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Abstract

Altenbernd, Thomas and Wohrle have considered in [ATW@8atance
of languages of infinite two-dimensional words (infinitetpies) by finite
tiling systems, with the usual acceptance conditions, ssctine Biichi and
Muller ones, firstly used for infinite words. Many classicalcision prob-
lems are studied in formal language theory and in automataryrand arise
now naturally about recognizable languages of infiniteypaet. We first
review in this paper some recent results of [Fin09b] wherayaxe the ex-
act degree of numerous undecidable problems for Buclogrzable lan-
guages of infinite pictures, which are actually located atfifst or at the
second level of the analytical hierarchy, and “highly unidable”. Then we
prove here some more (high) undecidability results. We $insiv that it is
I13-complete to determine whether a given Biichi-recogniédiguages of
infinite pictures is unambiguous. Then we investigate caldy problems.
Using recent results of [FLO9], we prove that it/ (31)-complete to de-
termine whether a given Bichi-recognizable languagefafite pictures is
countably infinite, and that it i¥£}-complete to determine whether a given
Bichi-recognizable language of infinite pictures is umtable. Next we
consider complements of recognizable languages of infiiteires. Using
some results of Set Theory, we show that the cardinality efdbmple-
ment of a Biichi-recognizable language of infinite picturesy depend on
the model of the axiomatic systeAC. We prove that the problem to de-
termine whether the complement of a given Biichi-recodné&danguage
of infinite pictures is countable (respectively, uncoufdalis in the class
¥i\ (I3 U 23) (respectively, in the clasd} \ (I13 U X3)).
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1 Introduction

Languages of infinite words accepted by finite automata wese dtudied by
Biichi to prove the decidability of the monadic second ottieory of one suc-
cessor over the integers. Since then regulainguages have been much studied
and many applications have been found for specification anfication of non-
terminating systems, see [Tho90, PP04] for many resultsefedences.

Altenbernd, Thomas and Wohrle have considered in [ATW@8katance of lan-
guages of infinite two-dimensional words (infinite pictyreg finite tiling sys-
tems, with the usual acceptance conditions, such as thikiBiad Muller ones,
firstly used for infinite words. This way they extended both ¢hassical theory of
w-regular languages and the classical theory of recogrezablguages of finite
pictures, [GR97], to the case of infinite pictures.

Many classical decision problems are studied in formal leagg theory and in
automata theory and arise now naturally about recognizabfgiages of infinite
pictures.

In a recent paper, we gave the exact degree of numerous datéxproblems for
Buchi-recognizable languages of infinite pictures. Irtipatar, the non-emptiness
and the infiniteness problems aré-complete, and the universality problem, the
inclusion problem, the equivalence problem, the compleai®iity problem, and
the determinizability problem, are dll-complete. These decision problems are
then located at the first or at the second level of the analytierarchy, and
“highly undecidable”. This gave new natural examples ofislen problems lo-
cated at the first or at the second level of the analyticabinodry.

Here we first review some of these results, and we study neisidegroblems,
obtaining new results of high undecidability.

We first consider the notion of unambiguous Biichi tilingteys, and of unam-
biguous Biichi-recognizable language of infinite pictur&¥e show that every
language of infinite pictures which is accepted by an unaothig Biichi tiling
system is a Borel set. As a corollary this shows the existehaeherently am-
biguous Bichi-recognizable language of infinite pictufdsen we use this result



to prove that it isI1}-complete to determine whether a given Biichi-recognizabl
language of infinite pictures is unambiguous.

Next we study cardinality problems. Using recent resultBiokel and Lecomte

in [FLO9], we first show that it isD,(331)-complete to determine whether a given
Buichi-recognizable language of infinite pictures is cabiy infinite, whereD, (31)

is the class of-differences of1-sets, i.e. the class of sets which are intersections
of aXi-set and of dli-set. And it isXi-complete to determine whether a given
Buchi-recognizable language of infinite pictures is undable.

Then we consider the complements of Buchi-recognizalsiguages of infinite
pictures. By using some results of Set Theory, we show tleataindinality of the
complement of a Buchi-recognizable language of infinitetypies may depend
on the actual model of the axiomatic syst&mC. We prove that one can effec-
tively construct a Buchi tiling systeri accepting a language C >, whose
complementid.” = >** — [, such that:

1. There is a moddl; of ZFC in which L~ is countable.
2. There is a modél, of ZFC in which L~ has cardina®™.

3. There is a modél; of ZFC in which L~ has cardinal; with X, < X; <
A

Then, using the proof of this result and Schoenfield’s Abssless Theorem, we
prove that the problem to determine whether the complemfeaitgiven Biichi-
recognizable language of infinite pictures is countablgpgeetively, uncountable)
is in the class2! \ (T3 U 333) (respectively, in the clasg} \ (I1} U 21)). This
shows that natural cardinality problems are actually ledatt thethird level of
the analytical hierarchy.

The paper is organized as follows. We recall in Sectiahe notions of tiling
systems and of recognizable languages of pictures. Inosegtiwe recall the
definition of the analytical hierarchy on subset®\ofThe definitions of the Borel
hierarchy and of analytical sets of a Cantor space, alorgtwéir effective coun-
terparts, are given in Sectign Some notions of Set Theory, which are useful in
the sequel, are exposed in SectionWe study decision problems in Secti6n
proving new results. Some concluding remarks are given oti@e?.

2 Tiling Systems

We assume the reader to be familiar with the theory of formadldnguages
[Tho90, Sta97]. We recall usual notations of formal langugmgory.
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When X is a finite alphabet, mon-empty finite woraver X is any sequence
T = ap...ax, Wherea; € Y fori = 1,...,k, andk is an integer> 1. The
lengthof z is k, denoted byz|. Theempty worchas no letter and is denoted by
A; its length is0. ¥* is theset of finite wordgincluding the empty word) ovexr.
Thefirst infinite ordinalis w. An w-word overY is anw -sequence; ...a, .. .,
where for all integers > 1, a; € . Wheno is anw-word overy, we writeo =
o(1)o(2)...0(n)...,whereforalli, (i) € ¥, ando[n| = o(1)o(2) ...o(n) for
alln > 1ando[0] = .

The usual concatenation of two finite wordsandv is denoted:.v (and some-
times justuv). This product is extended to the product of a finite wardnd an
w-wordv: the infinite wordu.v is then thev-word such that:

(uwv)(k) = u(k)if k < |u|, and(u.v)(k) = v(k — |ul) if k> |ul.

The set of w-words over the alphabet is denoted by-“. An w-languageover
an alphabek is a subset oE>.

We now define two-dimensional words, i.e. pictures.

Let X be a finite alphabet, let be a letter not irt and lets = LU {#}. If m and

n are two positive integers or i = n = 0, a picture of sizém,n) overX is a
functionp from {0,1,...,m~+1} x{0,1,...,n+1} into X such thap(i, j) = #

ifi € {0,m+1}orj € {0,n+1}andp(i,j) € ¥ otherwise. The empty picture is
the only picture of siz¢€0, 0) and is denoted by. Pictures of sizén, 0) or (0,n),

for n > 0, are not definedx** is the set of pictures ovet. A picture language

L is a subset oE**. The research on picture languages was firstly motivated by
the problems arising in pattern recognition and image [@siog, a survey on the
theory of picture languages may be found in [GR97].

An w-picture overs is a functionp fromw x w into 3 such thap(i, 0) = p(0,i) =
# foralli > 0andp(i,j) € ¥ fori,j > 0. X¥ is the set ofu-pictures oved..
An w-picture languagé. is a subset oE“~.

For Y. a finite alphabet we call“” the set of functions fromy x w into . So the
setX«« of w-pictures ovet is a strict subset af”.

We shall say that, for each integer> 1, the 5" row of anw-picturep € X«
is the infinite wordp(1, j).p(2,7).p(3, ) ... overX and thej** column ofp is the
infinite wordp(7, 1).p(j, 2).p(4,3) ... overx.

As usual, one can imagine that, for integgrs k& > 1, thej* column ofp is on
the right of thek™ column ofp and that thg*" row of p is “above” thek row of

P-

We introduce now (non deterministic) tiling systems as mphaper [ATWO03].
A tiling system is a tAupIe4=(Q, ¥, A), where( is a finite set of states, is a
finite alphabetA C (3 x Q)* is a finite set of tiles.

4



A Biuchi tiling system is a paif.A,F') whereA=(Q, X, A) is a tiling system and
F C (@ is the set of accepting states.

A Muller tiling system is a paif.A, F) whereA=(Q, %, A) is a tiling system and
FC 29 is the set of accepting sets of states.

Tiles are denoted b( 233’ Z?’g EZ‘*’ Z“g ) with ¢, € ¥ andg; € Q,
1541 25 42

bs by

and in general, over an alphaligtby b b
1 2

A combination of tiles is defined by:

by by ) . ( by b ) _ ( (bs, bs)  (ba, b)) )
bi by by b (b1,0y) (b2, b))
A run of a tiling systemA=(Q, 3, A) over a (finite) picturey of size(m, n) over

Yisamapping from{0,1,...,m+ 1} x {0,1,...,n+ 1} into @ such that for
all (4,5) € {0,1,...,m} x {0,1,...,n} with p(¢, j) = a,; andp(i, j) = ¢; ; we

have
( Qi j+1  Qit+1,5+1 ) o ( Gij+1  Git1,5+1 ) c A
Qi j QAi+1,5 di,j qi+1,j
A run of a tiling system4=(Q), >, A) over anw-picturep € ¥““ is a mapping

p from w x w into @ such that for all(i, j) € w x w with p(i,j) = a;; and
p(i,7) = ¢;,; we have

@ij+1 Qitlj+1 ) O Qg+l Qitlj+1 c A
@i,j Q1,5 Qi.j Qit1,j
We now recall acceptance of finite or infinite pictures byglsystems:

Definition 2.1 Let A=(Q, ¥, A) be a tiling systemi” C Q and FC 2¢.

e The picture language recognized BYyis the set of picturep € >** such
that there is some rup of A on p.

e Thew-picture language Bchi-recognized by.A, F') is the set ofu-pictures
p € ¥ such that there is some ryunof .4 onp andp(v) € F for infinitely
manyv € w?. It is denoted by.?((A,F)).

e Thew-picture language Muller-recognized lpyl, F) is the set ofu-pictures
p € ¥¥ such that there is some rynof A onp andInf(p) € F where
Inf(p) is the set of states occurring infinitely oftengn It is denoted by
LM((A,F)).



Notice that anw-picture languagé C >*“ is recognized by a Buchi tiling system
if and only if it is recognized by a Muller tiling system, [ATUB].

We shall denot&"S(>“*) the class of languagds C > which are recognized
by some Buichi (or Muller) tiling system.

3 Recall of Known Basic Notions

3.1 The Analytical Hierarchy

The set of natural numbers is denoted¥ynd the set of all mappings froi
into N will be denoted byF.

We assume the reader to be familiar with the arithmeticalahefly on subsets
of N. We now recall the notions of analytical hierarchy and of ptate sets for
classes of this hierarchy which may be found in [Rog67].

Definition 3.1 Letk, ! > 0 be some integersb is a partial recursive function of
k function variables and number variables if there existsc N such that for any
(fi,- o foo21,...,211) € F* x N, we have

(I)(fl,...,fk,xl,...,ﬂfl):Tzfl """ fk(.]j‘l,...,ﬂfl),

where the right hand side is the output of the Turing machiitk imdex z and
oraclesfi, ..., fr overthe inpu{zy,...,z;). Fork > 0 andl/ = 0, ® is a partial
recursive function if, for some,

O(fr,..., fi) = t/oIk(0).
The value: is called the @del number or index fob.

Definition 3.2 Letk,! > 0 be some integers and C F* x N!. The relationR
is said to be a recursive relation &ffunction variables and number variables if
its characteristic function is recursive.

We now define analytical subsetsif.

Definition 3.3 A subsetR of N is analytical if it is recursive or if there exists a
recursive set5 C F™ x N”, withm > 0 andn > [, such that

R= {(xh s 7xl) | (lel)(QQSQ) s (Qm+n—l3m+n—l)s(f17 ceey fmaxla ce ,l‘n)},

where(Q); is eithervV or 3for1 < ¢ < m +n — [, and wheresy, ..., $,,,1,_; are
fis- oy fo, Tigt, - - -, 2, INn SOMe Order.
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The expressioft);s1)(Q2s2) - - - (Qman—1Smin—1)S(f1, -+, fm,x1,...,2,)iscalled
a predicate form forR. A quantifier applying over a function variable is of type
1, otherwise it is of typd. In a predicate form the (possibly empty) sequence
of quantifiers, indexed by their type, is called the prefixhefform. The reduced
prefix is the sequence of quantifiers obtained by supprefisenguantifiers of type

0 from the prefix.

The levels of the analytical hierarchy are distinguisheddrysidering the number
of alternations in the reduced prefix.

Definition 3.4 For n > 0, a X! -prefix is one whose reduced prefix begins wiith
and has: — 1 alternations of quantifiers. A/-prefix is one whose reduced prefix
is empty. Fom > 0, aIl.-prefix is one whose reduced prefix begins wittand
hasn — 1 alternations of quantifiers. Al}-prefix is one whose reduced prefix is
empty.

A predicate form is &? (ITL)-form if it has aX! (IT)-prefix. The class of sets in
someN! which can be expressed i}, -form (respectivelyiI!-form) is denoted by
¥l (respectively]1t).

The clas:} = 11} is the class of arithmetical sets.

We now recall some well known results about the analyticaddrchy.

Proposition 3.5 Let R C N for some integet. ThenR is an analytical set iff
there is some integer > 0 such that? € X! or R € I1}..

Theorem 3.6 For each integen > 1,
(8) ©4UTIL G 2L, NI,
(b) Asetk C N'isin the class:! iff its complement is in the clads!.
(c) X! —TI! # pandIll — XL =£ .

Transformations of prefixes are often used, following tHeggiven by the next
theorem.

Theorem 3.7 For any predicate form with the given prefix, an equivalerdor
cate form with the new one can be obtained, following thevadid prefix trans-
formations given below :

@ .. 3P .. . O
() .. 33 .. . T, LYWL Y



(c ...72% .= 3., VsV
() ... 3oV VIR0 0T T

’

We can now define the notion of 1-reduction and®tfcomplete (respectively,
I1! -complete) sets. Notice that we give the definition for stdeéN but one can
easily extend this definition to the case of subsef§'dbr some integet.

Definition 3.8 Given two setsi, B C N we say A is 1-reducible to B and write
A <; B if there exists a total computable injective function f frdito N such
that A = f~1[B].

Definition 3.9 A setd C Nis said to bet!-complete (respectivelif! -complete)
iff Ais aX!-set (respectivelyI!-set) and for eaclt!-set (respectivelyI! -set)
B C Nitholds thatB <; A.

For each integen > 1 there exists somE.-complete sef,, C N. The com-
plementE,; = N — E, is alll-complete set. These sets are precisely defined in
[Rog67] or [CC89].

3.2 Borel Hierarchy and Analytic Sets

We assume now the reader to be familiar with basic notionspdlogy which
may be found in [Mos80, LT94, Kec95, Sta97, PP04].

There is a natural metric on the sét of infinite words over a finite alphabet
Y containing at least two letters which is called grefix metricand defined as
follows. Foru,v € ¥ andu # v let §(u,v) = 27 oreitwr) Whereles (v is the
firstintegem such that thén + 1)* letter ofu is different from the(n + 1) letter
of v. This metric induces ol the usual Cantor topology for whidpen subsets
of ¥* are in the formiV.x“, whereWW C >*. Asetl C ¥¥ is aclosed setff its
complemend¥ — L is an open set. Now let define tBerel Hierarchyof subsets
of X«

Definition 3.10 For a non-null countable ordinak, the classes’ and IT° of
the Borel Hierarchy on the topological spatk are defined as follows:

3¢ is the class of open subsetsiof, IT! is the class of closed subsetsuf,
and for any countable ordinat > 2:

3, is the class of countable unions of subsets‘oin |, _, I19.

IT), is the class of countable intersections of subsets-ah | J. _, X9.
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For a countable ordinal, a subset oE“ is a Borel set ofank« iffitis in X9 UTT?
but notinlJ, _, (%9 UTIY).
There are also some subsets3tsf which are not Borel. Indeed there exists an-
other hierarchy beyond the Borel hierarchy, which is catlesl projective hier-
archy and which is obtained from the Borel hierarchy by ssswe applications
of operations of projection and complementation. The fegel of the projective
hierarchy is formed by the class ahalytic setsand the class ofo-analytic sets
which are complements of analytic sets. In particular tlas<lof Borel subsets
of ¥ is strictly included into the class! of analytic setsvhich are obtained by
projections of Borel sets.

Definition 3.11 A subsetd of 3¢ is in the classE! of analytic sets iff there exist
a finite setY” and a Borel subseB of (3 x Y)“ such thatlz € A + Jy € Y¥
(x,y) € B, where(z,y) is the infinite word over the alphab&t x Y such that
(z,y)(7) = (z(i),y(i)) for each integei > 1.

We now define completeness with regard to reduction by coatia functions.
For a countable ordinal > 1, a setF’ C X¥ is said to be &° (respectively,
I1°, 331)-complete seiff for any setE C Y (with Y a finite alphabet)E € 3°
(respectivelyE € TI?, E € X1) iff there exists a continuous functigh: Y+ —
Y@ suchthatt = f~!(F). XY (respectivelfIIY)-complete sets, with an integer
> 1, are thoroughly characterized in [Sta86].

In particularR = (0*.1)“ is a well known example of &I5-complete subset of
{0,1}¥. Itis the set ofv-words over{0, 1} having infinitely many occurrences of
the letterl. Its complemenf0, 1}* — (0*.1)~ is aX9-complete subset dfo, 1}~.

We recall now the definition of the arithmetical hierarchywefanguages which
form the effective analogue to the hierarchy of Borel setinite ranks.

Let X be afinite alphabet. An-languagel C X* belongs to the class,, if and
only if there exists a recursive relatidty, C (N)"~! x X* such that

L={oce X“|3ay...Qna, (ai,...,ay_1,0[a,+1]) € Ry}

where@); is one of the quantifierg or 3 (not necessarily in an alternating order).
An w-language L C X* belongs to the clasd,, if and only if its complement

X¥ — L belongs to the class,,. The inclusion relations that hold between the
classes,, andlIl, are the same as for the corresponding classes of the Borel
hierarchy. The classes, andIl, are included in the respective clas$¢% and

30 of the Borel hierarchy, and cardinality arguments sufficattow that these
inclusions are strict.



As in the case of the Borel hierarchy, projections of arithioa sets (of the sec-
ond I1-class) lead beyond the arithmetical hierarchy, to theydical hierarchy

of w-languages. The first class of this hierarchy is the (ligletfaclass ! of ef-
fective analytic setsvhich are obtained by projection of arithmetical sets. An
w-languageL C X* belongs to the class! if and only if there exists a recursive
relationR; C N x {0, 1}* x X* such that:

L={oe€ X*|3r(r €{0,1}* AVnIm((n,7[m|,clm]) € Ry))}

Then anw-language L C X¥ is in the class:! iff it is the projection of anw-
language over the alphah&t x {0, 1} which is in the clas$l,. The (lightface)
classlIl} of effective co-analytic sets simply the class of complements of effec-
tive analytic sets. We denote as usidl= >} N I1].

Recall that an-languagel C X isin the clas&! iff it is accepted by a non de-
terministic Turing machine (reading-words) with a Buichi or Muller acceptance
condition [CG78, Sta97].

ForI a finite alphabet having at least two letters, thel¥&t’ of functions from
wxw intoI" is usually equipped with the product topology of the disetepology
onI. This topology may be defined by the following distante_et x andy in

[“*« such thatr # y, then

1
d(z,y) = on where
n=min{p = 0[3(i,j) =(i,7) # y(i,j) andi + j = p}.

Then the topological spadé’*“ is homeomorphic to the topological space,
equipped with the Cantor topology. Borel subset§of“ are defined from open
subsets as in the case of the topological sg&ceAnalytic subsets of'“*“ are
obtained as projections dit** of Borel subsets of the product spdce x I'“.
The set:“* of w-pictures over:, considered a topological subspace®f«, is
easily seen to be homeomorphic to the topological sp&ce’, via the mapping
p @ X9 — Yx« defined byp(p)(i,7) = p(i + 1,5 + 1) for all p € ¥ and
1,] € w.

3.3 Some Results of Set Theory

We now recall some basic notions of set theory which will befuisn the sequel,
and which are exposed in any textbook on set theory, likédec

The usual axiomatic syste&FC is Zermelo-Fraenkel systedf plus the axiom
of choiceAC. A model {/, €) of the axiomatic systerdFC is a collectionV of
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sets, equipped with the membership relatgmwhere = € y” means that the set
x is an element of the sgt which satisfies the axioms @FC. We shall often say
“ the modelV” instead of “the model\(, €)".

The axioms ofZFC express some natural facts that we consider to hold in the
universe of sets. For instance a natural fact is that twossatsdy are equal iff
they have the same elements. This is expressed bgutitan of Extensionality
Another natural axiom is thBairing Axiomwhich states that for all setsandy
there exists a set = {z, y} whose elements areandy. Similarly thePowerset
Axiomstates the existence of the set of subsets of a.s@éfe refer the reader to
any textbook on set theory, like [Jec02], for an expositibthe other axioms of
ZFC.

The infinite cardinals are usually denotedy N;, Ny, ... N,,... The cardinal
N, is also denoted by,,, as usual when it is considered an ordinal.

The continuum hypothes(SH says that the first uncountable cardiRalis equal

to 2% which is the cardinal of the continuum. Godel and Cohen @dothat
the continuum hypothesiSH is independent from the axiomatic systeifC:
providing ZFC is consistent, there exist some modelsZ6iC + CH and also
some models aZFC + - CH, where— CH denotes the negation of the continuum
hypothesis, [Jec02].

Let ON be the class of all ordinals. Recall that an ordinais said to be a
successor ordinal iff there exists an ordigaduch thatw = 5 + 1; otherwise the
ordinal« is said to be a limit ordinal and in that case= sup{3 € ON | 5 < «a}.

The clasd. of constructible setg a modelV of ZF is defined by

L= [J L)

acON

where the setk(«) are constructed by induction as follows:
1. L(0) =0
2. L(a) = Uz, L(B), for a alimit ordinal, and

3. L(a + 1) is the set of subsets df(«) which are definable from a finite
number of elements di(«) by a first-order formula relativized th(«).

If V is a model ofZF andL is the class otonstructible setsef V, then the class
L forms a model oZFC + CH. Notice that the axiom\=L ) means “every set is
constructible” and that it is consistent wili-C.
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Consider now a modeV of the axiomatic systel@FC and the class of con-
structible setd. C V which forms another model &FC. It is known that the
ordinals ofL are also the ordinals of. But the cardinals iV may be different
from the cardinals ir..

In particular, the first uncountable cardinallinis denoted®}. It is in fact an
ordinal of V which is denotedvl. It is known that this ordinal satisfies the in-
equalityw! < w;. In amodeV of the axiomatic systedFC + V=L the equality
wl' = w; holds. Butin some other modelsFC the inequality may be strict and
thenw! < w;. This is explained in [Jec02, page 202]: one can start fronodah
V of ZFC + V=L and construct by forcing a generic extensid] in which the
cardinalsv andw; are collapsed; in this extension the inequalify < w, holds.

We now recall the notion of a perfect set.

Definition 3.12 Let P C ¥¥, whereX is a finite alphabet having at least two
letters. The seP is said to be a perfect subset®f if and only if :

(1) P is a non-empty closed set, and

(2) for everyx € P and every open séf containingz there is an elemenj €

P N U such thate # y.

So a perfect subset af is a non-empty closed set which has no isolated points.
It is well known that a perfect subset Bf has cardinalit2™°, see [Mos80, page
66].

We now recall the notion of thin subsetf.
Definition 3.13 A setX C Y“ is said to be thin iff it contains no perfect subset.

The following important result was proved by Kechris [Ket@hd independently
by Guaspari [Gua73] and Sacks [Sac76].

Theorem 3.14 (see [M0s80] page 24{¢ZFC) Let > be a finite alphabet having
at least two letters. There exists a thin-setC; () C X* which contains every
thin, IT}-subset of=~. It is called the largest thidl}-set in:«.

An important fact is that the cardinality of the largest thirset inX* depends on
the model ofZFC. The following result on the cardinality ¢f (¥“), was proved
by Kechris and independently by Guaspari and Sacks, sefas87, page 171].

Theorem 3.15 (ZFC) The cardinal of the largest thifi{-set inx* is equal to the
cardinal ofw?.
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This means that in a given modélof ZFC the cardinal of the largest thir}-set
in X¢ is equal to the cardinah V of the ordinalw® which plays the role of the
cardinal®; in the inner model of constructible sets of.

We can now state the following result which will be usefulle sequel.

Corollary 3.16

(@) There is a modeV, of ZFC in which the largest thifl}-set inX* has
cardinal X, whereX; = 2%,

(b) There is a modeV, of ZFC in which the largest thifdl}-set inX“ has
cardinal X, i.e. is countably infinite.

(c) There is a modeV; of ZFC in which the largest thirll}-set inX* has
cardinal X, where®, < X; < 2%,

Proof. (a). In the modeL, the cardinal of the largest thiii-set inX* is equal to
the cardinal ofu,. Moreover the continuum hypothesis is satisfied this= X;.
Thus the largest thifil}-set inX* has the cardinalitg® = X,.

(b). LetV be a model of ZFC + wl < w;). In this modelw; is the first un-
countable ordinal. Thus}' < w; implies thatw] is a countable ordinal iN. Its
cardinal is, and it is also the cardinal of the largest tflj-set in>«.

(c). It suffices to show that there is a modé} of ZFC in which w! = w, and

N; < 2% Such a model can be constructed by Cohen'’s forcing. We aatrfistm

a modelV of ZFC + V=L (in whichw!* = w,) and construct by forcing a generic
extensionV[G] in which X, subsets ofv are added. Notice that the cardinals are
preserved under this extension (see [Jec02, page 219]hahthe constructible
sets ofV[G] are also the constructible sets\0f Thus in the new modal[G] we
still havew! = w; but now; < 2%, O

4 Decision Problems

We now study decision problems for recognizable languagetinite pictures.
We gave in [Fin09b] the exact degree of several natural aecroblems. We
first recall some of these results.

Castro and Cucker proved in [CC89] that the non-emptinesisi@m and the in-
finiteness problem far-languages of Turing machines are bathcomplete. We
easily inferred from this result a similar result for recamble languages of infi-
nite pictures.

13



From now on we shall denote Iy the non deterministic tiling system of index
(accepting pictures ovér = {a, b}), equipped with a Biichi acceptance condition.

Theorem 4.1 ([Fin09b]) The non-emptiness problem and the infiniteness prob-
lem for Bichi-recognizable languages of infinite pictures arecomplete, i.e. :

1. {z € N| LB(T,) # 0} is X}-complete.
2. {z e N| LB(T,) isinfinite } is X}-complete.

In a similar way, the universality problem and the inclusémd the equivalence
problems, fotw-languages of Turing machines, have been proved i6lbeomplete
by Castro and Cucker in [CC89], and we used these result®te pine following
results in [Fin09Db].

Theorem 4.2 ([Fin09b]) The universality problem for i&hi-recognizable lan-
guages of infinite pictures igi-complete, i.e. :

{z e N| L?(T.) = ¥**} is [I}-complete.

Theorem 4.3 ([Fin09b]) The inclusion and the equivalence problems fach-
recognizable languages of infinite pictures &rg-complete, i.e. :

1. {(y,2) € N* | LB(T,) C L?(T.)} is [I3-complete.
2. {(y,2) e N*| LB(T,) = LP(T.)} is I1i-complete.

The class of Buchi-recognizable languages of infiniteyves is not closed un-
der complement [ATWO03]. Thus the following question naliyrarises: “can we
decide whether the complement of a Buichi-recognizablguage of infinite pic-
tures is Buchi-recognizable?”. And what is the exact canxipy of this decision
problem, called the complementability problem.

Another classical problem is the determinizability prabi€can we decide whether
a given recognizable language of infinite pictures is recaghby a deterministic
tiling system?”.

Recall that a tiling system is called deterministic if on g@ngture it allows at most
one tile covering the origin, the state assigned to positient, j + 1) is uniquely
determined by the states at positidigj), (¢ + 1,5), (¢, 7 + 1) and the states at
the border position$0, j + 1) and (i + 1,0) are determined by the state, j),
respectively(i, 0), [ATWO03].

As remarked in [ATWO03], the hierarchy proofs of the claski@ndweber hierar-
chy defined using deterministicautomata “carry over without essential changes
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to pictures”. In particular, a language @fpictures which is Buchi-recognized
by a deterministic tiling system is H-set and a language af-pictures which
is Muller-recognized by a deterministic tiling system isakean combination of
I13-sets, hence A$-set.

These topological properties have been used in [FinO9bhgawith a dichotomy
property, to prove the following results.

Theorem 4.4 ([Fin09b]) The determinizability problem and the complementabil-
ity problem for Richi-recognizable languages of infinite pictures Hiecomplete,
Le.:

1. {z € N | LB(T,) is Buchi-recognizable by a deterministic tiling systeis
[1-complete.

2. {z € N | LP(T,) is Muller-recognizable by a deterministic tiling systém
is ITi-complete.

3. {zeN|Jy X« — LB(T,) = LP(T,)} isI}-complete.

We already mentioned that we used some results of CastrowsicCin the proof
of the above results. Castro and Cucker studied degreescidiate problems
for w-languages accepted by Turing machines and proved that ofahgm are
highly undecidable, [CC89]. We are going to use again sonteef results to
prove here new results about Biichi-recognizable languagmfinite pictures.

We firstly recall the notion of acceptance of infinite wordsTaying machines
considered by Castro and Cucker in [CC89].

Definition 4.5 A non deterministic Turing machin®( is a5-tuple M = (Q, >, T, 6, qo),
where( is a finite set of stateg; is a finite input alphabef, is a finite tape alpha-

bet satisfying C I, ¢ is the initial state, and is a mapping front) x I" to sub-
setsof) xI'x{L, R, S}. A configuration ofM is a3-tuple(q, o,7), whereg € @,

o € I'“andi € N. An infinite sequence of configurations= (g;, a;, ji)i>1 IS
called a run ofM onw € ¥ iff:

(a) (Q17a17.j1) - (qo,w, 1), and
(b) foreachi > 1, (¢, s, Ji) F (Gig1, Qiv1s Jigr),

wheret- is the transition relation ofM defined as usual. The runis said to
be complete if the limsup of the head positions is infinigy, it (Vn > 1)(3k >
1)(jx > n). The runr is said to be oscillating if the liminf of the head positioss i
bounded, i.e. if3k > 1)(Vn > 1)(Im > n)(jm = k).
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Definition 4.6 Let M = (@, X, T, 9, o) be a non deterministic Turing machine
and F' C Q. Thew-language accepted by\M, F') is the set ofv-wordso € ¥¢
such that there exists a complete non oscillatingrua (¢;, «;, j;)i>1 0f M ono
such that, for alli, ¢; € F.

The above acceptance condition is denotedcceptance in [CG78]. Another
usual acceptance condition is the now called Buichi acoeptaondition which is
also denote@-acceptance in [CG78]. We now recall its definition.

Definition 4.7 Let M = (@, X, T, 9, o) be a non deterministic Turing machine
and F' C . Thew-language Bichi accepted byM, F') is the set ofu-words

o € ¥¥ such that there exists a complete non oscillatingrua (¢;, e, j;)i>1 Of
M ono and infinitely many integerssuch thaty; € F.

Recall that Cohen and Gold proved in [CG78, Theorem 8.6]dhatcan effec-
tively construct, from a given non deterministic Turing rha®, another equiva-
lent non deterministic Turing machine, equipped with thes&ind of acceptance
condition, and in which every run is complete non oscillgti€ohen and Gold
proved also in [CG78, Theorem 8.2] that@nanguage is accepted by a non de-
terministic Turing machine with'-acceptance condition iff it is accepted by a non
deterministic Turing machine with Buchi acceptance cbodi

From now on, we shall denogk1, the non deterministic Turing machine of index
z, (accepting words ovet = {a, b}), equipped with d’-acceptance condition.

An important notion in automata theory is the notion of anitiy It can be
defined also in the context of acceptance by tiling systeees|AGMRO06] for the
case of finite pictures.

Definition 4.8 Let A=(Q, X, A) be a tiling system, and’ C (). The Richi tiling
system( A, F') is unambiguous iff every-picturep € ¥ has at most an accept-
ing run by (A, F).

Definition 4.9 A Bichi recognizable language C >“* is unambiguous iff there
exists an unambiguousiBhi tiling system(.A, F') such thatl = L(A, F’). Oth-
erwise the languagé is said to be inherently ambiguous.

We can now prove the following result, which is very similara corresponding
result for recognizable tree languages proved in [FS09].

Proposition 4.10 Let L. C >** be an unambiguousi®hi recognizable language
of infinite pictures. The is a Borel subset of~~.
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Proof. Let L. C ¥* be a language accepted by an unambiguous Bichi tiling
system(A, F'), whereA=(Q, 3, A), and letR C (X x Q)“*“ be defined by:

R=A{(p,p) | p € ¥ andp € is an accepting run df4, F’) on the picturep}.
The setR is easily seen to beHJ-subset of & x Q)~*«.

Consider now the projectioRROJ¢,.., : X% x Qv — ¥*“ defined by
PROJswro((p, p)) = pforall (p, p) € 9% x Q“*“. This projection is a con-
tinuous function and it isnjective on the Borel sef? because the Buchi tiling
system(A, F') is unambiguous. Hence, by a Theorem of Lusin and Souslin, see
[Kec95, Theorem 15.1 page 89], the injective image&dify the continuous func-
tion PROJs.... is Borel. Thus the language = PROJs......(R) is a Borel subset

of 2¥*¢. But 2“* is a closed subset &« and L C ¥*~. ThusL is also a
Borel subset of«~. OJ

Corollary 4.11 There exist some inherently ambiguougBi-recognizable lan-
guages of infinite pictures.

Proof. The result follows directly from the above proposition besawe know
that there exist some Buichi-recognizable languages afiiefpictures which are
not Borel sets, see [Fin04, Fin09b]. O

We can now state that the unambiguity problem for recogtezi@mguage of in-
finite pictures id1i-complete.

Theorem 4.12 The unambiguity problem for recognizable languages of itefin
pictures islTi-complete, i.e. :

{z € N| LB(T.) is non ambiguous is I1;-complete.

Proof. To prove that the unambiguity problem for recognizable leagg of in-
finite pictures is in the clasH}, we reason as in the case of the unambiguity
problem forw-languages accepted hycounter orR-tape automata, see [Fin09c].

Notice first, as in [Fin09b], that, using a recursive bijentb : (N — {0})* —
N—{0}, one can associate with eackwordos € ¥* a uniquev-picturep” € >«
which is simply defined by’ (i, 7) = o(b(i, 7)) for all integersi, ;7 > 1. And we
can identify a rurp € Q“*“ with an element of)“ and finally with a coding of
this element over the alphabfgt, 1}. So the rurp can be identified with its code

pe{0,1}~.

If a tiling systemA=(Q, ¥, A) is equipped with a set of accepting states- (@),
then foro € ¥ andp € {0,1}*, “pisaBuchiaccepting run df4, F') over the
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w-picturep?” can be expressed by an arithmetical formula, see [ATWO0B8tiGe
2.4] and [Fin09b].

We can now first express/; is non ambiguous” by :
“Yo € X*Vp, p' € {0,1}*[(p andp’ are accepting runs of, onp?) — p = (|’

which is all}-formula. Then “L?(T.) is non ambiguous” can be expressed by the
following formula: “Jy[L?(T.) = L?(7,) and7, is non ambiguous. This is a
I13-formula becausé”(T,) = L?(T,) can be expressed byl§-formula, and the
quantificationdy is of type0. Thus the se{> € N | LZ(7.) is non ambiguou$

is all}-set.

To prove the completeness part of the theorem, we shall wséotlowing di-
chotomy result proved in [Fin09b, proof of Theorem 5.11].

There exists an injective computable functiire ¢ from N into N such that:
First case: If L(M,) = X thenL? (Tyop(,)) = T,

Second caself L(M,) # 2% thenL”(Tp.»)) is not a Borel set.

In the first cas€.” (Tyop(-)) = £ is obviously an unambiguous language. And
in the second case the languagé7;;.¢(-)) cannot be unambiguous because it is
not a Borel subset of““. Thus, using the reductioH o 6, we see that :

{z € N| L(M,) = ¥¥} <, {z € N| LP(T,) is non ambiguou$

and the result follows from thB.-completeness of the universality problem for
w-languages of Turing machines proved by Castro and CucK@G89]. O

Notice that the same dichotomy result above with the redodii o § was used in
[Fin09b] to prove that topological properties of recogbizedanguages of infinite
pictures are actually highly undecidable.

Theorem 4.13 ([Fin09b]) Leta be a non-null countable ordinal. Then
1. {z e N| LB(T,) isin the Borel clas&’ } is I1}-hard.
2. {z e N| LB(T,) is in the Borel clasd1’} is I1}-hard.
3. {z e N| LB(T,) is a Borel set} is [1}-hard.

A natural question is to study similar problems by repladiwgel classes by the
effective classes of the arithmetical hierarchy. This waisstudied in [Fin09b],
but a similar problem was solved in [Fin09c] farlanguages accepted hy
counter or2-tape Biichi automata. We can reason in a similar way for #se c
of recognizable languages of infinite pictures, and stagddhowing result.
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Theorem 4.14 Letn > 1 be an integer. Then
1. {z € N| LB(T;) is in the arithmetical clasg, } is [T3-complete.
2. {z € N| LB(T,) is in the arithmetical clas$l,, } is II}-complete.
3. {z e N| LB(T,) is aAl-set} isIIi-complete.

We do not give the complete proof here. It is actually veryikinto the case
of w-languages accepted hycounter or2-tape Biichi automata in [Fin09c]. A
key argument, to prove thgt € N | LP?(T) is in the arithmetical class,,} (re-
spectively,{z € N | L?(T}) isin the arithmetical clasH,, }) is all}-set, is the
existence of a universal sit;, C N x ¥ (respectivelylf;, C N x X¥¢) for
the class ofx,,-subsets ob““, (respectively]ll,-subsets ob>«*), [M0os80, p.
172]. Notice also that the completeness part follows edsiy the dichotomy
result obtained with the reductidf o 6.

We now come to cardinality problems. We already know thas Ej-complete
to determine whether a given recognizable language of tafpictures is empty
(respectively, infinite). Recall that every recognizalleguage of infinite pictures
is an analytic set. On the other hand, every analytic setherecountable or has
the cardinality2™ of the continuum. Then some questions naturally arise. What
are the complexities of the following decision problems &dlgiven recognizable
language of infinite pictures countable? Is it countablynitd? Is it uncount-
able?”. Notice that similar questions were asked by CastdoGucker in the case
of w-languages of Turing machines and have been solved vergthety Finkel
and Lecomte in [FLO9]. We can now state the following resaitrecognizable
languages of infinite pictures. Belai, (1) denotes the class @fdifferences of
Yl-sets, i.e. the class of sets which are intersectionsgfset and of d1}-set.

Theorem 4.15
1. {z € N| LB(T,) is countablg is IT{-complete.
2. {z e N| LB(T,) is uncountabl¢ is >:1-complete.
3. {z € N| LB(T,) is countably infinit¢ is D,(%1)-complete.

Proof. (1). We can first prove that: € N | L?(T}) is countabl is in the class
I1} in the same way as in the casewsfanguages of Turing machines in [FLO9].
We know that a recognizable language of infinite pictut&s7.) is aX1-subset
of ¥««. But it is known that a~l-subsetl of ¥« is countable if and only
if for every x € L the singleton{z} is a Al-subset of“~, see [Mos80, page
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243]. Then, using a nice coding aff-subsets oE“* given in [HKL90, Theorem
3.3.1], we can prove thgt: € N | LZ(T,) is countabl¢ is in the clasdli, see
[FLO9] for more details.

To prove the completeness part of Item (1), we shall use fh@fimg two lemmas
proved in previous papers.

Foro € ¥ = {a,b}* we denotes* the w-picture whose first row is the-word
o and whose other rows are labelled with the lettef~or anw-language L C
¥ = {a, b}* we denotel” the language of infinite picturdg® | o € L}.

Lemma 4.16 ([Fin04]) If L C > is accepted by some Turing machine (in which
every run is complete non oscillating) with &&hi acceptance condition, thdt
is Buchi recognizable by a finite tiling system.

Lemma 4.17 ([Fin09b]) There is an injective computable functiinfromN into
N satisfying the following property.

If M. is the non deterministic Turing machine (equipped witl'-acceptance
condition) of indexz, and if 7. is the tiling system (equipped with aiéhi
acceptance condition) of indéx(z), then

L(M.)* = L (Tk()

On the other hand, we can easily see that the cardinalityeafdanguage.(M.,)
is equal to the cardinality of the-picture languagd.(M.)®. Thus using the
reductionk given in the above lemma we see that:

{z € N| L(M.,) is countable <, {z € N | L?(T.) is countable}

Then the completeness part follows from the fact {hat N | L(M.,) is countablel
is IT}-complete, proved in [FLO9].

(2). The proof of Item (2) follows directly from Item (1).

(3). We already know that the sgt € N | LP(T,) is infinite} is in the class:].

Thus the se{z € N | L?(T,) is countably infinité is the intersection of &1-set
and of alll-set, i.e. itis in the clas®,(X1). Using again the reductioR” we see
that:

{z € N| L(M.) is countably infinite} <, {z € N | L?(T.) is countably infinite}

It was proved in [FL09] thafz € N | L(M.,) is countably infinite} is Dy(X])-
complete. Thus the sgt € N | LB(7.) is countably infinite} is also D, (31)-
complete. O
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We are now looking at complements of recognizable languaiyefinite pictures.
We first state the following result which shows that actudiily cardinality of the
complement of a recognizable language of infinite picturey okepend on the
models of set theory. We denofé’ (7)™ the complemenE+~~ — L5(T) of a
Buchi-recognizable language® (7)) C L@,

Theorem 4.18 The cardinality of the complement of daighi-recognizable lan-
guage of infinite pictures is not determined by the axiomatgtenZFC. Indeed
there is a Richi tiling systeny” such that:

1. There is a moddl; of ZFC in which L? (7)™ is countable.
2. There is a modél, of ZFC in which LZ(7")~ has cardinal2®.

3. There is a model; of ZFC in which L? (7)™ has cardinal®; with R, <
N < PACH

Proof. Moschovakis gave in [Mos80, page 248]J1a-formula¢ defining the set
C1(X¥). Thus its complement, ()~ = {a, b}* — C;(X¥) is aXi-set defined by
theX}-formulay = —¢.

Recall that one can construct, from the-formula definingC, (3+)~, a Buchi
Turing machineM accepting thev-language®; (3>¢)~.

On the other hand it is easy to see that the languaage — (X“)* of w-pictures
is Buchi recognizable. But the cla$s'(X““) is closed under finite union, so we
get the following result.

Lemma 4.19 ([Fin09b]) If L C ¥ is accepted by some Turing machine with a
Biichi acceptance condition, thdit U [« — (£+)?] is Buchi recognizable by a
finite tiling system.

Notice that the constructions are effective and that theybsaachieved in an in-
jective way. Thus we can construct, from the Buchi Turinghiae M accepting
thew-language’; (3¥)~, a Buchi tiling systeny” such that

LP(T) = L(M)* U [Z*¢ — (2¥)).
It is then easy to see that:
L%(T)™ = (2% = LM))* = (Ci(2))".

Thus the cardinality ofL.”(7)~ is equal to the cardinality of the-language
C1(X¥), and then we can infer the results of the theorem from previdorol-
lary 3.16. OJ
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We can now use the proof of the above result to prove the fatigwesult which
shows that natural cardinality problems are actually kedatt the third level of
the analytical hierarchy.

Theorem 4.20
1. {z € N| LB(T.)” isfinite } is I1i-complete.
2. {z e N| LP(T,)" is countable} is in X} \ (T} U Z1).
3. {z e N| LP(T,)” is uncountablgis in IT} \ (IT3 U X1).
Proof. Item (1) was proved in [Fin09b].

To prove Item (2), we first show thdt € N | LZ(7.)~ is countablég is in the
classX}.

As in [Fin09b], using a recursive bijectidn: (N — {0})> — N — {0}, we can
consider an infinite word € >“ as a countably infinite family of infinite words
over X : the family of w-words (o;) such that for eachh > 1, o; is defined by
0:(j) = a(b(i, 7)) for eachj > 1. And one can associate with eackword o €
¥* a uniquew-picturep’ € ¥« which is simply defined by’ (i, j) = o(b(1, 5))
for all integersi, j > 1.

We can now express.?(7,)~ is countable " by the formula:
Jo € ¥ ¥pe ¥ [(pe LB(T,)) or (3i € Np = p°)]

Thisis a>}-formulabecauses'e LZ(T.)", and hence also{p € L?(T,)) or (Ji €
N p = p°i)]”, is expressed by 8}-formula.

We can now prove thdt: € N | L?(T,)~ is countable} is neither in the class’
nor in the clas$l:, by using Shoenfield’s Absoluteness Theorem from Set Theory

Let 7 be the Buchi tiling system obtained in Theorem 4.18 and &t its index
sothat] = T,.

Assume now thaV is a model of ZFC + wl* < w;). In the modelV, by the
proofs of Theorem 4.18 and of Corollary 3.16, the integebelongs to the set
{2 e N| LB(T,)” is countablée.

But, by the proofs of Theorem 4.18 and of Corollary 3.16, ia thner model
L C V, the languagd.?(T,,)~ has cardinalit2™. Thus the integet, does not
belong to the sefz € N | LB(7.)~ is countablé.
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On the other hand, Schoenfield’s Absoluteness Theoremesitiat everyi-set

(respectively]Ti-set) is absolute for all inner models of (ZFC), see [Jec@@ep
490].

In particular, if the se{z € N | LP(T,)~ is countable} was a>i-set or all}-set

then it could not be a different subset Bfin the modelsV and L considered
above. Therefore, the st € N | LZ(T,)~ is countable} is neither a:}-set nor

alll-set.

Item (3) follows directly from Item (2). O

5 Concluding Remarks

Using the notion of largest effective coanalytic set, weeharoved in another pa-
per that the topological complexity of a recognizable laaggiof infinite pictures
is not determined by the axiomatic syst&iiC. In particular, there is a Buchi
tiling systemsS and modelsV,; andV, of ZFC such that: thev-picture language
L(S) id Borel in'V; but not inV,, [Fin09a].

We have proved in this paper thft € N | L?(7,)™ is countable is in X} \
(113 U 33). It remains open whether this set is actualliycomplete.
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