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Abstract. Community detection is a very active field in complex networks 

analysis, consisting in identifying groups of nodes more densely interconnected 

relatively to the rest of the network. The existing algorithms are usually tested 

and compared on real-world and artificial networks, their performance being 

assessed through some partition similarity measure. However, artificial 

networks realism can be questioned, and the appropriateness of those measures 

is not obvious. In this study, we take advantage of recent advances concerning 

the characterization of community structures to tackle these questions. We first 

generate networks thanks to the most realistic model available to date. Their 

analysis reveals they display only some of the properties observed in real-world 

community structures. We then apply five community detection algorithms on 

these networks and find out the performance assessed quantitatively does not 

necessarily agree with a qualitative analysis of the identified communities. It 

therefore seems both approaches should be applied to perform a relevant 

comparison of the algorithms. 

Keywords: Complex Networks, Community Detection, Community Properties, 

Algorithms Comparison. 

1 Introduction 

The use of networks as modeling tools has spread through many application fields 

during the last decades: biology, sociology, physics, computer science, 

communication, etc. (see [1] for a very complete review of applied studies). Once a 

system has been modeled, the resulting network can be analyzed or visualized thanks 

to some of the many tools designed for graph mining. Such large real-world networks 

are characterized by a heterogeneous structure, leading to specific properties. In 

particular, a heterogeneous distribution of links often results in the presence of a so-

called community structure [2]. A community roughly corresponds to a group of 

nodes more densely interconnected, relatively to the rest of the network [3]. The way 

such a structure can be interpreted is obviously dependent on the modeled system. 

However, independently from the nature of this system, it is clear the community 

structure conveys some very important information, necessary to a proper 
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understanding [4]. Detecting communities is therefore an essential part of modern 

network analysis. 

Many different community detection algorithms exist [2], which can diverge in two 

ways: first the process leading to an estimation of the community structure, but also 

the nature of the estimated communities themselves. This raises a question regarding 

the comparison of these algorithms, from both a theoretical and a practical point of 

view. Authors traditionally test their community detection algorithms on real-world 

and/or artificial networks [5, 6]. The performance is assessed by comparing the 

estimated communities with some community structure of reference using a quality 

(e.g. modularity [3]) or association (e.g. Normalized Mutual Information [7]) 

measure. This single value is then compared with those obtained when applying 

preexisting algorithms on the same data. The main problem with this approach is its 

purely quantitative aspect: it completely ignores the nature of the considered 

community structures. Two algorithms can reach the exact same level of performance, 

but still estimate very different community structures. 

Besides performance evaluation, the data used to perform the tests are also subject 

to some limitations. For realism reasons, it is necessary to apply the algorithms to 

real-world networks, but these are not sufficient because 1) reference communities 

(i.e. ground truth) can rarely be defined objectively, and 2) the topology of the 

selected networks can hardly be diverse enough to represent all types of systems. 

Testing on artificial networks can be seen as complementary, because they overcome 

these limitations. Indeed, a random model allows generating as many networks as 

desired, while controlling some of their topological properties. The only issue is the 

realism of the obtained networks, which should mimic closely real-world networks in 

order to get relevant test results.  

Some properties common to most real-world networks are well-identified: power-

law distributed degree, small-worldness, non-zero degree correlation and relatively 

high transitivity [8]. Additionally, networks with a community structure are 

characterized by a power-law distributed community size [9]. Several generative 

models with increasing realism were successively designed [6] before finally meeting 

these constraints [6, 10, 11]. However, recent studies showed other properties besides 

the community size distribution can be used to characterize real-world community 

structures [4, 12], such as community-wise density and average distance, hub 

dominance, embeddedness. They allow giving a more detailed description of the 

internal topology of the communities, and of the way they are interconnected.  

To our opinion, these new results have two important consequences on the problem 

of community detection assessment. First, the question to know whether the artificial 

networks used as benchmark also exhibit these properties arises naturally. But more 

importantly, it is now possible to perform a qualitative comparison of the 

communities identified by different algorithms, instead of relying only on a single 

performance measure. In this article, we try to answer both questions using the 

realistic generative model LFR [6] and a representative set of community detection 

algorithms. In section 2, we review in greater details the properties used to describe 

community structures in complex networks. In section 3, we shortly present the LFR 

model and its properties, and introduce an adjustment allowing to improve the realism 
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of the networks it generates. We also review the various approaches used in the 

literature to define the concept of community, and describe a selection of community 

detection algorithms from this perspective. In section 4, we first analyze the 

properties of the generated networks. We then compare the community structures 

detected by the selected algorithms on these networks. We consider both their 

similarity to the community structure of interest, and how community properties 

differ from one algorithm to the other. Finally, we discuss our results and explain how 

our work could be extended. 

2 Characterization of a Community Structure 

Complex networks are often characterized at microscopic and macroscopic levels, i.e. 

by studying the characteristics of nodes taken individually and of the network 

considered as a whole, respectively. The microscopic approach focuses on some 

nodes of interest, and tries to identify which features allow distinguishing them from 

the rest of the network (degree, centrality, local transitivity, etc.). At the macroscopic 

level, one can take advantage of the multiplicity of nodes to derive statistics or 

distributions summarizing some of the network features (degree distribution, degree 

correlation, average distance, transitivity, etc.). The development of community 

detection corresponds to the apparition of a mesoscopic level, and highlights the need 

for adapted tools to characterize the community structure. In this section, we present a 

selection of the mesoscopic measures recently proposed and indicate how real-world 

networks behave relatively to them. In some cases, no general observation can be 

made, and one has to consider the class of the network: communication, biological, 

social, etc. Note other measures exist besides those described here, such as the 

network community profile [12] or roles distribution [13].  

The community size distribution is considered as an important characteristic of the 

community structure. It has been largely studied in real-world networks, and seems to 

follow a power law [9, 14] with exponent   ranging from   to   [15]. This means 

their sizes are heterogeneous, with many small communities and only a few very large 

ones.  

The embeddedness measure assesses how much the direct neighbors of a node 

belong to its own community. It is defined as the ratio of the internal degree      to 

the  total degree   of the considered node [4]:  

         (1) 

This internal degree is the number of links the nodes has with other nodes from the 

same community, by opposition to its external degree     , which corresponds to 

connections with nodes located in other communities. The maximal embeddedness of 

  is reached when all the neighbors are in its community (      ), whereas the 

minimal value of   corresponds to the case where all neighbors belong to different 

communities (      ). In real-world networks, a majority of nodes, usually with 

low degree, have a very high embeddedness. The rest are distributed depending on the 

considered class: communication, Internet and biological networks exhibit a peak 
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around      , whereas social and information networks have a more uniform 

distribution. In all cases, the whole range of   is significantly represented, even small 

values [4]. 

The density   of a community   is defined as the ratio of links it actually contains, 

noted   , to the number of links it could contain if all its nodes were connected. In 

the case of an undirected network, the latter is           , where    is the number 

of nodes in the community, and we therefore get                 . When 

compared to the overall network density, the density allows assessing the cohesion of 

the community: by definition, a community is supposed to be denser than the network 

it belongs to. The scaled density is a variant obtained by multiplying the density by 

the community size [4]: 

             
   

    
 

(2) 

If the considered community is a tree, it has only         links, and        . 

If it is a clique (completely connected subgraph), then               and we 

have         . The scaled density therefore allows charactering  the structure of the 

community. Some real-world networks such as the Internet or communication 

networks have essentially tree-like communities. On the contrary, for other classes 

like social and information networks, the scaled density increases with the community 

size. Finally, biological networks exhibit a hybrid behavior, their small communities 

being tree-like whereas the large ones are denser and close to cliques [4]. 

The distance between two nodes corresponds to the length of their shortest path. 

When averaged over all pairs of nodes in a community, it allows assessing the 

cohesion of this community. In real-world networks, small communities (     ) 

are supposedly small-world, which means the average distance   should increase 

logarithmically with the community size    [4]. For larger communities, the average 

distance still increases, but more slowly, or even stabilizes for certain classes like 

communication networks. A small average distance can be explained by a high 

density (social), the presence of hubs (communication, Internet), or both (biological, 

information).  

From a community structure perspective, a hub is a node connected to many of the 

other nodes belonging to the same community.  The presence of a central hub in a 

community   can be assessed using the hub dominance measure, which corresponds 

to the following ratio: 

        
 

              (3) 

The numerator is the maximal internal degree found in  , and the denominator is the 

maximal degree theoretically possible given the community size. The hub dominance 

therefore reaches   when at least one node is connected to all other nodes in the 

community. It can be   only if no nodes are connected, which is unlikely for a 

community. In real-world networks, the behavior of this property depends on the 

considered class. For communication networks, it is close to the maximum for all 

community sizes, meaning hubs are present in all communities. Considering their 

communities are sparse and tree-like, one can conclude they are star-shaped. Other 
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classes do not have as many hubs in their large communities, which is why their hub 

dominance generally decreases with community size increase [4]. 

3 Methods 

Our experiment is two-stepped: first we generate a set of artificial networks and study 

the realism of their community-related topological properties; second we apply a 

selection of community detection algorithms on these networks and analyze the 

properties of the community structure they estimate. In this section, we first describe 

the LFR model we applied during the first step, which supposedly allows generating 

the most realistic networks in terms of overall properties (degree distribution, small-

worldness, etc.) [6, 10, 11]. Then, we shortly describe the community detection 

algorithms we selected, and explain how they differ on the way they handle the 

concept of community. 

3.1 Network Generation 

Only a few models have been designed to generate networks possessing a community 

structure. Girvan and Newman seemingly defined the first one [5], which produces 

networks taking roughly the form of sets of small interconnected Erdős-Rényi 

networks [16]. Although widely used to test and compare community detection 

algorithms, the Girvan-Newman method is limited in terms of realism [6], mainly 

because the degree is not power-law distributed and the communities are small, few, 

and even-sized. Several variants were defined, allowing to produce larger networks 

and communities with heterogeneous sizes [2, 7, 17]. More recently, a different 

approach appeared, based on a rewiring process [6, 18]. It increased the realism level 

even more by generating networks with power-law distributed degree. Among these 

newer models, we selected the LFR model, which seems to be the more realistic and 

was previously used as a benchmark to compare community detection algorithms [6, 

10, 19]. 

The LFR model was proposed by Lancichinetti et al. [6] to randomly generate 

undirected and unweighted networks with mutually exclusive communities. The 

model was subsequently extended to generate weighted and/or directed networks, 

with possibly overlapping communities [19]. However, in this article, we focus on 

undirected unweighted networks with non-overlapping communities, because the 

community structure-related properties we want to study have been defined and/or 

used only for this type of networks. The model allows to control directly the 

following parameters: number of nodes  , desired average     and maximum      

degrees, exponent   for the degree distribution, exponent   for the community size 

distribution, and mixing coefficient  . The latter represents the desired average 

proportion of links between a node and nodes located outside its community, called 

inter-community links. Consequently, the proportion of intra-community links is  –  . 

A node of degree   has therefore an external degree of         and an internal 

degree of            . 
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The generative process first uses the configuration model (CM) [20] to generate a 

network with average degree    , maximum degree      and power-law degree 

distribution with exponent  . Second, virtual communities are defined so that their 

sizes follow a power-law distribution with exponent  . Each node is randomly 

affected to a community, provided the community size is greater or equal to the node 

internal degree. Third, an iterative process takes place to rewire certain links, in order 

to approximate  , while preserving the degree distribution. For each node, the total 

degree is not modified, but the ratio of internal and external links is changed so that 

the resulting proportion gets close to  .  

By construction, the LFR method guaranties to obtain values considered as realistic 

[1, 8] for several properties: size of the network, power law distributed degrees and 

community sizes. Other properties are not directly controlled, but were studied 

empirically [10]. It turns out LFR generates small-world networks, with relatively 

high transitivity and degree correlation. This is realistic [8], but holds only under 

certain conditions. In particular, transitivity and degree correlation are dramatically 

affected by changes in  , and become clearly unrealistic when it gets different from  . 

An adjustment was proposed to solve this issue, consisting in using a different 

generative model during the first step [11]. By applying Barabási & Albert’s 

preferential attachment model (BA) [21] instead of the CM, the degree correlation and 

transitivity become more stable relatively to changes in  .  

It is rather clear the mixing coefficient is complementary to the embeddedness 

presented in section 2 (eq. 1):      . Yet, it was mentioned in the same section 

the embeddedness varies much from one node to the other in real-world networks, 

exhibiting bimodal and flat distributions. From this point of view, the LFR model is 

not realistic, since it produces networks whose nodes have all roughly the same 

mixing coefficient. To solve this problem, we implemented a small adjustment 

allowing to specify the complete distribution of   in place of a single objective value. 

3.2 Community Detection 

Because of their number and great diversity, it is difficult to categorize community 

detection algorithms. Here, we chose to characterize them not by considering the 

process they implement, as it is usually done, but rather the definition of the 

community concept they rely upon. We selected a representative set of algorithms, 

favoring fast ones because of the size of the analyzed networks. We give very partial 

descriptions in this section, so the reader might want to consult the review by 

Fortunato [2] to find more information concerning community detection. A very 

widespread informal definition of the community concept considers it as a group of 

nodes densely interconnected compared to the other nodes [2, 14, 22]. In other terms, 

a community is a cohesive subset clearly separated from the rest of the network. 

Formal definitions differ in the way they translate and combine both these aspects of 

cohesion and separation. 

A direct translation of the informal definition given above consists in first 

specifying two distinct measures to assess separately cohesion and separation, and 

then processing an overall measure by considering their difference or ratio. This 
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approach led to many variants, differing on how the measures are defined and 

combined. The most widespread one is certainly the modularity, a chance-corrected 

measure which assesses cohesion and separation through the number of intra- and 

inter-community links, respectively. We selected two modularity optimization 

algorithms, which differ in the way they perform this optimization. Fast Greedy 

applies a basic greedy approach [3], and Louvain includes a community aggregation 

step to improve processing on large networks [23].  

Another family of approaches is based on node similarity measures. Such a 

measure allows translating the topological notions of cohesion and separation in terms 

of intra-community similarity and inter-community dissimilarity. In other terms: a 

community is viewed as a group of nodes which are similar to each other, but 

dissimilar from the rest of the network. Once all node-to-node similarities are known, 

detecting a community structure can be performed by applying a similarity-based 

classic cluster analysis algorithm [24]. We selected the Walktrap algorithm, which 

uses a similarity based on random walks and applies a hierarchical agglomerative 

clustering approach [17]. 

Some approaches based on data compression do not use the cohesion and 

separation concepts like the previous definitions. They consider the community 

structure as a set of regularities in the network topology, which can be used to 

represent the whole network in a more compact way. The best community structure is 

supposed to be the one maximizing compactness while minimizing information loss. 

The quality of the representation is assessed through measures derived from mutual 

information. Algorithms essentially differ in the way they represent the community 

structure and how they assess the quality of this representation. We selected the 

InfoMap algorithm [25], whose representation is based on coded ids affected to nodes. 

The definition of the community concept is not always explicit: procedural 

approaches exist, in which the notion of community is implicitly defined as the result 

of the processing. To illustrate this, we selected the MarkovCluster algorithm, which 

simulates a diffusion process in the network to detect communities [26]. This 

approach relies on the transfer matrix of the network, which describes the transition 

probabilities for a random walker evolving in this network. Two transformations are 

iteratively applied on this matrix until convergence. The resulting matrix can be 

interpreted as the adjacency matrix of a network with disconnected components, 

which correspond to communities in the original network. 

We have to mention another family of algorithms based on link centrality. They 

iteratively remove the most central links until disconnected components are obtained, 

which are interpreted as the network communities. The community structure largely 

depends on the selected centrality measure, e.g. edge-betweenness [5]. However, the 

computational cost of such algorithms is very high and we were not able to apply 

them to our data. 
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4 Results and Discussion 

4.1 Properties of the Generated Communities 

Using our review of the literature, we selected realistic values for the parameters the 

LFR model lets us control. We used three different network sizes: 

                       , constant average and maximal degrees       , 

         , and exponent      for the degree power-law distribution. The 

exponent was     for the community size distribution, whose bounds were      

and      . The mixing coefficient   was distributed uniformly over its definition 

domain      . We generated   instances of network for each combination of 

parameter values, in order to check for consistency.  

Among the community-related properties we described in section 2, two are 

directly controlled by the LFR model: the community size and embeddedness 

distributions. Our measurements confirm on all networks that the community sizes 

follow a power-law distribution as expected (cf. Fig. 1). Note the range of these sizes 

varies much from one real-world network to the other, and it is therefore difficult to 

describe a typical set of values. However, we can say the communities we generated 

are very similar in size to those from real-world networks of comparable size. For 

instance, we have communities containing between    and     nodes for   
     , which is compliant with what was observed in networks of this size [4]. For 

the embeddedness, we obtained a uniform distribution, as expected. It is close enough 

to what can be observed in social and information networks. The main difference is 

we do not have as many nodes with very high embeddedness as in those real-world 

networks. This could be easily corrected though, by specifying a more appropriate 

distribution when applying the modified LFR model. 

We now focus our attention on the uncontrolled properties. The results are very 

similar independently from the size of the network. The only difference seems to be 

that values measured on larger networks exhibit slightly smaller dispersion. For this 

reason we present only results for networks with size        . 

The scaled density increases from    to    along with the community size. This 

means the smallest communities are clique-like (        ), and no tree-like 

communities are generated (       ). These features cannot be considered as 

realistic: as mentioned before, in real-world networks the small communities are tree-

like and the large ones are either tree-like too, or much more clique-like. In other 

words: real-world networks exhibit two different behaviors, but the generated 

networks can be compared to none of them. It seems the links are distributed too 

homogeneously over the generated networks, making small communities too dense 

and large ones too sparse. 

As shown in Fig. 1, the average distance increases regularly from     to     along 

with the community size. The main difference with real-world networks is these have 

a much lower average distance for smallest communities, reaching values slightly 

greater than  . Consequently, we do not observe for the generated networks the fast 

increase of average distance which was characteristic of the real-world networks. For 

the rest of the communities, the observed distribution is comparable with 
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communication networks though, with a stable average distance for medium and large 

communities. Moreover, the values measured for these communities are also realistic 

in terms of magnitude. 

 

Fig. 1. Properties of the generated communities. Each network instance is represented with a 

different shape/color. Points are averages over logarithmic bins of the community size. The 

dotted lines in the scaled density plot represents its limits (        and   , cf. section 2). 

Hub dominance is very high for the smallest communities, with values close to  . 

For large communities, there is no general trend in         networks: the property 

varies much over the networks we generated. This dispersion decreases when the 

network size increases though, and          networks show a hub dominance 

decrease with community size increase, reaching values close to    . This behavior is 

compatible with most classes of real-world networks, which exhibit hubs dominance 

mainly for small communities. Moreover, the same dispersion was also observed on 

real-world networks [4]. This measure completely relies on the way high degree 

nodes are distributed over communities, since it directly depends on the maximal 

internal degree found in communities. The fact there are much less large 

communities, due to their power law-distributed sizes, can explain this dispersion. A 

possible solution would be to consider a measure based on the   highest internal 

degrees of the community instead of a single one. 

To summarize our observations: the generated communities exhibit some, but not 

all, of the properties observed on real-world networks. Their sizes are realistic, but the 

distribution of links is not always appropriate. The small communities are too dense 

and clique-like, when they should be sparser and tree-like, with a smaller average 

distance. In other terms, they should be star-shaped. They possess the high hub 

dominance characteristic of such structures though, but this is certainly due to their 

clique-like configuration. The fact their average distance is much higher than in 

comparable real-world communities is a surprise. Indeed, one would expect such 

dense, hub-dominated communities to have a lower average distance. It turns out they 

are constituted of a clique core and a few very low degree nodes connected to this 
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core: the latter explain the relatively high average distance.  The larger communities, 

on the contrary, should be substantially denser and more clique-like. In some cases, 

their hub dominance is relatively low despite their small average distance and low 

density, which seems to indicate they do not contain a main central hub, but several 

interconnected medium ones. By definition, this feature is not reflected by the hub 

dominance measure, which only considers the maximal degree in the community.  

Another issue is the fact generated networks do not comply with a specific class of 

real-world networks, but rather have similarities with different classes depending on 

the considered property. Their average distance have common points with 

communication networks, whereas this is not the case at all for their embeddedness 

and hub dominance distributions, which look like social and biological networks. 

Despites these limitations, the model produces what we think to be the most realistic 

networks to date, which is why the generated networks constitute an appropriate 

benchmark to analyze community detection algorithms. 

4.2 Comparison of the Estimated Communities 

We applied the selected community detection algorithms on the generated networks: 

Louvain (LV), Fast Greedy (FG), MarkovCluster (MC), InfoMap (IM) and Walktrap 

(WT). For time matters, it was possible to process networks with sizes       and 

      , but not       . We however generated denser          networks, with 

          (instead of     ), in order to study the effect of density. Table 1 

displays the performance of each algorithm expressed in terms of Normalized Mutual 

Information (NMI), which is a measure assessing the similarity of two partitions (in 

our case: the reference and estimated community structures). It is considered to be a 

good performance measure for community detection, and was used in several studies 

[6, 7, 10]. According to the NMI, IM clearly finds the closest community structure to 

the reference, followed by MC, LV, and WT, while FG is far behind. This type of 

quantitative analysis is characteristic of existing works dealing with algorithms 

comparison. In the rest of this section, we complete it with a qualitative analysis 

based on the previously presented community properties. 

We first focus on the results obtained on         networks. As we can see on 

Fig. 2, most algorithms have found communities whose sizes distribution is 

reminiscent of the power-law used during network generation. However, important 

differences exist between them. First, MC visibly finds many very small communities 

(    ), and the other sizes are consequently strongly under-represented. A more 

thorough verification showed most of these communities are even single nodes, which 

is particularly problematic since community identification consists in grouping them. 

It is important to remark this does not appear on the NMI values, since MC has the 

second best score. This raises a question regarding the appropriateness of this measure 

to assess community detection performance. IM also finds some small communities, 

but much less than MC, and the rest of the distribution is more similar to the 

reference. Compared to the reference and the other algorithms, communities detected 

by FG and LV have sizes distributed rather uniformly. Interestingly, these two 

algorithms have very different performances in terms of NMI, so despite the relatively 



Qualitative Comparison of Community Detection Algorithms  11 

similar sizes of their communities, their community structures are probably very 

different too. For WT, the size distribution is very close to the reference. Again, this 

fact alone is not equivalent to a high NMI value, since its performance is substantially 

lower to IM. 

Table 1.  Algorithms performances, as measured with the Normalized Mutual Information. 

Algorithm            ,               ,            

Louvain                

Fast Greedy                

MarkovCluster                

InfoMap                

Walktrap                

 

For the embeddedness, MC and WT are clearly different from the reference, 

displaying a distribution with very few extreme embeddedness values. The small 

numbers of highly embedded nodes and the fact almost half the nodes have very low 

embeddedness with MC seems to be linked to the community size distribution. Many 

of the smallest communities identified by MC are certainly grouped together in the 

reference, leading to a smaller number of intercommunity links. Compared to the 

reference, WT does not contain nodes with low embeddedness, whereas it has more 

nodes with medium embeddedness. In this case, it cannot be related to the community 

sizes though, since they are comparable to those of the reference. Maybe the lack of 

low embeddedness nodes can be interpreted as a failure to classify interface nodes, 

located at the limit of their community and largely connected with other communities. 

The embeddedness distributions observed for FG and LV are again very similar. They 

also lack low embeddedness nodes, but not as much as WT. Finally, IM presents the 

values the most similar to the reference. 

When considering the scaled density (Fig. 2), IM, MC and WT are very close to 

the reference, except IM and MC present very low values for their smallest 

communities (meaning these are tree-like). For FG and LV, the scaled density is 

relatively stable, and does not present the slow increase which is characteristic of the 

reference. This can be interpreted as the fact the communities detected by these 

algorithms all present the same structure, independently from their size.   

The average distances measured on the FG and LV communities are much 

dispersed and do not follow the evolution observed for the reference. FG, in 

particular, has a much higher average distance than the reference and the other 

algorithms. This property is a good indicator of cohesion, so it seems this quality is 

absent from the communities identified by FG. The remaining algorithms (IM, MC, 

WT) are very close to the reference. IM displays two outliers though: the average 

distance is surprisingly high for its smallest and largest communities.  

For hub dominance, IM, MC and WT seem to follow the reference, with a positive 

bias. The fact these algorithms have slightly higher scaled-density and lower hub 

dominance, relatively to the reference, is consistent with their slightly lower average 

distance. The inverse observation is valid for the smallest and largest communities 
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detected by IM: sparse and non-centralized communities lead to high average 

distance. FG and LV once again display similar behaviors, with hub dominance 

values clearly bellow the reference. When also considering their stable scaled density, 

this can explain their increasing average distance.  

 

Fig. 2. Properties of the detected communities. Each shape/color corresponds to a different 

algorithm, whereas the reference is represented by a solid line. Points are averages over 

logarithmic bins of the community size. The dotted lines in the scaled density plot represent the 

limits of this property, as in Fig. 1. 

The topological analysis of the estimated community structures gives a new 

perspective to the quantitative performance measures. The communities detected by 

IM, the best algorithm in terms of NMI, are unsurprisingly very close to the reference 

ones. However, MC, the second algorithm and not far from IM, presents a very 

different community structure, characterized by much more very small communities. 

On the contrary, most of the properties of the communities identified by WT are very 

similar to the reference. It only differs clearly in terms of embeddedness distribution, 

which is apparently sufficient to rank it only fourth in terms of NMI, relatively far 

from IM. It thus seems there is no equivalence between a high NMI value and a 

community structure with properties close to the reference. We conclude both 

approaches are complementary to perform a relevant analysis of community detection 

results. It is worth noticing LV and FG, both based on modularity optimization, 

 

10
1

10
2

10
3

0.0

0.2

0.4

0.6

0.8

1.0

H
u

b
D

o
m

in
a

n
c
e

Community Size

10
1

10
2

10
3

1

2

3

4

5

A
v
e

ra
g

e
D

is
ta

n
c
e

Community Size

10
1

10
2

10
3

S
c
a

le
d

D
e

n
s
it
y

Community Size

10
1

10
0

10
2

0 0.2 0.4 0.6 0.8 1

10
−3

10
−2

10
−1

10
0

Embeddedness

F
re

q
u

e
n

c
y

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

F
re

q
u

e
n

c
y

Community Size

Reference
Louvain
Fast Greedy
MarkovCluster
InfoMap
Walktrap



Qualitative Comparison of Community Detection Algorithms  13 

comparably differ from the reference, which confirms the importance of considering 

the community definition which characterizes an algorithm. 

 

Fig. 3. Community size distributions for size       networks, with           (left) and 

     (right). Shapes/colors meaning is the same as in Fig. 2, and points are also averages over 

logarithmic bins of the community size. 

On size          networks, FG and LV find communities much larger than the 

reference ones, as shown in Fig. 3. For these algorithms,    roughly ranges from     

to      , when it goes from    to      in the reference. Both are based on 

modularity optimization, so this might be due to the resolution limit characteristic of 

this measure [27], which prevents them from finding smaller communities. IM is 

relatively close to the reference, but not as much as it is on         networks. WT 

is also very similar to the reference, but it departs from it by finding a very large 

community (        ). MC results are relatively similar to those obtained on the 

        networks, i.e. it finds many very small communities. In order to separate 

the effects of network size and density on the algorithms, we generated additional 

networks with the same size, but maximal degree           (instead of     ). 

This reduces slightly the overestimation of FG and LV community sizes, whereas MC 

has roughly the same results. On the contrary, IM and WT properties are excellent, 

they follow almost perfectly the reference values. 

5 Conclusion 

In this study, we took advantage of recent advances relative to the characterization of 

community structures in complex networks to tackle two questions: 1) Do artificial 

networks used as benchmark exhibit real-world community properties? 2) How do 

community detection algorithms compare in qualitative terms, by opposition to the 

usual quantitative measurement of their performances. We first applied a variant of 

the LFR model [6] to generate a set of artificial networks with realistic parameters 

retrieved from the literature. We studied their properties and concluded some of them 

are realistic (community sizes, hub dominance), some are only partly realistic 

(embeddedness, average distance), and others are not realistic at all (scaled density). 

We then applied on these networks a representative set of five fast community 

detection algorithms: Fast Greedy, InfoMap, Louvain, MarkovCluster and Walktrap. 
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It turns out the performance assessed quantitatively through the widely used 

Normalized Mutual Information (NMI) measure does not necessarily agree with a 

qualitative analysis of the identified communities. On the one hand, MarkovCluster, 

ranked second in terms of NMI, actually found an extremely large number of very 

small communities and almost no large community. On the other hand, the properties 

of the community structure estimated by Walktrap are very close from the reference 

ones, but the algorithm comes fourth in terms of NMI, with a score relatively far from 

MarkovCluster’s one. It therefore seems both approaches should be applied to 

perform a relevant comparison of the algorithms.  

Our contributions are as follow. First, we introduced a slight modification to the 

LFR model, in order to make the embeddedness distribution more realistic in the 

generated networks. Second, we studied these generated networks in terms of 

community-centered properties. This complements some previous analyses focusing 

on network-centered properties such as transitivity or degree correlation [6, 10, 11]. 

Third, we applied several community detection algorithms on these networks and 

characterized their results relatively to the same community-centered properties. 

Previous studies adopted a quantitative approach based on some performance measure 

[6, 7, 10, 11, 18]. 

Our work can be extended in various ways. First, it seems necessary to either 

increase the realism of the LFR model or to define a completely new approach able to 

generate more realistic networks. Second, by lack of time, we could test only a few 

algorithms, on a few relatively large networks. A more thorough analysis would 

consist in using much larger networks, with more repetitions to improve statistical 

significance. Moreover, applying several algorithms relying on the same definition of 

the community concept would allow to compare their properties and maybe associate 

a certain type of community structure to a certain family of algorithms. It could 

additionally be interesting to use other performance measures than the NMI to assess 

their relevance with the studied topological properties. Third, it would noticeably be 

interesting to apply classic network-wise measures to communities (transitivity, 

degree correlation, centrality, etc.), and to consider additional community specific 

measures, such as those designed in [13], which seem complementary to the 

embeddedness, and the concept of community profile [12], although this one looks 

particularly costly from a computational point of view. 
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