ⇐⇒ ψ = 0 ∈ SF(R)

Lemma 3.2.

Let be any bounded operators A,B ∈ L(SF(R)) and c ∈ CF . Then
the following hold

1) ∀ K ∈MA, L ∈MB :

∃ M ∈MA+B :

M ≤ K + L

2) ∀ K ∈MA :

∃ M ∈McA :

M ≤ |c|K
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3) ∀ K ∈MA, L ∈MB :

∃ M ∈MAB :

M ≤ KL

The extension of the Wintner Theorem can now be formulated as fol-
lows

Theorem 3.1.

Let A,B ∈ L(SF(R)) two bounded linear operators. Then there can-
not be any nonzero constant c ∈ CF , such that the non-commutation
relation holds

(3.7) [A,B] = AB −BA = cI

where I is the identity operator on SF(R).

Proof.

Obviously, it suffices to consider the case c = 1. Let us then assume
A,B ∈ L(SF(R)) two bounded linear operators, such that

(3.8) AB −BA = I

Then by induction, one obtains

(3.9) nBn−1 = ABn −BnA, n ≥ 1

Indeed, for n = 1, the relation (3.9) reduces to (3.8). Assuming now
that (3.9) holds for a certain n ≥ 1, we have then

(3.10)
(n+ 1)Bn = nBn−1B +BnI =

= (ABn −BnA)B +Bn(AB −BA) + ABn+1 −Bn+1A

Now in view of Lemma 3.2. applied to (3.9), one obtains
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(3.11)

∀ n ≥ 1, K ∈MA, L ∈MB :

∃ M ∈MBn−1 :

nM ≤ 2KLM

consequently, we must have M = 0, for some n ≥ 1. And then, (3.9)
implies Bn−1 = 0, and thus successively, B = 0, and finally I = 0,
which of course is absurd.

4. Question on Two Fundamental Physical Constants

Re-formulating Physics in terms of scalars given by reduced power
algebras leads naturally to the following two questions

• Is it possible that Planck’s constant h is in fact an infinitesimal
in some reduced power algebra RF ?

• Is it possible that the maximum speed of propagation of physical
effects is not finite, but rather an infinitely large quantity in some
reduced power algebra RF ?

The motivation for these two questions appears quite natural, as soon
as one becomes more familiar with the non-Archimedean structure of
reduced power algebras, [3-10]. Indeed, that non-Archimedean struc-
ture leads to the presence of three types of elements in such algebras,
namely : infinitesimals, finite elements, and infinitely large elements.

The essential fact in this regard, however, is that the above classi-
fication in three types of elements is relative. Namely, it is implied
by the fact that, when constructing reduced power algebras RF , one
starts by defining the usual real numbers in R as being the finite ones.
Indeed, such reduced power algebras have a highly complex and rich
self-similar structure. And it is easy to see that, due to that structure,
one is in fact not obliged to choose the usual real numbers in R as being
the finite ones. On the contrary, that self-similar structure renders the
concept of ”finite elements” highly relative, by allowing a wide range
of other choices. In this way, elements which in a choice are finite, may
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become infinitesimal or infinitely large in other choices, and vice-versa.

Consequently, when using reduced power algebras in Physics, thus
non-Archimedean scalar structures, one is no longer obliged to have
both the Planck constant and that of the maximum speed of prop-
agation of physical effects finite, and thus having the only possible
difference between between them reduced to a large but finite factor.

5. Question on the Status of the Heisenberg Uncertainty in
Quantum Mechanics

As shown in [2], it is possible to present most of Quantum Mechanics
without recourse to the Heisenberg uncertainty principle. This fact
seems particularly surprising to most of physicists, and so far, it seems
not to have been given a proper consideration.
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Part III : No-Cloning in

Reduced Power Algebras

1. Preliminaries

The No-Cloning property in Quantum Computation is known not to
depend on the unitarity of the operators involved, but only on their lin-
earity. Based on that fact, here it is shown that the No-Cloning prop-
erty remains valid when Quantum Mechanics is re-formulated within
far wider frameworks of scalars, namely, one or the other of the in-
finitely many reduced power algebras which can replace the usual real
numbers R, or complex numbers C.

A remarkable feature of the so called No-Cloning property in Quan-
tum Computation, [3,2], is that it is but a rather elementary and direct
consequence of the linearity property of unitary operators on finite di-
mensional complex Hilbert spaces, and in fact, it does not require that
the respective operators by unitary. The fact that unitary operators
are involved in Quantum Computation is natural and unavoidable,
since in Quantum Mechanics it is axiomatic that the evolution of a
quantum systems which is not under measurement is given by such
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operators, being described by the Schrödinger equation.

Based on the above elementary fact underlying usual No-Cloning, here
we shall show that the No-Cloning property remains valid when Quan-
tum Mechanics is re-formulated within what appears to be a far more
wide and appropriate framework of scalars, namely, any one of the
infinitely many algebras which belong to the class of reduced power
algebras, [4-12].

One of the essential features of scalars in algebras of reduced powers
is that, in addition to being finite, just as the usual real or complex
numbers, such scalars in algebras of reduced powers can also be in-
finitesimal, or on the contrary, infinitely large. Consequently, vast
opportunities for algebraic operations are opened, and also, for ap-
propriate physical interpretations. For instance, one may consider the
possibility that the Planck constant h is a nonzero positive infinites-
imal, and/or the speed of light c is positive and infinitely large, [12,
section 4].

2. An Extension of the No-Cloning Property

We recall that the field R of usual real numbers can be extended into
any of the infinitely many possible so called reduced power algebras
RF , where F suitable filters on the set N of natural numbers, see Ap-
pendix, and for further details [12, pp. 3-6], [4-11]. Similarly, the field
C of usual complex numbers can be extended into any of the infinitely
many possible reduced power algebras CF . Furthermore, some of these
algebras RF and CF are themselves fields, namely, when F are ultra-
filters on the set N of natural numbers.

Let us now recall that in usual Quantum Computation, a quantum
register of one qubit is represented as a vector in the complex Hilbert
space C2. And in general, a quantum register of n ≥ 1 qubits is rep-
resented by the n-fold tensor product

(2.1) Hn = C2 ⊗ . . .⊗ C2 ≈ C2n
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Here, we shall replace such usual quantum registers of n ≥ 1 qubits
by the larger spaces

(2.2) HF , n = (CF)2 ⊗ . . .⊗ (CF)2

with n ≥ 1 factors, which again are vector spaces over C, as can
easily be seen in [12, pp. 3-6], [4-11]. Furthermore, they possess an
extended scalar product (A.20) - (A.26) which gives them properties
similar with the usual Hilbert spaces, properties sufficient in order to
establish the extended version of the No-Cloning property.

What is important to note is that, since the No-Cloning property does
not in fact require the unitarity of the operators involved, but only
their linearity, we can proceed with the extension of the No-Cloning
property to quantum registers given by the vector spaces HF , n in
(2.2), without having to consider on them any usual Hilbert space
structure, and instead, by only using the above mentioned extended
Hilbert space structure of these spaces.

In order to make clear this argument, let us briefly recall the usual
No-Cloning property, [3].

First, let us note that, scientists are on occasion giving names to new
phenomena in ways which are not thoroughly well considered, and
thus may lend themselves to misinterpretation. One such case is,
unfortunately, with the term No-Cloning used in Quantum Computa-
tion. What is in fact going on here is that, quite surprisingly, quantum
computers do not allow the copying of arbitrary qubits. And here by
”copying” one means the precise reproduction any finite number of
times of a given arbitrary qubit, a reproduction which does not de-
stroy the original qubit which is being reproduced.
Thus a more proper term would be the somewhat longer one of no
arbitrary copying.
Yet in spite of that, plenty of copying can be done by quantum com-
puters, as will be seen in the sequel.

In order better to understand the issue, let us start by considering
copying classical bits. For that purpose we can use the classical ver-
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sion of the quantum CNOT gate, [2,3], operating this time on bits
a, b ∈ { 0, 1 }, namely

a a

b a ⊕ b

}

m
Fig. 2.1.

Now, if we fix b = 0, then for an arbitrary input bit a ∈ { 0, 1 }, we
shall obtain as output two copies of a.

Strangely enough, a similar copying of arbitrary quantum bits cannot
be performed by quantum systems, as was discovered in 1982 by W K
Wooters and W H Zurek, [2,3].
Of course, as well known, [2,3], each qubit contains a double infin-
ity of classical information since it can be an arbitrary point on the
Bloch sphere, which is much unlike the situation with one single bit.
In this way, the ability to copy arbitrary qubits is considerably more
demanding than copying arbitrary classical bits.

Let us now turn to this issue in some more detail. First we present
a simple and somewhat intuitive argument. We assume that we have
a quantum system S which allows one qubit at input and has one
qubit at output. The output facility we shall use as a ”blank sheet”
on which we want to copy an arbitrary input qubit | ψ > ∈ C2. We
can assume that the initial state of the ”blank sheet” at the output is
given by a fixed qubit | χ0 > ∈ C2. Thus we start with the setup
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| ψ > | χ0 >S

Fig. 2.2.

and would like to end up with the setup

| ψ > | ψ >S

Fig. 2.3.

However, as quantum processes evolve through unitary operators when
not subjected to measurement, it means that we are looking for such
a unitary operator U : C2 ⊗ C2 −→ C2 ⊗ C2, and one which would
act according to

(2.3) U( | ψ > ⊗ | χ0 > ) = | ψ > ⊗ | ψ >, | ψ > ∈ C2

Before going further, let us immediately remark here that a unitary
operator U , which therefore is linear, is not likely to satisfy (2.3), in
view of the fact that this is a nonlinear relation in | ψ > ∈ C2, and
in particular, its left hand term is linear in | ψ >, while its right hand
term is a quadratic in | ψ >.

And now, let us return to a more precise argument. Since | ψ > ∈ C2

is assumed to be arbitrary in (2.3), we can write that relation for any
| ψ1 >, | ψ2 > ∈ C2. Thus we obtain
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(2.4)
U( | ψ1 > ⊗ | χ0 > ) = | ψ1 > ⊗ | ψ1 >

U( | ψ2 > ⊗ | χ0 > ) = | ψ2 > ⊗ | ψ2 >

Now if we take the inner product of these two relations and recall that
U was supposed to be unitary, we obtain

(2.5) < ψ1 | ψ2 > = ( < ψ1 | ψ2 > )2

which implies that either < ψ1 | ψ2 > = 0, or < ψ1 | ψ2 > = 1.
This means that the two arbitrary quantum states | ψ1 >, | ψ2 > ∈
C2 are always either orthogonal, or identical from quantum point of
view, which is clearly absurd.

The general and rigorous argument is as follows. We consider a quan-
tum system whose state space is Cm, for a certain integer m ≥ 2.
Further, we fix in this state space an arbitrary orthonormal basis
| ψ1 >, . . . , | ψm > ∈ Cm. Finally, we assume that the state
| ψ1 > will function as the ”blank sheet” on which we want to copy
arbitrary states | ψ > ∈ Cm.

Then the desired copying machine of arbitrary states in Cm will be
given by a unitary operator U : Cm ⊗ Cm −→ Cm ⊗ Cm, for which
we have

(2.6) U( | ψ > ⊗ | ψ1 > ) = | ψ > ⊗ | ψ >, | ψ > ∈ Cm

And now we can prove that for n ≥ 2, there does not exist such a
copying machine U .

Indeed, if we assume that n ≥ 2, then we do have at least the two
orthonormal states | ψ1 >, | ψ2 > ∈ Cm. Thus (2.6) gives
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(2.7)

U( | ψ1 > ⊗ | ψ1 > ) = | ψ1 > ⊗ | ψ1 >

U( | ψ2 > ⊗ | ψ1 > ) = | ψ2 > ⊗ | ψ2 >

U( ( | ψ1 > + | ψ2 > ) ⊗ | ψ1 > ) =

= ( | ψ1 > + | ψ2 > ) ⊗ ( | ψ1 > + | ψ2 > )

Now the linearity of U gives together with the first two relations above

(2.8)

U( ( | ψ1 > + | ψ2 > ) ⊗ | ψ1 > ) =

= U( | ψ1 > ⊗ | ψ1 > ) + U( | ψ2 > ⊗ | ψ1 > ) =

= | ψ1 > ⊗ | ψ1 > + | ψ2 > ⊗ | ψ2 >

Thus (2.8) with the last relation in (2.7) imply

(2.9)
( | ψ1 > + | ψ2 > ) ⊗ ( | ψ1 > + | ψ2 > ) =

= | ψ1 > ⊗ | ψ1 > + | ψ2 > ⊗ | ψ2 >

or in other words

(2.10) | ψ1 > ⊗ | ψ2 > + | ψ2 > ⊗ | ψ1 > = 0

which is obviously false.

Let us point out two facts with respect to the above no-cloning result.

First, in the more general second proof, we did not use the fact that U
is unitary, and only made use of its linearity, when we obtained (2.8).
In the first proof, on the other hand, the fact that U is unitary was
essential in order to obtain (2.5).

Second, it is important to understand properly the meaning of the
above limitation implied by No-Cloning. Indeed, while it clearly does
not allow the copying of arbitrary qubits, it does nevertheless allow
the copying of a large range of qubits.
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For instance, in terms of the second proof, let I = { 1, . . . , n } be
the set of indices of the respective orthonormal basis

| ψ1 >, . . . , | ψn > ∈ Cm

Further, let us consider the partially defined function

c : I × I −→ I × I

given by c (i, 1) = (i, i), with 1 ≤ i ≤ n. Then clearly, c is injective on
the domain on which it is defined. Therefore, c can be extended to the
whole of I × I, so as still to remain injective, and in fact, to become
bijective as well. And obviously, there are many such extensions when
n ≥ 2.

Now we can define a mapping U by

U( | ψi > ⊗ | ψj > ) = | ψk > ⊗ | ψl >

where 1 ≤ i, j ≤ n and c (i, j) = (k, l). Since c is bijective on
I × I, this mapping U will be a permutation of the respective basis in
Cm ⊗ Cm, therefore it extends in a unique manner to a linear and
unitary mapping

U : Cm ⊗ Cm −→ Cm ⊗ Cm

And now it follows that

U( | ψi > ⊗ | ψ1 > ) = | ψi > ⊗ | ψi >, 1 ≤ i ≤ n

thus indeed U is a copying machine with the ”blank sheet” | ψ1 >,
and it can copy onto this ”blank sheet” all the qubits in the given
orthonormal basis | ψ1 >, . . . , | ψn > of Cm. And in any such basis,
with the exception of the fixed ”blank sheet” | ψ1 >, all the other
qubits | ψ2 >, . . . , | ψn > are arbitrary, within the constraint that
together they have to form an orthonormal basis.

Returning now to the extended situation in (2.2), we obtain the fol-
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lowing No-Cloning property

Theorem 2.1. ( Extended No-Cloning )

Given any extended quantum register HF , n, and ψ1, . . . , ψm ∈ (CF)m

orthonormal vectors, where n,m ≥ 2. Then there does not exist any
linear operator

(2.11) U : (CF)m ⊗ (CF)m −→ (CF)m ⊗ (CF)m

such that

(2.12) U(ψ ⊗ ψ1 ) = ψ ⊗ ψ, ψ ∈ Cm

Proof.

We note that the relations (2.7) - (2.10) extend easily to (2.11), (2.12).

Appendix

For convenience, we shall recall in a particular case the construction,
[4-11], as reviewed in [12, pp. 3-6], of reduced power algebras. Given
any filter F on N, we define

(A.1) IF = { v = (vn)n∈N ∈ RN | { n ∈ N | vn = 0 } ∈ F }

which is a proper ideal in the algebra RN. Thus we obtain the reduced
power algebra associated to F as the quotient algebra

(A.2) RF = RN/IF

Furthermore, this algebra which is commutative, is also a strict ex-
tension of the field R of the usual real numbers, according to the
embedding of algebras

(A.3) R 3 x 7−→ (x, x, x, . . .) + IF ∈ RF = RN/IF
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In a similar manner one can obtain reduced power algebras extend-
ing the field C of the usual complex numbers. Namely, let us denote by

(A.4) JF = { w = (wn)n∈N ∈ CN | { n ∈ N | wn = 0 } ∈ F }

which is a proper ideal in the algebra CN. Thus we obtain the reduced
power algebra associated to F as the quotient algebra

(A.5) CF = CN/JF

Furthermore, this algebra which is commutative, is also a strict ex-
tension of the field C of the usual complex numbers, according to the
embedding of algebras

(A.6) C 3 z 7−→ (z, z, z, . . .) + JF ∈ CF = CN/JF

We now establish a natural connection between the algebras RF and
CF .

In this regard, we note the following connection between the ideals IF
and JF . Namely

(A.7)
w = (wn = un + ivn)n∈N ∈ JF ⇐⇒

⇐⇒ u = (un)n∈N, v = (vn)n∈N ∈ IF
where un, vn ∈ R. It follows that we have the algebra homomorphisms

(A.8)
Re : CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ u = (un)n∈N + IF ∈ RF

(A.9)
Im : CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ v = (vn)n∈N + IF ∈ RF
as well as the algebra embeddings

(A.10) RF 3 u = (un)n∈N + IF 7−→ u = (un)n∈N + JF ∈ CF
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(A.11) RF 3 v = (vn)n∈N + IF 7−→ iv = (ivn)n∈N + JF ∈ CF

Let us also define the surjective linear mapping

(A.12)
CF 3 w = (wn = un + ivn)n∈N + JF 7−→

7−→ w = (wn = un − ivn)n∈N + JF ∈ CF
As a consequence, we obtain

(A.13) w = (wn = un+ivn)n∈N +JF ∈ CF , w = w =⇒ w ∈ RF

Lastly, we can define the absolute value on CF , by the mapping

(A.14)

CF 3 z = (wn = un + ivn)n∈N + JF 7−→

7−→ |z| = (|wn| =
√

(u2
n + v2

n))n∈N + IF ∈ RF
Let us denote

(A.15) R+
F = { u = (un)n∈N + IF ∈ RF | { n ∈ N | un ≥ 0 } ∈ F }

then we obtain the surjective mapping

(A.16) CF 3 z 7−→ |z| ∈ R+
F

and for z ∈ CF , we have

(A.17) |z| = 0 ⇐⇒ z = 0

Now, in view of (A.8), (A.9), (A.14), we have for z ∈ CF the relations

(A.18) |Re z |, | Im z | ≤ | z |

where the partial order ≤ is defined on CF by

(A.19) u ≤ v ⇐⇒ v − u ∈ R+
F

Lastly, for m ≥ 1, we define an extended scalar product
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(A.20) <,> : (CF)m × (CF)m −→ CF

by

(A.21) < (z1, . . . , zm), (w1, . . . , wm) > = z1w1 + . . .+ zmwm ∈ CF

for ψ = (z1, . . . , zm), χ = (w1, . . . , wm) ∈ (CF)m.

Then this extended scalar product has the properties

(A.22) It is linear over CF , therefore also over C, in the second
argument.

(A.23) < χ,ψ > = < ψ, χ >, ψ, χ ∈ (CF)m

(A.24) < ψ,ψ > ∈ R+
F , ψ ∈ (CF)m

and for ψ ∈ (CF)m, one has

(A.25) < ψ,ψ > = 0 ⇐⇒ ψ = 0 ∈ (CF)m

Also, we have the extension of the classical Schwartz inequality

(A.26) | < ψ, χ > | ≤ < ψ,ψ >1/2 < χ, χ >1/2, ψ, χ ∈ (CF)m

Two vectors ψ, χ ∈ (CF)m are called orthogonal, if and only if <
ψ, χ > = 0.

Two orthogonal vectors ψ, χ ∈ (CF)m are called orthonormnal, if and
only if < ψ,ψ > = < χ, χ > = 1.
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