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Résumé — Analyse de cycle de vie appliquée au reformage catalytique du naphta — Les
considérations liées à l’environnement doivent de plus en plus être prises en compte par les ingénieurs et
les scientifiques afin de juger de la durabilité des procédés chimiques dans l’industrie pétrolière et
gazière. Parmi les différentes méthodes d’analyse environnementale, l’Analyse de Cycle de Vie (ACV)
est très utilisée. Dans cette étude, l’ACV est appliquée au procédé de reformage catalytique du naphta en
utilisant la méthode Eco-Indicateur 99 comme méthode d’analyse des impacts du cycle de vie. Les
principaux impacts environnementaux du procédé sont la consommation de combustibles fossiles, le
changement climatique et les effets sur la respiration liés aux composés organiques. L’influence de
différents paramètres (composition de l’alimentation, température de réaction) sur les impacts
environnementaux est testée. Deux méthodes d’allocation sont analysées (allocation massique et
énergétique) et deux versions du procédé de reformage catalytique sont comparées afin de déterminer les
améliorations possibles permettant de minimiser les impacts.

Abstract — Life Cycle Assessment Applied to Naphtha Catalytic Reforming — Facing the increase of
environmental concerns in the oil and gas industry, engineers and scientists need information to assess
sustainability of chemical processes. Among the different methods available, Life Cycle Assessment
(LCA) is widely used. In this study, LCA is applied to a catalytic reforming process using the Eco-
Indicator 99 as life cycle impact assessment method. The main identified environmental impacts are
fossil fuels consumption, climate change and respiratory effects due to inorganics compounds. The
influence of different process parameters (feed composition, reaction temperature) is determined with
respect to environmental impacts. Two allocation methods are analysed (mass and exergetic allocation)
and two different process versions are compared in order to determine the effect of some improvements
on environmental impact.
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NOMENCLATURE

A Reactor section
Cp

0 Specific heat capacity
mi Mass flow rate of product i
Q Quality index
Qm Mass flow rate
ri Production rate of chemical reaction i
ri, j Production rate of component j in reaction i
T Temperature
z Reactor abscissa
αi Monetary specific value of product i
ΔrHi

0 Standard enthalpy of reaction i
υi, j Stoichiometric coefficient of component j in reaction i
μ Partial molar Gibbs energy
ρ Catalyst density

Abbreviations
AETP Aquatic Ecotoxicity Potential
CCS CO2 Capture and Storage
CFC Chlorofluorocarbon
DALY Disability Adjusted Life Years
ELCA Exergetic Life Cycle Assessment
EDF Electricité de France
GHG Greenhouse Gas
GWP Global Warming Potential
HCFC Hydrochlorofluorocarbon
IPCC Intergovernmental Panel on Climate Change
ISO International Organisation for Standardisation
LCA Life Cycle Assessment
LCI Life Cycle Inventory
LCIA Life Cycle Impact Assessment
LPG Liquefied Petroleum Gas
MJ Mega Joule
ON Octane Number
PDF Potentially Disappeared Fraction of species
PEC Predicted Environmental Concentration
PNEC Predicted No Environmental Concentration
RDF Refuse Derived Fuel
SETAC Society for Environmental Toxicology and Chemistry
TETP Terrestrial Ecotoxicity Potential

INTRODUCTION
In the current context, oil and gas industry processes have to
be developed considering technical and economical issues
but also sustainability. Climate change is one of the main
environmental impacts because its consequences could be
considerable in some decades. But other impacts such as
resource depletion, eutrophication, toxicity and ozone layer
depletion have also to be taken into account when different
products or processes are compared. A classical method used

to quantify the environmental impact of a process or a
product is Life Cycle Assessment. In this method each step
of the life cycle is considered and an indicator is calculated
for each impact. In this work, Life Cycle Assessment is
applied to a process from the oil and gas industry: the
naphtha catalytic reforming process.

1 LCA METHODOLOGY

1.1 System Life Cycle
A system is the whole set of unit operations corresponding to
a product, a process or an activity. The life cycle is the whole
set of sequential phases comprised in a system from raw
materials acquisition to disposal or recycling (from cradle to
grave). Each step of life cycle (extraction and treatment of
raw materials, energy conversions, transportation, distribu-
tion, waste disposal or recycling…) has an impact on envi-
ronment and must be taken into account. If only a part of the
chain is studied, what could appear as an environmental
improvement on this part could lead to a worsening of the
environmental impact on other upstream or downstream parts
of the chain (Bouvart and Prieur, 2009). These pollution
transfers can occur from one phase to another phase of the
life cycle or from one impact to another impact.

1.2 LCA Steps
LCA is a tool used to evaluate environmental impact at each
step of a system life cycle. This methodology has been devel-
oped from chemical engineering principles and is based on
mass and energy balances. LCA has mainly been applied to
products but it can be applied for process design, selection
and optimisation (Azapagic, 1999), (Burgess and Brennan,
2001a). In 1990, the Society for Environmental Toxicology
and Chemistry (SETAC) initiated activities to develop a
methodology for LCA (Consoli et al., 1993). The International
Organisation for Standardisation (ISO) started a similar work
(Guinée et al., 2000). LCA is divided into four steps corre-
sponding to a set of standardised ISO norms:
– Objectives and scope definition (ISO 14040, 2000),
– Life Cycle Inventory analysis (ISO 14041, 2000),
– Life Cycle Impact Assessment (ISO 14042, 2000),
– Improvement analysis (ISO 14043, 2000).

Its main benefit, over other site specific methods, is to
include all burdens and impact in the life cycle of a product
or a process, and not focusing on the emissions and wastes
generated by the plant or manufacturing site only.

The first step of the study consists in precisely defining
the goal of the work, because it determines the way to lead
the analysis. For example, if processes should be compared,
some life cycle phases could be eliminated because they
could be identical in the processes under comparison. It is
also important to set up boundaries. For that purpose, life
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cycle phases included in the analysis should be selected.
It could be useful to consider the “foreground” and the
“background” systems: the foreground system is defined as
the set of processes delivering directly the functional unit and
the background system is the system that provides the fore-
ground system with energy and materials (Azapagic, 1999).
The construction and dismantling phases, for a sufficiently
long lifetime, can be neglected in the analysis (Lombardi,
2003). At this stage, the functional unit has to be defined. All
functions performed by the system have to be known. The
functional unit is a measure of the function that the system
delivers. When several systems are considered, the same
functional unit must be used to compare them.

The Life Cycle Inventory (LCI) phase involves identifica-
tion of the unit operations included in the system. Data con-
cerning the unit operations of the system are collected. Lab,
pilot or plant scale data are collected and a computer model is
used to determine the mass and energy input and output fluxes.
Environmental impacts that would be dealt with are defined.

The Life Cycle Impact Assessment (LCIA) phase aims at
the calculation of each impact reported in the inventory
analysis. An appropriate impact indicator is used for each
impact. Results can be aggregated to a global single indica-
tor. The LCIA may include the classification of each impact
to damage categories (classification), the modelling of envi-
ronmental impacts with an impact indicator (characterisation)
and optional elements. These optional elements depend on
the scope of the study: normalisation of each impact to a
reference value and weighting (i.e. allocation of weighting
factors to each impact). Weighting in LCA has always been a
controversial issue because weighting factors should be set
based on social, political or economical values (Finnveden,
2006). Despite the controversies, weighting is widely used in
practice. The LCIA method used in this study is Eco-
Indicator 99 (Goedkoop, 2000). This method is damage-
based, meaning that the damage to human or ecosystem
caused by environmental effects is modelled. Table 1 sum-
marises the environmental impacts used in the Eco-Indicator
99 method. These environmental impacts are classified in
three different damage categories (Goedkoop, 2000):
– human health damage, which are measured in Disability

Adjusted Life Years (DALYs); damage of one means that
one life year of one individual is lost;

– ecosystem quality damages, that are measured in PDF
m2 yr (potentially disappeared fraction of species); a
damage of one means that all species disappear from a m2

over one year or 10% of all species disappear from 10 m2

over one year;
– damages to resources, which are measured in MJ of

surplus energy; a damage of one means that further
extraction of the same resources in the future will need an
additional MJ of energy due to the lower resource
concentration or other unfavourable characteristics of the
remaining reserve.

The improvement analysis is the phase in which the
results of the previous phases are analysed according to the
scope of the study. The objective is to conclude and to
improve the life cycle in order to give information to decision
maker.

TABLE 1

Environmental impact description

Environmental impact Description

Carcinogens Carcinogenic effects due to emissions of

carcinogenic substances to air, water and soil

Respiratory organics Respiratory effects due to emissions of organic

substances to air 

Respiratory inorganics Respiratory effects due to dust, sulphur,

and nitrogen oxides to air

Climate change Global warming due to greenhouse gas emissions

in atmosphere

Radiation Damage resulting from radioactive radiation

Ozone layer depletion Damage due to increased UV radiation as a result

of emission of ozone depleting substances to air

Ecotoxicity Damage to ecosystem quality as a result of

emission of toxic substances to air, soil and water

Acidification Forest and lake destruction by acid rains due to

acid air emissions

Eutrophication Lack of oxygen and algae development in water

streams or soil due to too high nitrogen and

phosphorous concentrations

Land use Damage as a result of either conversion of land

or occupation of land

Minerals Non renewable resource depletion due to

extraction and consumption of minerals

Fossil fuels Non renewable resource depletion due to

extraction and consumption of fossil fuels

1.3 Allocation of Co-products

Allocation can be defined as the act of proportionally distrib-
uting the responsibility for resources consumption, emissions
and waste streams between different co-products in a
process. Each environmental impact should be allocated to
each co-product. Different allocation methods exist. The
international standard gives some guidance on how to handle
allocation problems (Finnveden et al., 2009):
– subdivision or system expansion when possible;
– substitution method (avoided impact method) when

possible;
– allocation reflecting physical, chemical or biological

causations (for example energetic or exergetic pro rata);
– allocation based on other measures (for example mass or

economical pro rata).
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The allocation method depends also on the system char-
acteristics. For processes dealing with energy conversion,
energetic or exergetic pro rata seems to be the best alloca-
tion mode because it reflects products value.

2 APPLICATIONS

There are not many references in literature describing the use
of LCA to processes. We will here focus on works dealing
with LCA applied to chemical processes, biofuels, recycling
and renewable energy. Some examples are described in
Table 2.

TABLE 2

Examples of LCA applied to chemical processes, biofuels,
recycling and renewable energy

Author Process

Burgess and Brennan (2001b) Desulfurisation of gas oil

Arena et al. (2003) Waste management

Chevalier et al. (2003) Municipal solid waste incinerators

Lombardi (2003) Power generation systems

Renou et al. (2008) Wastewater treatment processes

Bouvart and Prieur (2009) Combined hydrogen and electricity

production with integrated CO2 capture

and storage

Cherubini et al. (2009) Biofuel and bioenergy systems

Gebreslassie et al. (2009) Absorption cooling systems

Pehnt and Henkel (2009) Carbon dioxide capture and storage 

from lignite power plant

Stichnotte and Azapagic (2009) Bioethanol routes

Burgess and Brennan (2001a) gave a review of LCA
applied to chemical processes before 2001. Burgess and
Brennan (2001b) outlined the importance of fugitive
emissions in a desulphurization process of petroleum gasoil
incorporating a hydrotreater unit, hydrogen plant and sulphur
recovery unit.

Renou et al. (2008) studied wastewater treatment process
and discuss the influence of the Life Cycle Impact
Assessment method. They conclude that the impact assess-
ment methods do not influence LCA results for most of the
impacts. However, concerning local river eutrophication,
LCA should be combined with microbial and chemical risk
analysis. The management of Municipal Solid Wastes
(MSW) was led by Arena et al. (2003): three scenarios were
taken into account: landfilling, Refuse Derived Fuel (RDF)
production and combustion and mass burn combustion.
Different environmental impacts were quantified (material
consumption, climate change, acidification, air and water
emissions and solid waste production). Results showed the
poor performance of landfilling option with respect to the

other options. In the same field, two processes for flue gas of
solid waste in municipal incinerators were studied by
Chevalier et al. (2003). Several environmental impacts were
calculated to compare a classical wet type process and a new
transported droplets column process.

Power generation systems have been studied by Lombardi
(2003). Three different configurations were compared by an
Exergetic Life Cycle Assessment (ELCA) and a classical
LCA to decrease greenhouse gas emissions. ELCA is an
analysis method based on life cycle approach in combination
with exergy analysis developed by Cornelissen (1997).
Destroyed exergy is viewed as an impact indicator reflecting
the depletion of natural resources. A review of different LCA
and exergy coupled analysis is given in a previous
publication (Portha et al., 2009) and was applied to naphtha
catalytic reforming.

Cherubini et al. (2009) compared different biofuels
sources and their impact on Greenhouse Gas (GHG)
emissions. They conclude that bioenergy compared to their
fossil reference can achieve a reduction of GHG emissions
and fossil energy consumption but other environmental
impacts (such as eutrophication and local air pollution) can
be increased. LCA requires taking into account all
environmental impact when biofuels routes are compared to
classical fuel routes.

Stichnotte and Azapagic (2009) studied two bioethanol
routes produced from two different feedstocks derived from
household waste and show that GHG emissions decrease
significantly for a given scenario but that a full life cycle
approach has to be applied to take all impacts into account.

Bouvart and Prieur (2009) compared twelve scenarios
concerning combined hydrogen and electricity production
with and without CO2 Capture and Storage (CCS) for
different feedstocks (natural gas, bituminous coal and
lignite). The study was based on two main criteria: GHG
emissions and non renewable primary energy consumption.
A significant reduction of the GHG emissions (between 70
and 82%) and a significant increase of the non renewable
energy consumption were shown when CCS was used. Pehnt
and Henkel (2009) led the same task for several lignite power
plant technologies. The LCA included post combustion, pre
combustion and oxyfuel capture processes transport and
storage of the CO2. The results were the same as previously.
For other environmental impacts, the results depend on the
chosen technology.

The design of a sustainable absorption cooling system was
provided by Gebreslassie et al. (2009). The total annualized
cost and the environmental impact of the cycle were
minimized by a multiobjective optimisation method. Authors
outlined that a compromise has to be found between the
economic performance and fossil fuel consumption (main
impact of LCA in this case).
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3 CATALYTIC REFORMING PROCESS

Catalytic reforming is a chemical process used to convert
naphtha (of low octane number) produced during petroleum
refining, into high-octane number liquid products (Meyers,
1996) which are called reformates. Basically, the process re-
designs the hydrocarbon molecules of the naphtha feed and
performs aromatization. Alongside these reactions, cracking
(breakage of large molecules into smaller ones) takes place.
The process produces very significant amounts of hydrogen
gas and some light co-products (fuel gas and liquefied
petroleum gas). The process studied here is a typical
continuous catalytic regeneration reforming process. Because
of coke formation, this type of process (depicted in Fig. 1) is
characterized by a continuous in situ regeneration of the
catalyst in a special regenerator. The regeneration of catalyst
by coke combustion is also a source of direct greenhouse gas
emissions in the process. 

The reactions taking place are globally endothermic. The
reaction section is split into four catalytic reactors. To main-
tain an appropriate temperature, between each reactor, a fur-
nace heats the feed back up to the desired temperature. Each
reactor inlet temperature is around 500°C and pressure is
around 5 bar. Reactors are moving bed catalytic reactors

with a Pt-Sn/Al2O3 catalyst. Flash distillations and an atmos-
pheric distillation column enable to separate products in the
separation section. Catalyst regeneration is not represented in
Figure 1 because the figure would be unreadable.

Two processes having the same function are considered in
this study in order to be compared:
– the basic process (Process 1) described in Figure 1;
– the modified process (Process 2) corresponding to the

basic process with two changes: for feed/effluent heat
exchanger E1, a high performance heat exchanger is used
instead of a classical one and a recycle loop is added to
recycle Fuel Gas in order to have more LPG (a product
having a higher price).
The vapor/liquid equilibria are calculated according to the

Grayson-Streed thermodynamic model. The kinetic model
used to represent chemical reactions taking place in reactors
is based on the work by Marin and Froment (1981) and by
Van Trimpont et al. (1988). The mechanism involves the
following reactions: isomerisation, paraffins ring closure,
naphthenes dehydrogenation and hydrocracking. The
petroleum cuts C6, C7, C8, C9 and C10 (number of carbon
atoms of the component) contained in the feed are taken into
account for chemical reactions. For petroleum cut C7, the
chemical reactions are described in Table 3.
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Figure 1

Flow sheet of the reforming process (E: heat exchanger, F: furnace, R: reactor, P: pump, C: compressor, D: distillation column, S: flash
distillation).
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TABLE 3

Chemical reaction for the petroleum cut C7

Chemical reaction Name

nC7 �� iC7 Isomerisation

iC7 �� N7 + H2 Ring closure

N7 �� A7 + 3H2 Dehydrogenation

iC7 � C6– Hydrocracking

The process is simulated with the process simulator ProII
8.0 (Simscii, Lake Forest, Illinois) coupled with a Fortran
subroutine for reactor calculation. Plug flow is assumed in
the reactors. Under these conditions, a mass balance has been
applied for each component j of the mixture involved in
chemical reaction i and is given by Equation (1):

(1)

with Fj: molar flow rate of component j (mol.s-1), z: reactor
abscissa (m), υi, j: stoichiometric coefficient of component j
in reaction i, ri, j production rate of component j in reaction i
(mol.kg-1.s-1), ρ: catalyst density (kg.m-3) and A: reactor
section (m2).

A global heat balance has also been applied and is given
by Equation (2):

(2)

with T: temperature (K), Qm: mass flow rate (kg.s-1), Cp
0:

specific heat capacity (J.kg-1.K-1), ri: production rate of
chemical reaction i (mol.kg-1.s-1), and ΔrHi

0: standard
enthalpy of reaction i (J.kg-1).

The differential equations system is solved for each
reactor by a Runge-Kutta method. Results have been
validated by comparison with full scale industrial data.
Numerical information obtained from simulations of the
studied processes is given in Table 4. 

TABLE 4

Mass and energetic flow rates for Process 1 and Process 2
(Naphtha 1, T = 810 K)

Process 1 Process 2

Feed (kg.h-1) 60 605 60 605

Hydrogen (kg.h-1) 4218 4218

Fuel Gas (kg.h-1) 104 6

LPG (kg.h-1) 633 731

Reformate (kg.h-1) 55 650 55 650

Electricity (MW) 4.08 4.08

Heat duty (MW) 24.57 24.13

dT

dz

A

Q C T
r H T

m p

i r i

i

= −
⎛

⎝
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0
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i

=
⎛
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⎞

⎠
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4 CHARACTERISTICS OF THE LCA APPLIED
TO THE PROCESS

The functional unit is the production of one kg of reformate.
The quality of the produced reformate should be the same for
each comparison. However, in any oil and gas process, the
quality of the product is never the same because it depends
on the crude oil. To check the quality of reformate, the octane
number and the quality index of all co products will be given.
The quality index has been defined in a previous paper
(Portha et al., 2009):

with Q: quality index (€/h), αi: monetary specific value of
product i (€/kg), mi: mass flow rate of product i (kg/h).

The boundaries of the system include utility production
(electricity and heat generation and distribution) and the
catalytic reforming process itself. In our specific case, natural
resources extraction, transport operations and crude oil
distillation have been excluded because the same feed is
supplied to the tested reforming processes which means that
these contributions cancelled out when they are compared.

As stated in the literature, construction and dismantling
phases can be neglected because the lifetime of a refinery is
at least 40 years so that the operation phase is the most
important. The catalyst production and destruction are also
negligible phases. The LCA boundaries are described in
Figure 2.

The catalytic reforming process used for simulations has
been described previously. The feed corresponds to naphtha
produced in European refineries. The electricity mix used for
calculations is the French one with a large part of nuclear
origin (Tab. 5). Heat is produced in natural gas furnaces with
a low NOX technology. All data concerning mass and heat
fluxes are calculated as previously described. Chemicals,
electricity and heat production inventories were taken from
Simapro 6 database.

TABLE 5

Source of French electricity production in 2008
(primary energy sources) (source: EDF)

Source of french electricity %

Nuclear 82.9

Hydroelectricity 7.5

Fuel 1.4

Natural Gas 3.0

Coal 3.1

Other renewable energy 1.8

Other 0.3

Q mi

i

p

i=
=

∑α
1
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For the LCIA step, the Eco-Indicator 99 method is used. It
applies a damage oriented approach meaning that the damage
to human or ecosystem caused by environmental effects is
modelled. At the characterisation step, eleven impacts are
considered: acidification, eutrophication, ozone layer deple-
tion, greenhouse effect, resource depletion... The damage
assessment step reduces these impacts into three damage cat-
egories: human health, ecosystem quality, and resources.
Impacts and damage categories are presented in Table 6.
Human health presents one major drawback as it contains
impacts such as climate change that do not concern directly
human toxicity.

The characterisation factors are described in Table 7.

For instance, the characterisation factors for different
greenhouse gases are given in Table 8. The considered factor
is the global warming potential calculated over 100 years and
defined by the IPCC (2007).
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LCA boundaries.

TABLE 6

Damage analysis (Eco-Indicator 99)

Number Impact category Damage category Unit

1 Carcinogens DALY

2 Respiratory organics DALY

3 Respiratory inorganics Damage to DALY

4 Climate change human health DALY

5 Radiation DALY

6 Ozone layer depletion DALY

7 Ecotoxicity PDF m2 yr

8
Acidification/

Eutrophication
Damage to ecosystems PDF m2 yr

9 Land use PDF m2 yr

10 Minerals
Damage to resources

MJ surplus

11 Fossil fuels MJ surplus
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TABLE 8

Global Warming Potential over 100 years
(GWP100) (source: IPCC, 2007)

Greenhouse gas
Chemical Lifetime

GWP100formula (years)

Water H2O ~ 0.04 -

Carbon dioxide CO2 100 1

Methane CH4 12 25

Nitrous oxide N2O 114 298

Halocarbons

(CFC, HCFC)
- 0.7-1700 5-14 400

Hydrofluorocarbons CxHyFz 1.4-270 124-14 800

Perfluorinated

compounds
SF6, NF3, CF4, C2F6… 740-50 000 7390-22 800

To show in what extent an impact category has a signifi-
cant contribution, the normalisation step is used. Results
from impacts characterisation are divided by an inhabitant
equivalent (environmental effects that an average European
causes in a year). In the weighting step, some impacts are
considered to be more important by the decision makers.
Weighting factors are also allocated to environmental
impacts. Results presented in the next part take into account
this last step.

5 RESULTS

In this paragraph, all results given in Figures 3-6 are also
reported in Appendix in the form of tables.

5.1. Influence of Temperature

The inlet temperature range of a furnace is comprised
between 497°C (770 K) and 537°C (810 K). The inlet tem-
perature of a furnace is identical for each furnace for a given
simulation. The temperature level has a direct impact on the
quality of reformate and on the quantity of energy used in a
furnace. Increasing the temperature means that the quantity
of aromatic products and the octane number are higher. But it
means also that utility consumption increases and that the
corresponding environmental impacts are greater. This result
is described in Figure 3. The value of an environmental
impact is given in milli-Eco-Indicator points. Numbers on the
abscissa axis correspond to the different impacts described in
Table 5. An increase of the inlet temperature involves an
increase of all environmental impacts. In this figure, the
main impact is fossil fuels consumption (88.3% of the total).
Fossil fuels are used especially to produce heat in natural gas
furnaces. The others significant impacts are climate change
(4.5%), respiratory effects due to inorganics (3.4%) and land
use (2.2%).

The temperature increase implies an increase of reformate
octane number and an increase of the quality factor (includ-
ing all co products). The scenarios comparison presents diffi-
culties because the functional unit (quality of reformate) is
changed when temperature is modified.  The comparison is
possible when normalisation is performed by dividing the
total environmental impact by the reformate octane number.
This shows that the process working at T = 770 K presents
the lower environmental impact for a given octane number. 

The naphtha production life cycle is here not taken into
account because the aim of the work is to compare different
process conditions. This is a good assumption when the same

800

TABLE 7

Characterisation factors

Impact category Indicator Model Characterisation factor Unit

Depletion of abiotic resources Ultimate reserve Guinee and Heijungs 95 Abiotic Depletion Potential (ADP) kg Sb eq

Climate change Infrared radiative forcing IPCC Global Warming Potential (GWP) kg CO2 eq

Stratospheric ozone depletion Stratospheric ozone breakdown
World Meteorological

Organisation
Ozone Depletion Potential (ODP) kg CFC11 eq

Human toxicity
Predicted daily intake EUSES, California Human Toxicity Potential 

Accepted daily intake toxicology model (HTP)
kg 1,4 DCB eq

Ecotoxicty PEC, PNEC EUSES AETP, TETP, etc. kg 1,4 DCB eq

Photo oxidant formation Tropospheric ozone production
UNECE trajectory Photochemical Ozone

model Creation Potential (POCP)
kg C2H6 eq

Acidification Deposition/critical load RAINS model Acidification Potential (AP) kg SO2 eq

Eutrophication Deposition/critical load
Stoichiometric procedure

of Heijungs (1994)
Eutrophication Potential (EP) kg PO4 eq



quantity of reformate is produced for a given quantity of
naphtha feed. The quantity of feed is always identical. But, as
presented in Table 9, the quantity of reformate decreases
when the temperature increases. So, strictly speaking, the
naphtha production life cycle should be taken into account in
the analysis.

TABLE 9

Temperature influence on products quality for 1 kg of reformate
(Process 1, naphtha 1)

Temperature (K) 770 790 810

Octane number (ON) 88.3 92.7 96.4

Quality factor (€.h-1) 21 889 23 229 24 602

Reformate quantity (kg.h-1) 57 858 56 940 55 650

Total environmental impact (mPt) 10.37 11.07 11.51

5.2 Distribution of the Environmental Impact
between the Life Cycle Steps

The life cycle phases that contribute to the three main
environmental impacts in our case study (fossil fuels consump-
tion, climate change and respiratory effects due to inorganics)
are presented in Figure 4. For each impact, the main contri-
bution is due to the heat produced in natural gas industrial
furnaces. Electricity represents less than 25% because it cor-
responds to the French electricity mix with a large part of
nuclear energy (Tab. 5), which does not affect fossil fuels
consumption and climate change.

The direct emissions (greenhouse gas emissions of CO2)
taking place in the process itself are induced by the catalyst
regeneration unit (by coke combustion) but it represents only
0.8% of the total impact of climate change. Concerning this
impact, the contribution of heat furnaces and electricity
represents respectively 91.9% and 7.3%.

5.3 Process Comparison

The two compared processes have been described previously
(Sect. 3). The environmental impacts associated with both
processes are given in Figure 5. Fossil fuels consumption
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Temperature influence on environmental impacts for 1 kg
reformate (Process 1, naphtha 1, mass allocation).
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Assignment of the three main environmental impacts
(Process 1, T = 810 K, naphtha 1, mass allocation).
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Process influence on environmental impacts for 1 kg of
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represents the main environmental impact. The global envi-
ronmental impact (sum of all impacts) presents a decrease of
1.77% for process 2 with respect to process 1. This result was
expected because the high performance heat exchanger
enables a saving of fossil fuels.

The comparison is here possible because the octane number
is the same in both processes as shown in Table 10. The
global quality index of co products is higher for process 2
because the recycle loop involves a higher production of
LPG (a product having a better monetary value).

TABLE 10

Process influence on products quality for 1 kg of reformate 

Process 1 2

Octane number 96.4 96.4

Quality factor (€.h-1) 24 602 24 616

5.4 Influence of Feed

Processes are simulated by using six different feeds. The feed
composition is given in Table 11. The feed is a heavy
gasoline cut from the atmospheric distillation unit. It contains
hydrocarbon chains with six, seven, eight, nine or ten carbon
atoms. It is mainly composed of paraffins and naphthenes
and has also a low octane number. The feed composition
depends on crude oil geographic origin.

TABLE 11

Feeds molar composition

Naphtha 1 2 3 4 5 6

n-paraffin 19.0 24.7 27.2 28.6 18.5 16.7

iso-paraffin 23.7 31.6 39.4 36.4 23.5 21.3

naphtenes 41.6 30.5 19.8 20.0 34.0 52.0

aromatic 15.7 13.2 13.7 15.0 24.0 10.0

The results, presented in Figure 6, show that, for each feed,
the process 2 has a lower impact than process 1. Here the
naphtha life cycle should be included in the analysis. But as
the impact of the feed composition on chemical reactions was
investigated in this study the naphtha pathway was not
considered. Moreover, even if the flow rate of naphtha 3 is
very high with respect to the others, the simulations can be
compared because the reformate/naphtha ratio is almost
constant (Tab. 12). The results show that an increase of iso
paraffins involves a decrease of the global environmental
impact. This could be explained by the fact that iso paraffins
are favourably converted by exothermic cracking reactions.
This implies that heat supplied by furnaces should be lower.
But a high proportion of iso paraffins means also a low

reformate octane number (Tab. 12). The other significant
parameter is the proportion of naphthenes. An increase of
naphthenes involves an increase of the global environmental
impact associated with an increase of the octane number (for
instance for Naphtha 1 and 6). Naphthenes are converted by
endothermic dehydrogenation reaction into aromatics. This
implies that heat supplied by furnaces should be higher when
the naphthenes proportion is high. The octane number is also
high. It is the case for instance for Naphtha 6.

Finally, production of reformate with low octane number
leads to a low total environmental impact. The required
specification to produce gasoline with a high octane number
is also not reached, so the environmental impact is just
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Figure 6

Feed influence on environmental impacts for 1 kg of
reformate (T = 810 K, mass allocation).

TABLE 12

Feed influence on products quality for 1 kg of reformate
(Process 1, T = 810 K)

Naphtha 1 2 3 4 5 6

Naphtha (kg.h-1) 60 605 59 612 91 122 60 897 59 528 59 525

Reformate flow

rate (kg.h-1)
55 650 54 202 82 947 55 158 54 828 54 704

Reformate/

Naphtha ratio (%)
91.8 90.9 91.0 90.6 92.1 91.9

Octane Number (ON) 96,4 93,2 87,1 91,5 98,3 95,9

Quality factor/

reformate flow 0.4421 0.4396 0.4162 0.4373 0.4483 0.4387

rate (€.kg-1)

Total environmental

impact (mPt)
11.5 10.9 9.6 10.4 10.6 12.4



exported. Indeed, when specification is not met at the outlet
of this specific process, actions should be undertaken, for
example refining in another unit to reach the specification
needed for use of gasoline.

5.5 Influence of the Allocation Method

Two allocation methods are applied to the studied system:
mass pro rata and exergetic pro rata (physical and chemical
exergy are taken into account). The expressions of exergy are
given in previous works (Portha et al., 2008, 2009). The
mass and exergetic percentages are given in Table 13. The
reformate represents almost 92% in mass of the total mass of
co products but only 86% when exergy is used to allocate co
products. This is due to the high exergetic value per mass of
hydrogen. This result is also true for energy.

TABLE 13 

Mass and exergetic pro rata for co products

Mass allocation (%) Exergetic allocation (%)

Reformate 91.8 86.0

Hydrogen 7.0 12.7

LPG 1.0 1.1

Fuel Gas 0.2 0.2

The results presented in Figure 7 show that the exergetic
allocation implies a decrease of the impacts relative to
reformate. This was expected because the proportion of
reformate is lower for exergetic allocation than for mass
allocation. The reformate has also a different impact

depending on whether exergetic or mass allocation is
considered.

The substitution method was applied for one impact:
climate change. This method consists in allocating all GHG
emissions to the main product. After a calculation of the
GHG emissions of the co-products produced by alternative
processes, these emissions are summed. The difference
between these two quantities gives the GHG emissions of the
main product. The considered alternative pathway for
hydrogen production was methane reforming. The
contributions of other co-products were neglected. The
results with this allocation method are presented in Table 14.
Results show that reformate produced by catalytic reforming
implies a saving of GHG emissions. This result is explained
by the fact that catalytic reforming is the best process, from a
sustainability point of view, to produce hydrogen.

TABLE 14

Allocation method influence on climate change for 1 kg reformate
(Process 1, T = 810 K, naphtha 1)

Allocation method GHG emissions relative to 1 kg reformate (geq CO2)

Mass -123.1

Exergetic -115.1

Substitution -745.5

CONCLUSION

Life Cycle Assessment is an interesting tool for chemical
engineering. It provides information about process sustain-
ability which is a relevant criterion for process selection and
design. This tool is widely used in literature in different
fields. A naphtha catalytic reforming process has been
selected and evaluated by LCA using the Eco-Indicator
99 method. This methodology shows that the main environ-
mental impacts are fossil fuels consumption, climate change
and respiratory effects due to inorganics. The main contribu-
tion in terms of unit operation is due to the heat furnaces. The
comparison performed to analyze two versions of the process
displays that an addition of a high performance heat
exchanger and a recycle loop to improve products quality are
beneficial to decrease environmental impacts. Temperature
and feed composition influence on environmental impacts
were investigated: an increase of reactor temperature implies
an increase of the impacts due to the endothermic chemical
reactions; an increase of the iso-paraffins/n-paraffins ratio
involves a decrease of environmental impacts because iso-
paraffins are easily converted by exothermic cracking reac-
tion; an increase of the naphthenes/aromatics ratio leads to
a increase of the impacts because naphthenes are converted
by endothermic dehydrogenation reactions. The quality of
the obtained products is a relevant parameter because the
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functional unit is defined with respect to a reformate having a
given quality. In chemical processes, this is a complicated
task because the compositions of crude oil and process para-
meters (temperature, pressure…) have an impact on compo-
sition and quality of the products.
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APPENDIX

Table related to Figure 3: Temperature influence on environmental impacts for 1 kg reformate
(Process 1, naphtha 1, mass allocation)

Impact 1 2 3 4 5 6 7 8 9 10 11

T = 770 K 1.99E-2 1.09E-3 3.55E-1 4.66E-1 4.38E-2 4.40E-4 2.11E-2 6.5E-2 2.3E-1 1.89E-2 9.15

T = 790 K 2.1E-2 1.16E-3 3.78E-1 4.97E-1 4.61E-2 4.64E-4 2.24E-2 6.93E-2 2.42E-1 2.01E-2 9.78

T = 810 K 2.18E-2 1.2E-3 3.92E-1 5.17E-1 4.76E-2 4.81E-4 2.32E-2 7.2E-2 2.5E-1 2.08E-2 10.16

Table related to Figure 4: Assignment of the three main environmental impacts
(Process 1, T = 810 K, naphtha 1, mass allocation)

Impact Resp. inorganics Climate change Fossil fuel

Heat furnace 77.7 91.9 98.6

Electricity 22.3 7.3 1.4

Catalyst regeneration unit 0 0.8 0

Table related to Figure 5: Process influence on environmental impacts for 1 kg of reformate
(T = 810 K, naphtha 1, mass allocation)

Impact 1 2 3 4 5 6 7 8 9 10 11

Process 1 2.18E-2 1.2E-3 3.92E-1 5.17E-1 4.76E-2 4.81E-4 2.32E-2 7.2E-2 2.5E-1 2.08E-2 10.16

Process 2 2.16E-2 1.18E-3 3.87E-1 5.08E-1 4.76E-2 4.81E-4 2.32E-2 7.2E-2 2.49E-1 2.06E-2 9.98

Table related to Figure 7: Allocation method influence on environmental impacts for 1 kg of reformate
(Process 1, T = 810 K, naphtha 1)

Impact 1 2 3 4 5 6 7 8 9 10 11

Mass allocation 2.18E-2 1.2E-3 3.92E-1 5.17E-1 4.76E-2 4.81E-4 2.32E-2 7.2E-2 2.5E-1 2.08E-2 10.16

Exergetic allocation 2.04E-2 1.13E-3 3.68E-1 4.84E-1 4.46E-2 4.5E-4 2.18E-2 6.74E-2 2.34E-1 1.95E-2 9.52
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