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Abstract: We combine both amplitude and texture statistics of the Synthetic
Aperture Radar (SAR) images for classification purpose. We use Nakagami
density to model the class amplitudes and a non-Gaussian Markov Random
Field (MRF) texture model with t-distributed regression error to model the
textures of the classes. A non-stationary Multinomial Logistic (MnL) latent
class label model is used as a mixture density to obtain spatially smooth class
segments. The Classification Expectation-Maximization (CEM) algorithm is
performed to estimate the class parameters and to classify the pixels. We resort
to Integrated Classification Likelihood (ICL) criterion to determine the number
of classes in the model. We obtained some classification results of water, land
and urban areas in both supervised and unsupervised cases on TerraSAR-X, as
well as COSMO-SkyMed data.

Key-words: High resolution SAR, TerraSAR-X, COSMO-SkyMed, classifica-
tion, texture, multinomial logistic, Classification EM, Jensen-Shannon criterion
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Classification non supervisée d’images RSO
fondée sur l’amplitude et la texture à l’aide

d’une modèle multinomial latent

Résumé : Nous combinons les statistiques fondées sur l’amplitude et la texture
d’images Radar à Synthése d’Ouverture (RSO) à des fins de classification. Nous
utilisons la densité de Nakagami afin de modéliser les amplitudes des classes et
un champ de Markov non-gaussien pour modéliser la texture, en utilisant l’erreur
de régression t-distribuée afin de modéliser les textures des classes. Un modéle
non-stationnaire Logistique Multinomial (LMn) d’étiquettes de structure latente
est utilisé comme densité du mélange afin d’obtenir des segments de classe lissés
spatialement. L’algorithme de Classification Espérance-Maximisation (CEM)
est utilisé pour estimer les paramétres des classes et classer les pixels. Nous
avons recours au critère ICV (Integrated Classification Vraisemblance) pour
déterminer le nombre de classes dans le modèle. Nous avons obtenu des résultats
de classification pour l’eau, les sols et les zones urbaines dans les cas supervisé
ou non-supervisé sur des données TerraSAR-X ainsi que COSMO-SkyMed.

Mots-clés : RSO haute résolution, TerraSAR-X, COSMO-SkyMed, classi-
fication, texture, modèle logistique multinomial, Classification EM, critére de
Jensen-Shannon
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1 Introduction

The aim of image classification is to assign each pixel of the image to a class with
regard to a feature space. These features can be the basic image properties as in-
tensity or amplitude. Moreover, some more advance abstract image descriptors
as textures can also be exploited as feature. In remote sensing, image classifica-
tion finds many applications varying from crop and forest classification to urban
area extraction and epidemiological surveillance. Radar images are preferred in
remote sensing because the acquisition of the images are not affected by light
and weather conditions. First use of the radar images can be found in vegeta-
tion classification [2], [3] for instances. By the technological developments, we
are now able to work with high resolution SAR images. The scope of this study
is high resolution SAR image classification and we follow the model-based clas-
sification approach. To model the statistics of SAR images, both empirical and
theoretical probability density functions (pdfs) have been proposed [1]. Basic
theoretical multi-look models are the Gamma and the Nakagami densities for
intensity and amplitude images respectively. A recent review on the densities
used in intensity and amplitude based modelling can be found in [4]. In this
study, we work with SAR image amplitudes and consequently use the Nakagami
density in model-based classification.

Finite Mixture Model (FMM) is a suitable statistical model to represent
SAR image histogram and to perform a model-based classification [5]. One of
the first uses of FMM in SAR image classification may be found in [6]. In [7]
mixture of Gamma densities is used in SAR image processing. A combination
of different probability density functions into a FMM has been used in [8] for
medium resolution and in [9] for high resolution SAR images. In mixture mod-
els, generally, a single model density is used to represent only one feature of
the data, e.g. in SAR images, mixture of Gamma densities models the intensity
of the images. To exploit different features in order to increase classification
performance, we may combine different feature densities into a single classifier.
There are some methods to combine the outcomes of the different and inde-
pendent classifiers [32]. There are some feature selective mixture models [26],
[27], [28] to combine different features in a FMM. In this study, rather than
pixel-based mixture model, we use a block-based FMM which assembles both
the SAR amplitudes and the texture statistics into a FMM simultaneously. In
this approach, we factorize the block density using the Bayes rule in two parts
which are 1) the amplitude density based on the central pixel of the block and
2) texture density based on the conditional density of the surrounding pixels
given the central pixel.

Several texture models are used in image processing. We can list some of
them as follows: Correlated K-distributed noise is used to capture the texture
information of the SAR images in [10]. In [11], Gray Level Co-occurrence Matrix
(GLCM) [15] and semivariogram [16] textural features are resorted to classify
very high resolution SAR images (in particular urban areas). Markov Random
Fields (MRFs) are proposed for texture representation and classification in [17]
and [18]. A Gaussian MRF model which is a particular 2D Auto-Regressive
(AR) model with Gaussian regression error is proposed for texture classifica-
tion in [19]. MRF based texture models are used in optical and SAR aerial
images for urban area extraction [20], [21], [22]. In [23] and [24], Gaussian AR
texture model is resorted for radar image segmentation. In this study, we use
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a non-Gaussian MRF model for texture representation. In this AR model, we
assume that the regression error is an independent and identically distributed
(iid) Student’s t-distribution. The t-distribution is a convenient model for ro-
bust regression and it has been used in inverse problems in image processing
[25], [29], [30] and image segmentation [31] as a robust statistical model.

The secondary target in land cover classification from SAR images is to find
spatially connected and smooth class label maps. To obtain smooth and seg-
mented class label maps, a post-processing can be applied to roughly classified
pixels, but a Bayesian approach allows us to include smoothing constraints to
classification problems. Potts-Markov image model is introduced in [33] for dis-
crete intensity images. In [34] and [35], some Bayesian approaches are exploited
for SAR image segmentation. Hidden Markov chains and random fields are
used in [36] for radar image classification. [37] exploits a Potts-Markov model
with MnL class densities in hyperspectral image segmentation. A double MRFs
model is proposed in [23] for optical images to model the texture and the class
labels as two different random fields. In [38], amplitude and texture characteris-
tics are used in two successive and independent schemes for SAR multipolariza-
tion image segmentation. In our spatial smoothness model, we assign a binary
class map for each class which indicates the pixels belonging to that class. We
introduce the spatial interaction within each binary map adopting multinomial
logistic model [39]. In our logistic regression model, the probability of a pixel
label is proportional to the linear combination of the surrounding binary pixels.
If we compare the Potts-Markov image model [33] with ours, we may say that
we have K different probability density functions for binary random fields of
each class, instead of a single multi-level Gibbs distribution. The final density
of the class labels is constituted by combining K probability densities into a
multinomial density.

Defining a latent multinomial density function along with the amplitude
and the texture models, we are able to incorporate both the class probabilities
and the spatial smoothness into a single mixture model. Single models and
algorithms may be preferred to avoid the propagation of the error between
different models and algorithms.

Since our latent model is varying adaptively with respect to pixels, we ob-
tain a non-stationary FMM. Non-stationary FMMs have been introduced for
image classification in [40] and used for edge preserving image segmentation in
[41], [42]. Using hidden MRFs model, a non-stationary latent class label model
incorporated with finite mixture density is proposed in [43] for the segmentation
of brain MR images. A non-stationary latent class label model is proposed in
[44] by defining a Gaussian MRF over the parameters of the Dirichlet Com-
pound Multinomial (DCM) mixture density and in [45] by defining a MRF
over the mixture proportions. DCM density is also called multivariate Polya-
Eggenberger density and the related process is called as Polya urn process [46],
[47]. The Polya urn process is proposed to model the diffusion of a contagious
disease over a population. The idea proposed in [46] has been already used
in image segmentation [48] by assuming that each pixel label is related to an
urn which contains all the neighbor labels of the central pixel. In this way, a
non-parametric density estimation can be obtained for each pixel.

Besides the model-based classification approaches, there are also variational
approaches proposed for optical [49], [50] and SAR image classification [51].
These level set approaches are based on the well-known Mumford-Shah [52] for-
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malism in which the image pixels are fitted to a multilevel piecewise constant
function while penalizing the length of the region boundaries [53]. These ap-
proaches work well in the segmentation of the smooth images but may fail if the
images contain some strong textures and noise.

Since we utilize a non-stationary FMM for SAR image classification, we re-
sort to a kind of EM algorithm to fit the mixture model to the data. The
EM algorithm [54], [55] and its stochastic versions [56] have been used for pa-
rameter estimation in latent variable models. We use a computationally less
expensive version of EM algorithm, namely Classification EM (CEM) [57], for
both parameter estimation and classification, using the advantage of categorical
random variables. In classification step, CEM uses the Winner-Take-All prin-
ciple to allocate each data pixel to the related class according to the posterior
probability of latent class label. After the classification step of CEM, we esti-
mate the parameters of the class densities using only the pixels which belong to
that class.

Determining the necessary number of classes to represent the data and ini-
tialization are some drawbacks of the EM type algorithms. Running EM type
algorithms several times for different model orders to determine the model order
based on a criterion is a simple approach to reach a parsimonious solution. In
[58], a combination of hierarchal agglomeration [59], EM and Bayesian Infor-
mation Criterion (BIC) [60] is proposed to find necessary number of classes in
the mixture model. [61] performs a similar strategy with Component-wise EM
[62] and Minimum Message Length (MML) criterion [63, 64]. In this study, we
combine hierarchical agglomeration, CEM and ICL [65, 66] criterion to get rid
of the drawbacks of CEM.

In Section 2 and 3, the MnL mixture model and CEM algorithm are given.
The simulation results are shown in Section 5. Section 6 presents the conclusion
and future work.

2 Multinomial Logistic Mixture of Amplitude
and Texture Densities

We assume that the observed amplitude sn ∈ R+ at the nth pixel, where n ∈
R = {1, 2, . . . , N} represents the lexicographically ordered pixel index, is free
from any noise and instrumental degradation. We denote s to be the vector
representation of the entire image and sn to be the vector representation of the
d × d image block located at nth pixel. Every pixel in the image has a latent
class label. Denoting by K the number of classes, we encode the class label as
a K dimensional categorical vector zn whose elements zn,k, k ∈ {1, 2, . . . , K}
have the following properties: 1) zn,k ∈ {0, 1} and 2)

∑K
k=1 zn,k = 1. We may

write the probability of sn as the marginalization of the joint probability density
p(sn, zn|Θ, πn) = p(sn|zn, Θ)p(zn|πn), [5], as

p(sn|Θ) =
∑
zn

p(sn|zn, Θ)p(zn|πn)

=
∑
zn

K∏

k=1

[p(sn|θk)πn,k]zn,k (1)
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where πn,k = p(zn,k = 1) represent the mixture proportions and ensure that∑K
k=0 πn,k = 1. θk are the parameters of the class densities and Θ = {θ1, . . . , θK}

is the set of the parameters. By taking into consideration that zn is a cate-
gorical random vector distributed as a multinomial, and assuming that πn =
{πn,1, . . . , πn,K} is spatially invariant, (1) is reduced to classical FMM as follow

p(sn|Θ) =
K∑

k=1

p(sn|θk)πn,k (2)

We prefer to use the notation in (1) to show the contribution of the multinomial
density of class label, p(zn), into finite mixture model more explicitly. We give
the details of the class and the mixture densities in the following two sections.

2.1 Class Amplitude and Texture Densities

Our aim is to use the amplitude and the texture statistics together to classify the
SAR images. We may write the density of an image block as a joint density of
the central pixel and the surrounding pixels as p(sn|θk) = p(sn, s∂n|θk). Using
Bayes rule, we factorize the density of the image block as

p(sn|θk) = pA(sn|θk)pT (s∂n|sn, θk) (3)

In this last expression, the first and the second terms represent the amplitude
and the texture densities.

We model the class amplitudes using Nakagami density, which is a basic
theoretical multi-look amplitude model for SAR images [1]. We express the
class amplitude density as

pA(sn|µk, νk) =
2

Γ(νk)

(
νk

µk

)νk

s2νk−1
n e

(
−νk

s2n
µk

)
. (4)

We introduce a t-MRF texture model to use the contextual information for
classification. We write the t-MRF texture model using the neighbors of the
pixel in N (n)

sn =
∑

n′∈N (n)

αk,n′sn′ + tk,n (5)

where αk,n′ is the regression coefficient and the regression error tk,n is an iid
t-distributed zero-mean random variable with degree of freedom parameter βk

and scale parameters δk. In this way, we may write the class texture density as
a t-distribution such that

pT (s∂n|sn, αk, βk, δk) =
Γ((1 + βk)/2)

Γ(βk/2)(πβkδk)1/2

[
1 +

(sn − sT
∂nαk)2

βkδk

]− βk+1
2

(6)

where the vector αk contains the regression coefficients αk,n′ . The t-distribution
can also be written in implicit form using both of a Gaussian and a Gamma
densities [71]

p(s∂n|sn,αk, βk, δk) =
∫

p(s∂n|sn, αk, τn,k, δk)p(τn,k|βk)dτn,k

=
∫
N

(
sn

∣∣∣∣sT
∂nαk,

δk

τn,k

)
G

(
τn,k

∣∣∣∣
βk

2
,
βk

2

)
dτn,k. (7)
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We use the representation in (7) for calculation of the parameters using EM
method nested in CEM algorithm.

2.2 Mixture Density - Class Prior

The prior density p(zn|πn) of the categorical random variable zn is naturally
an iid multinomial density with parameters πn as introduced in (1) as

p(zn|πn) = Mult(zn|πn) =
K∏

k=1

π
zn,k

n,k (8)

We are not able to obtain a smooth class label map if we use an iid multi-
nomial. We need to use a density which models the spatial smoothness of the
class labels. We can define a prior on πn to introduce the spatial interaction.
If we define a conjugate Dirichlet prior on πn and integrate out πn from the
model, we reach the DCM density [48]. The DCM density is the density of the
Polya urn process and gives us a non-parametric density estimation in a defined
window. In case that the estimated probabilities are almost equal in that win-
dow, Polya urn model may fail to make a decision to classify the pixels. [44]
proposes a MRF model over the spatially varying parameter of DCM density.
We use a contrast function called Logistic function [39] which emphasizes the
high probabilities while attenuating the low ones. The logistic function allows
us to make an easier decision by discriminating the probabilities closed to each
other.

We can introduce the spatial interactions of the categorical random field by
defining a binary spatial auto-regression model for each binary class map (or
mask). Consequently, the probability density function of this multiple binary
class maps model is a Multinomial Logistic. If we substitute the logistic model
with parameter η in place of πn,k, we obtain MnL density for the problem at
hand as

p(zn|Z∂n, η) =
K∏

k=1

(
exp(ηvk(zn,k))∑K
j=1 exp(ηvj(zn,j))

)zn,k

(9)

where
vk(zn,k) = 1 +

∑

m∈M(n)

zm,k. (10)

and Z∂n = {zm : m ∈ M(n),m 6= n} is the set which contains the neighbors
of zn in a window M(n) defined around n. The function vk(zn,k) returns the
number of labels which belong to class k in a given window. The mixture density
in (9) is spatially-varying with given function vk(zn,k) in (10).

3 Classification EM Algorithm

Since our purpose is to cluster the observed image pixels by maximizing the
marginal likelihood given in (1) such as

{Θ̂, η̂} = max
{Θ,η}

N∏
n=1

∑
zn

p(sn|zn, Θ)p(zn|Z∂n, η) (11)
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we use an EM type algorithm to deal with the summation. The EM log-
likelihood function is written as

QEM (Θ|Θt−1) =
N∑

n=1

K∑

k=1

log{p(sn|zn,k, θk)p(zn,k|Z∂n, η)}p(zn,k|sn,Z∂n, Θt−1) (12)

where θk = {αk, βk, δk, µk, νk} and Θ = {θ1, . . . , θK , η}.
If we used the exact EM algorithm to find the maximum of Q(Θ|Θt−1) with

respect to Θ, we would need to maximize the parameters for each class given
the expected value of the class labels. Instead of this, we use the advantage
of working with categorical random variables and resort to Classification EM
algorithm [57]. We can partition the pixel domain R into K non-overlapped
regions such that R =

⋃K
k=1Rk and Rk

⋂Rl = 0, k 6= l. We can write the
classification log-likelihood function as

QCEM (Θ|Θt−1) =
K∑

k=1

∑

m∈Rk

log{p(sm|zm,k, θk)p(zm,k|Z∂m, η)}p(zm,k|sn,Z∂n,Θt−1) (13)

The CEM algorithm incorporates a classification step between the E-step and
the M-step which performs a simple Maximum-a-Posteriori (MAP) estimation to
find the highest probability class label. Since the posterior p(zn,k|sn,Z∂n,Θt−1)
is a discrete probability density function of a finite number of classes, we can
perform the MAP estimation by choosing the maximum class probability. We
summarize the CEM algorithm for our problem as follows:

E-step: For k = 1, . . . , K and n = 1, . . . , N , calculate the posterior proba-
bilities

p(zn,k|sn,Z∂n, Θt−1) = p(sn|θt−1
k )zn,k

exp(ηt−1vk(zn,k))∑K
j=1 exp(ηt−1vj(zn,j))

(14)

given the previously estimated parameter set Θt−1 using (4), (6) and (3).
C-step: For n = 1, . . . , N , classify the nth pixel into class j as zn,j = 1

by choosing j which maximizes the posterior p(zn,k|sn,Z∂n, Θt−1) over k =
1, . . . , K as

j = arg max
k

p(zn,k|sn,Z∂n,Θt−1) (15)

M-step: To find a Bayesian estimate, maximize the classification log-likelihood
in (13) and the log-prior functions log p(Θ) together with respect to Θ as

Θt−1 = arg max
Θ
{QCEM (Θ|Θt−1) + log p(Θ)} (16)

To maximize this function, we alternate among the variables µk, νk, αk,
βk and δk. We only define an inverse Gamma prior with mean 1 for βk ∼
IG(βk|Nk, Nk) where Nk is the number of pixels in class k. We choose this prior
among some positive densities by testing their performance in the simulations.
We have obtained better results with small values of βk. This prior ensures βk
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to take a value around 1. We assume uniform priors for the other parameters.
The functions of the amplitude parameters over all pixels are written as follows

Q(µk; Θt−1) = −Nkνk log µk − νk

µk

∑

n∈Rk

s2
n (17)

Q(νk; Θt−1) = Nkνk log νk

µk
−Nk log Γ(νk)+

(2νk − 1)
∑

n∈Rk
log sn − νk

µk

∑
n∈Rk

s2
n

(18)

We estimate the texture parameters using another sub-EM algorithm nested
within CEM. The nested EM algorithm has already been studied in [70]. We can
express the t-distribution as a Gaussian scale mixture of gamma distributed la-
tent variables τn,k. Thereby, the EM log-likelihood functions of the t-distribution
in (6) are written as [71], [30]

Q(αk; Θt−1) = −
∑

n∈Rk

(sn − sT
∂nαk)2

2δk
〈τn,k〉 (19)

Q(δk; Θt−1) = −Nk

2
log δk −

∑

n∈Rk

(sn − sT
∂nαk)2

2δk
〈τn,k〉 (20)

Q(βk; Θt−1) =

−Nk log Γ(
βk

2
) +

Nkβk

2
log

βk

2
− Nk

βk

−
∑

n∈Rk

〈τn,k〉βk

2

(
1 +

(sn − sT
∂nαk)2

2δkβk

)

+
∑

n∈Rk

(
βk

2

)
〈log τn,k〉 − (Nk + 1) log βk (21)

where 〈τn,k〉 is the posterior expectation of the gamma distributed latent vari-
able and calculated as

〈τn,k〉 =
βk + 1

βk

(
1 +

(sn − sT
∂nαk)2

βkδk

)−1

(22)

For simplicity, we use 〈.〉 to represent the posterior expectation 〈.〉τn,k|Θt−1 .
The solutions to (17), (19) and (20) can be easily found as

µk =
1

Nk

Nk∑
n=1

s2
n (23)

αk = (ST
∂ S∂)−1ST

∂ s (24)

δk =
Nk∑
n=1

(sn − φT
nαk)2

Nk
〈τn,k〉 (25)

where S∂ is N × d2 − 1 matrix whose columns are s∂n’s. For (18) and (21),
we use a zero finding method to determine their maximum [72] by setting their
first derivatives to zero

log
νk

µk
− ψ1(νk) +

2
Nk

Nk∑
n=1

log sn = 0 (26)
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log
βk

2
− ψ1(

βk

2
) + 1 +

1
Nk

Nk∑
n=1

〈log τn,k〉 − 〈τn,k〉 − Nk + 1
βk

+
Nk

β2
k

= 0 (27)

The parameter η of the MnL class label is found by maximizing the following
function

Q(η; Θt−1) =
N∑

n=1


ηvk(zn,k)− log

K∑

j=1

eηvj(zn,j)


 (28)

We use a Newton-Raphson iteration to fit η as

ηt = ηt−1 − 1
2
∇Q(η; Θt−1)
∇2Q(η; Θt−1)

(29)

where the operators ∇· and ∇2· represent the gradient and the Laplacian of the
function with respect to η.

4 Algorithm

In this section, we present the details of the unsupervised classification algo-
rithm. Our strategy follows the same general philosophy as the one proposed in
[59] and developed for mixture model in [58, 61]. We start the CEM algorithm
with a large number of classes, K = Kmax, and then we reduce the number of
classes to K ← K − 1 by merging the weakest class in probability to the one
that is most similar to it with respect to a distance measure. The weakest class
may be found using the average probabilities of each class as

kweak = arg min
k

1
Nk

∑

n∈Rk

p(zn,k|sn,Z∂n,Θt−1) (30)

Kullback-Leibler (KL) type divergence criterions are used in hierarchical
texture segmentation for region merging [73]. We use a symmetric KL type dis-
tance measure called Jensen-Shannon divergence [74] which is defined between
two probability density functions, i.e. pkweak

and pk, k 6= kweak, as

DJS(k) =
1
2
DKL(pkweak

||q) +
1
2
DKL(pk||q) (31)

where q = 0.5pkweak
+ 0.5pk and

DKL(p||q) =
∑

k

p(k) log
p(k)
q(k)

(32)

We find the closest class to kweak as

l = arg min
k

DJS(k) (33)

and merge these two classes to constitute a new class Rl ←Rl

⋃Rkweak
.

We repeat this procedure until we reach the predefined minimum number of
classes Kmin. We determine the necessary number of classes by observing the
ICL criterion explained in Section 4.3. The details of the initialization and the
stopping criterion of the algorithm are presented in Section 4.1 and 4.2. The
summary of the algorithm can be found in Table 1
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Table 1: Unsupervised CEM algorithm for classification of amplitude and tex-
ture based mixture model.

Initialize the classes defined in Section 4.1 for K = Kmax.
While K ≥ Kmin, do

η = c, c ≥ 0
While the number of changes > N × 10−3, do

E-step: Calculate the posteriors in (14)
C-step: Classify the pixels regarding to (15)
M-step: Estimate the parameters of amplitude and tex-
ture densities using (22-27)
Update the smoothness parameter η using (29)

Find the weakest class using (30)
Find the closest class to the weakest class using (31-33)
Merge these two classes Rl ←Rl

⋃Rkweak

K ← K − 1

4.1 Initialization

The algorithm can be initialized by determining the class areas manually in case
that there are a few number of classes. We suggest to use an initialization strat-
egy for completely unsupervised classification. It removes the user intervention
from the algorithm and enables to use the algorithm in case of large number
of classes. First, we run the CEM algorithm for one global class. Using the
cumulative distribution of the fitted Nakagami density g = FA(sn|µ0, ν0) where
g ∈ [0, 1] and dividing [0, 1] into K equal bins, we can find our initial class
parameters as µk = F−1

A (gk|µ0, ν0), k = 1, . . . , K where gk’s are the centers of
the bins. We initialize the other parameters using the estimated parameters of
the global class. We reset the parameter η to a constant c after reducing the
number of classes.

4.2 Stopping Criterion

We observe the number of changes in the updated pixel labels after classification
step to decide the convergence of the CEM algorithms. If the number of change
is less then a threshold, i.e. N × 10−3, the CEM algorithm is stopped.

4.3 Choosing the Number of Classes

The SAR images which we used have a small number of classes. We aim at
validating our assumption on small number of classes using the Integrated Clas-
sification Likelihood (ICL) [66]. Even though BIC is the most used and the
most practical criterion for large data sets, we prefer to use ICL because it is
developed specifically for classification likelihood problem, [65], and we have
obtained better results than BIC in the determination of the number of classes.
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In our problem, the ICL criterion may be written as

ICL(K) =
N∑

n=1

K∑

k=1

log{p(sn|θ̂k)ẑn,kp(ẑn,k|Ẑ∂n, η̂)} − 1
2
dK log N + P (K) (34)

where dK is the number of free parameters. In our case, it is dK = 12 ∗K + 1.
The term P (K) is formed by the logarithm of the prior distribution of the
parameters. In our case, it is P (K) =

∑K
k=1 log IG(β̂k|Nk, Nk). We also use

the BIC criterion for comparison. It can be written as

BIC(K) =
N∑

n=1

log

(
K∑

k=1

p(sn|θ̂k)p(zn,k|Z∂n, η̂)

)
− 1

2
dK log N + P (K) (35)

5 Simulation Results

This section presents the high resolution SAR image classification results of the
proposed method called ATML-CEM (Amplitude and Texture density mixtures
of MnL with CEM), compared to the corresponding results obtained with other
methods. The competitors are Dictionary-based Stochastic EM (DSEM) [9],
Copulas-based DSEM with GLCM (CoDSEM-GLCM) [11], Multiphase Level
Set (MLS) [67], [68] and K-MnL. We have also tested three different versions
of ATML-CEM method. One of them is supervised ATML-CEM [69] where
training and testing sets are determined by selecting some spatially disjoint
class regions in the image, and we run the algorithm twice for training and
testing. We implement the other two versions by considering only Amplitude
(AML-CEM) or only Texture (TML-CEM) statistics.

MLS method is based on the piecewise constant multiphase Chan-Vese model
[53] and implemented by [67], [68]. In this method, we set the smoothness
parameter to 2000 and step size to 0.0002 for all data sets. We tune the number
of iteration to reach the best result. The K-MnL method is the sequential
combination of K-means clustering for classification and Multinomial Logistic
label model for segmentation to obtain a more fair comparison with K-means
clustering since K-means does not provide a segmented map. The weak point of
the K-means algorithm is that it does not converge to the same solution every
time, since it starts with random seed. Therefore, we run the K-MnL method
20 times and select the best result among them.

We tested the algorithms on the following four SAR image patches:

� SYN: 200 × 200 pixels, synthetic image constituted by collating 4 different
100 × 100 patches from TSX1 image. The small patches are taken from
water, urban, land and forest areas (see Fig. 2(a)).

� TSX1: 1200 × 1000 pixels, HH polarized TerraSAR-X Stripmap (6.5 m
ground resolution) 2.66-look geocorrected image which was acquired over
Sanchagang, China (see Fig. 4(a)). ©Infoterra.

� TSX2: 900 × 600 pixels, HH polarized, TerraSAR-X SpotLight (8.2 m
ground resolution) 4-look image which was acquired over the city of Rosen-
heim in Germany (see Fig. 6(a)). ©Infoterra.
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Table 2: Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsu-
pervised (U) classification of SYN image for 4 classes and in average.

water urban trees land average

ATML-CEM (S) 99.02 99.46 99.28 99.30 99.27

K-MnL (Ss) 96.58 80.18 99.60 90.32 91.92
MLS (Ss) 100.00 60.46 1.13 42.55 51.03

AML-CEM (U) 97.53 97.89 97.72 94.57 96.93
TML-CEM (U) 98.18 81.10 85.79 88.72 88.45

ATML-CEM (U) 97.74 97.61 97.73 94.81 96.97

� CSK1: 672 × 947 pixels, HH polarized COSMO-SkyMed Stripmap (2.5 m
ground resolution) single-look image which was acquired over Lombriasco,
Italy (see Fig. 9(a)). ©ASI.

For all real SAR images (TSX1, TSX2 and CSK1) classified by ATML-CEM
versions, we use the same setting for model and initialization. The sizes of
the windows for texture and label models are selected to be 3×3 and 13×13
respectively by trial and error. For synthetic SAR image (SYN), we utilize
a 21×21 window in MnL label model and a 3×3 window in texture model.
We initialize the algorithm as described in Section 4.1 and estimate all the
parameters along the iterations.

We produce SYN image to test the performance of the unsupervised ATML-
CEM algorithm in the estimation of the number of classes, because the real
images may contain more classes than our expectations and choosing different
classes by eyes to construct a ground-truth is very hard if the number of classes
is high. From Fig. 1(a), we can see that the ICL and BIC plots have their first
peaks at 4. The outcomes of the algorithm for different number of classes can
be seen in Fig. 3. The numerical results are listed in Table 2. For supervised
case, we allocate 25% of the data for training and 75% for testing. The similar
results of AML-CEM and ATML-CEM show that the contribution of texture
information is very weak in this data set. From Fig. 2, we can see that the
classification map of ATML-CEM is obviously better than those of K-MnL,
MLS and TML-CEM.

For TSX1 image in Fig.4(a), the full ground-truth map (Courtesy of V.
Krylov) is manually generated. Fig.4 shows the classification results where
the red colored regions indicate the misclassified parts according to 3-classes
ground-truth map. We can see the plotted ICL and BIC values with respect
to the number of classes in Fig. 1(b). The plots are increasing, but the in-
crements in both ICL and BIC start to slow down at 3. Fig. 5 shows several
classification maps found for different numbers of classes. Since we have the
3-classes ground-truth map, we compare our results numerically in the 3-classes
case. The numerical accuracy results are given in Table 3. While supervised
ATML-CEM gives the better result in average, unsupervised ATML-CEM and
supervised DSEM-MRF follow it. Among the semi-supervised and unsupervised
methods, the performance of ATML-CEM is better than the others in average,
but results of K-MnL and AML-CEM are close to its results.

From the experiment with TSX1 image, we realize that if the image does not
have strong texture, we cannot benefit from including texture statistics into the
model. To reveal the advantage of using texture model, we exploit the ATML-
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Figure 1: ICL and BIC values of the classified (a) SYN (b) TSX1, (c) TSX2
and (d) CSK1 images for several numbers of sources.

Table 3: Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsu-
pervised (U) classification of TSX1 image in water, wet soil and dry soil areas
and average.

water wet soil dry soil average

DSEM-MRF (S) 90.00 69.93 91.28 83.74
ATML-CEM (S) 89.88 76.38 87.33 84.53

K-MnL (Ss) 89.71 86.13 72.42 82.92
MLS (Ss) 87.90 66.19 42.48 65.53

AML-CEM (U) 88.24 62.99 96.39 82.54
TML-CEM (U) 51.61 65.89 91.90 69.80

ATML-CEM (U) 87.93 65.58 95.55 83.02

CEM algorithm for urban area extraction problem on TSX2 image in Fig. 6(a).
Table 4 lists the accuracy of the classification in water, urban and land areas
and average according to a groundtruth class map (Courtesy of A. Voisin). We
include the result of CoDSEM-GLCM [11] which is the extended version of
the DSEM method by including texture information. In both supervised and
unsupervised cases, ATML-CEM provides better results than the others. The
combination of the amplitude and the texture features helps to increase the
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(a) SYN image (b) K-MnL

(c) MLS (d) Supervised ATML-CEM

(e) Unsupervised ATML-CEM

Figure 2: (a) SYN image, (b), (c) and (d) classification maps obtained by K-
MnL, MLS, supervised and unsupervised ATML-CEM methods. Dark blue,
light blue, yellow and red colors represent class 1 (water), class 2 (urban), class
3 (trees) and class 4 (land), respectively.
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(a) K = 3 (b) K = 4

(c) K = 6 (d) K = 10

Figure 3: Classification maps of SYN image obtained with unsupervised ATML-
CEM method for different numbers of classes K = {3,4,5,10}.

quality of classification in average. From Fig. 6, we can see that the MLS
and K-MnL methods fail to classify the urban areas. MLS provides a noisy
classification map. The classification map of ATML-CEM agglomerates the
tree and hill areas into urban area, since their textures are more similar to
urban texture than the others. Misclassification in water areas is caused by the
dark shadowed regions. Fig. 1(c) shows the ICL and BIC values. From this
plot, we can see that the necessary number of classes should be 3, since both
plots are saturated after 3. Fig. 7 presents the classification maps for 3-, 5-, 7-
and 12-classes cases.

We have tested ATML-CEM on another patch called CSK1 (see Fig. 9(a)).
Tab. 5 lists the numerical results. Among the supervised methods, ATML-CEM
is very successful. Since this SAR image is a single-look observation, the noise
level is higher than in the other images. We can obtain some good unsupervised
classification results after applying a denoising process. Among the Lee, Frost
and Wiener filters, we prefer using a 2D adaptive Wiener filter with 3 × 3
window proposed in [75], because we obtain better classification results. In Fig.
8, we show the histogram of the intensity of the CSK1 image before and after
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(a) TSX1 image (b) MLS

(c) K-MnL (d) Supervised ATML-CEM

(e) Unsupervised ATML-CEM

Figure 4: (a) TSX1 image, (b), (c) and (d) classification maps obtained by
K-MnL, MLS, supervised and unsupervised ATML-CEM methods. Dark blue,
light blue, yellow and red colors represent water, wet soil, dry soil and misclas-
sified areas, respectively.
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(a) K = 2 (b) K = 3

(c) K = 5 (d) K = 8

Figure 5: Classification maps of TSX1 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {2,3,5,8}.

Table 4: Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsu-
pervised (U) classification of TSX2 image in water, urban and land areas and
overall.

water urban land average

CoDSEM-GLCM (S) 91.28 98.82 93.53 94.54
DSEM (S) 92.95 98.32 81.33 90.87

ATML-CEM (S) 98.60 97.56 94.78 96.98

K-MnL (Ss) 100.00 79.03 80.33 86.45
MLS (Ss) 89.47 35.62 84.71 69.93

AML-CEM (U) 92.36 98.29 80.97 90.54
TML-CEM (U) 89.88 96.18 72.32 86.12

ATML-CEM (U) 94.17 98.76 80.93 91.29

denoising to justify that our Nakagami/Gamma density assumption is still valid
after denoising. CSK1 is an 8-bits image and we plot its intensity histogram
between 0 and 254 to demonstrate two histograms in a comparable case. ATML-
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(a) TSX 1 (b) MLS

(c) K-MnL (d) Supervised ATML-CEM

(e) Unsupervised ATML-CEM

Figure 6: (a) TSX2 image, (b), (c) and (d) classification maps obtained by K-
MnL, MLS, supervised ATML-CEM and unsupervised ATML-CEM methods.
Blue, red and green colors represent water, urban and land areas, respectively.

CEM provides significantly better results in overall, see Fig. 9 and Table 5. The
results in Fig. 9 are found for 3-classes case, since we have the 3-classes ground-
truth map. The optimum number of classes is found as 5 according to ICL
criterion, see Fig. 1(d). Fig. 10 shows some classification maps for different
numbers of classes.

The simulations were performed on MATLAB platform on a PC with Intel
Xeon, Core 8, 2.40 GHz CPU. The number of iterations and total required
time in minutes for the algorithm are shown in Table 6. We also present the
required time in seconds for a single iteration in case of the number of classes
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(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 15

Figure 7: Classification maps of TSX2 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {3,5,7,12}.
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(b) Histogram after denoising

Figure 8: Histograms of the intensity of the CSK1 image (a) before and (b)
after denoising.

K = {3, 6, 9, 12}. The algorithm reaches a solution in a reasonable time, if we
take into consideration that more or less a million of pixels are processed.
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Table 5: Accuracy (in %) of the supervised (S), semi-supervised (Ss) and unsu-
pervised (U) classification of CSK1 image in water, urban and land areas and
overall. Note that unsupervised classification results are obtained after denois-
ing.

water urban land average

CoDSEM-GLCM (Sup.) 95.28 98.67 98.50 97.48
DSEM (Sup.) 97.74 98.90 81.80 92.82

ATML-CEM (Sup.) 99.76 99.96 99.62 99.78

K-MnL (Unsup.) 99.99 63.39 52.14 71.84
MLS (Semi-sup.) 99.97 26.04 80.42 68.81

AML-CEM (Unsup.) 99.06 47.08 27.66 57.93
TML-CEM (Unsup.) 98.88 96.69 77.84 91.14

ATML-CEM (Unsup.) 99.64 93.00 92.04 94.89

Table 6: The number of pixels of TSX1, TSX2 and CSK1; Corresponding re-
quired time in seconds for a single iteration in case of K = {2, 4, 6, 8}; Total
required time in minutes; and Total number of iterations.

# of pixels K = 8 K = 6 K = 4 K = 2 Total [min.] Total it.

TSX1 1200e+3 7.04 6.18 4.62 3.55 5.07 57
TSX2 540e+3 2.83 2.31 1.89 1.58 3.97 110
CSK1 636e+3 3.52 3.42 2.65 2.13 2.42 50

6 Conclusion and Future Work

We have proposed a Bayesian model which uses amplitude and texture features
together in a FMM along with nonstationary latent class labels. Using these
two features together in the model, we obtain better high resolution SAR image
classification results, especially in the urban areas.

Furthermore, using an agglomerative type unsupervised classification method,
we eliminate the negative effect of the latent class label initialization. According
to our experiments, the larger number of classes we start the algorithm with,
the more initial value independent results we obtain. Consequently, the com-
putational cost is increased as a by-product. The ICL criterion which we prefer
over BIC does not always indicate the number of classes noticeably. In some
cases it has several peaks very close to each others. In these cases, since we
search the smallest number of classes, we can observe the first peak of ICL to
take a decision on the number of classes. More complicated approaches may be
investigated for model order selection for a future study. Variational Bayesian
approach can be investigated defining some hyper-priors and tractable densi-
ties for the parameters of the Nakagami and t-distribution. Monte Carlo based
non-parametric density estimation methods can be also exploited in order to
determine the optimum number of classes.

The speckle type noise has impaired the algorithm especially in single-look
observation case. The statistics of the speckle noise may be included to the
proposed model in order to obtain better classification/segmentation in case of
low signal to noise ratio.
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(a) CSK1 image (b) MLS

(c) K-MnL (d) Supervised ATML-CEM

(e) Unsupervised ATML-CEM

Figure 9: (a) CSK1 image, (b), (c) and (d) classification maps obtained by K-
MnL, supervised and unsupervised ATML-CEM methods. Blue, red and green
colors represent water, urban and land areas, respectively.
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(a) K = 3 (b) K = 5

 

 

(c) K = 6 (d) K = 12

Figure 10: Classification maps of CSK1 image obtained with unsupervised
ATML-CEM method for different numbers of classes K = {3,5,6,12}.
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