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high frequencies in human populations. Several non-exclusive hypotheses have been proposed . {Deleted:

o J

L

{Deleted: disease
to account for this apparent paradox (high new mutation rate, genetic drift, overdominance or
recent changes in selective pressure). However, the factors ultimately responsible for the
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presence at high frequency of disease-causing mutations are still contentious. Here we .- - {Deleted; debated
establish the existence of an additional process that contributes to the spreading of deleterious
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which tends to favor the transmission of GC-alleles over AT-alleles. Wge show that the -~ {
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spectrum of amino-acid altering polymorphisms in human populations exhibits the footprints
of gBGC. This pattern cannot be explained in terms of selection and is evident with all non-
synonymous mutations, including those predicted to be detrimental to protein structure and
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function, and those jmplicated in human genetic disease. We present simulations to illustrate .-~
the conditions under which gBGC can extend the persistence time of deleterious mutations in
a finite population. These results indicate that gBGC meiotic drive contributes to the
spreading of deleterious mutations in human populations.
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Introduction

The majority of disease-causing mutations (DMs) detected in human populations are very

o JC U 0 0 U J

P { Deleted: (
recent, having only been transmitted over a few generations at most [Slatkin and Rannala, .-

B { Deleted: )
20001, A substantial fraction of DMs nevertheless correspond to more ancient mutations that .-~
have persisted for a large number of generations. Several non-exclusive hypotheses have been
proposed to explain why such detrimental mutations could have escaped negative selection.

P { Deleted: ing
First, detrimental mutations that have,a limited impact on reproductive success (e.g. mutations .~

/{Deleted: (
causing late-onset diseases) can spread simply by genetic drift [Kryukov, et al., 2007] Second, .~ - [ Deleted: ,

. . ; \\\\ { Deleted: )
some DMs confer a selective advantage upon heterozygotes (overdominance) [Dean, et al., \{Delete "
2002], Third, some DMs may have attained, a high population frequency in the past because \{Deleted: (

77777777777777777777777777777777777777777777777777777777777777 S {Deleted: ,
they were once advantageous under environmental conditions that no longer pertain [Di \\{Deleted: )
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Rienzo and Hudson, 2005, Finally, some DMs may occur at high frequency because of a high  {pe1etea: (
. . . . o ‘[Deleted: )
de novo mutation rate or a germ-line selective advantage [Chojetal., 2008, = o (Formatted: Font. Iralic
\\1 \\ ‘[Deleted: (
Population genetic models indicate that jn addition to genetic drift and natural selection, there \\\{Delete 1.
. . . ), . . . . \\ \{Deleted: )
is a third process that can contribute to the spreading of mutations within a population: biased N {
Deleted: besides
gene conversion (BGC). Gene conversion occurs during homologous recombination and
involves the non-reciprocal transfer of sequence information between the two recombining
DNA molecules. This process is said to be biased if one of the two DNA molecules involved
is more likely than the other to be the donor. Gene conversion can affect paralogous
B {Deleted: (Chen, et al., 2007)
sequences duplicated in the genome or different alleles at a given locus_[Chen et al., 2007]. In -~
the case of allelic gene conversion, BGC leads to an excess of the ‘favored’ allele in the pool
of gametes and hence tends to increase the frequency of this allele in the population.
Theoretical analyses have shown that, as with selection, BGC can increase the probability of {D Teted: (
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Although the theoretical consequences of the BGC process have been known for some time,
the potential practical importance of this phenomenon has remained largely unstudied.
Recently, the analysis of polymorphism and nucleotide substitution patterns in primates has
provided firm evidence for BGC acting genome-wide, favoring GC alleles over AT alleles

conversion (gBGC) appears to be the major determinant of the evolution of base composition

at silent sites (non-coding regions, synonymous codon positions) in primate genomes [Duret .-

gBGC is likely to have hampered the action of purifying selection and led to the fixation of

deleterious mutations.

non-synonymous polymorphisms in extant human populations. To this end, we investigated .

the segregation patterns of AT—GC and GC—AT single nucleotide polymorphisms (SNPs)

according to the local recombination rate. We also analyzed different classes of non-

synonymous SNPs, predicted to be deleterious or known to be involved in genetic disease, .~

Jsing synonymous and non-coding SNPs as a neutral control. Al classes of SNPs were found /,,/, [ Deleted:

segregation patterns cannot be explained by ascertainment bias in SNP detection, artifacts in

extend the persistence of deleterious mutations in finite populations. We conclude that gBGC
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Nigeria), JPT (Japanese in Tokyo), CHB (Han Chinese in Beijing) and CEU (Utah residents
with ancestry from northern and western Europe) and we grouped the CHB and JPT samples

into a single set. We analyzed only SNPs that were polymorphic in the unrelated individuals

protein-coding synonymous and protein-coding non-synonymous.

As a complement, we used an independent polymorphism dataset comprising 39,440
autosomal SNPs, found exclusively in coding sequences, at both synonymous and non-
sequencing in 10,150 transcripts, for two population samples (hereafter termed AFR and
CAU): 15 African-American individuals (30,718 SNPs) and 20 European-American

individuals (22,514 SNPs, Supp. Table S2).
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To infer the most likely ancestral and derived alleles for each SNP, we used a maximum

sequences, we constructed triple alignments that included two sequences for the human

population, corresponding to the two alleles observed for each SNP. The allocation of alleles

to the two human sequences was performed randomly. We then inferred the ancestral

sequence for the human population, thereby obtaining for each genomic position a probability
distribution for the identity of the ancestral nucleotide. The ancestral nucleotide was randomly
drawn according to these four probabilities. In our analysis, we included only SNPs with a
constant 5'-3' context (i.e. positions with two neighboring SNPs were removed, and we

required that the human and chimpanzee nucleotides should be identical).

To confirm that this first approach had not been misled by ancestral 'misinference’ issues, we

Sl J b g B bt FRASh Gl il B

dependent model of sequence evolution (software kindly provided by Ryan D. Hernandez).

We only considered SNPs found within a constant 5’-3° context, as defined above. As

indicated by the authors, we further restricted our dataset to positions where the chimpanzee
nucleotide corresponded to one of the two alleles observed in the human population. The

context-dependent site frequency spectrum obtained by maximum parsimony was then
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associated allele sometimes represents the ancestral state; here, we focused exclusively on

SNPs for which the derived allele was associated with the disease.

SNP sampling and derived allele frequency spectrum
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The number of genotyped chromosomes varies widely between individual SNPs. The

frequency spectrum to be constructed employing the same number of chromosomes for all

SNPs. To fulfill this requirement, we applied the following procedure (as proposed by

ST T e U T L Y T M Y Y oo s s s R e e TR

(nmin) for a given SNP dataset and then estimated the derived allele frequencies for a dataset
reduced to n,,;, chromosomes. For a SNP that was originally present in n out of m sampled

chromosomes, the probability that it will be present at a frequency i in the reduced sample is

i

. o C! x Clmn™! - .
given by the hypergeometric distribution: %, where C) is the number of choices of

min
m

v elements among u. Using this formula, we can generate the expected derived allele
frequency spectrum in a subsample of n,; chromosomes. Note that this procedure was

applied independently for each class of SNPs analyzed here (intergenic, intronic, synonymous

Table S5.

Recombination rates and hotspots. The positions of 34,136 recombination hotspots were

taken from HapMap release 21 [Myers, et al., 2005], and converted from hgl7 to hgl8 ,”/ ,////

Disease-associated mutations. We extracted 45,751 disease-associated mutations occurring
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map unambiguously onto the human genome the positions of 43,953 disease-associated

disease: DM, mutations regarded as being a direct cause of disease; DP, polymorphisms
exhibiting a significant statistical association with disease but without additional functional
evidence supporting their involvement; DFP, disease-associated polymorphisms with
reported to affect the structure, function or expression of the gene (or gene product), but with

no known disease association (Supp. Table S3).

PolyPhen predictions. To predict which non-synonymous SNPs present in HapMap are

\\\\{\\ [ Deleted:
A \\ \[ Deleted:

\
{ Deleted:

Definition of recombination classes. To define regions of high and low recombination, we
sorted each SNP dataset according to the minimum distance to a recombination hotspot, and
then divided the dataset into three equal-sized classes. Only the first and the third classes were
compared in order to maximize the crossover rate difference between the high and low

recombination regions. This procedure was applied independently for each genomic region
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(intergenic, intronic, coding synonymous etc.) and for each HGMD and PolyPhen subset of

SNPs.

Statistical analyses. All statistical analyses were performed with the R environment |[R

Development Core Team, 2008], To test the effect of gBGC, we compared the mean derived

LYYy &Y MU MY MY M o T Ty MY Ly AT A T

allele frequencies (DAF) for AT—GC and GC—AT mutations. Given that the distribution of
DAF is non-Gaussian, we used a randomization procedure to test the statistical significance of
the mean difference (d = mean(AT—GC)-mean(GC—AT)). To do this, we randomized the
direction of AT—GC and GC—AT SNPs and compared the observed d value with those

obtained from 1000 randomized datasets. We computed a p-value corresponding to the

We also analyzed the difference in mean DAF between the two mutation classes (d) for
regions of high and low recombination. To test if the difference in d (Ad) between the two

recombination classes was statistically significant, we developed a randomization procedure:

in size to the original low recombination and high recombination classes, and computed Ad
for the simulated dataset. A one-tailed p-value was computed by comparing the observed Ad

value with 1000 simulated datasets.

Simulation of the impact of gBGC on the derived allele frequency spectrum

We used simulations to determine the expected distribution of derived allele frequencies

(DAF) at loci that are subject to mutation, negative selection and biased gene conversion. The
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the derived allele frequency was simulated independently for each locus. Each simulation was .

performed for over 20,000 generations, at the end of which, the DAF of the derived allele was -

calculated.

The alleles that can segregate at each locus belong to one of two classes: S(trong) (G or C) or

W(eak) (A or T). The fitness of genotypes SS, SW and WW are denoted respectively

Wy, Ogyand @, . The mean fitness value in the population is @:

W = 7 W5 + Zsy O + Zyw Oy Where Z denotes the zygotic frequencies.

For individuals that are heterozygous at a given locus (SW), we termed u the probability of
conversion S — W and v the probability of conversionW — §'. The gene conversion bias at
this site is measured throughd=v—u and has positive values when gBGC occurs. The
frequency of the S allele is denoted p and hence the frequency of allele W is /-p. The model
describes the transition from one generation, 7, to the next, n+/, admitting panmixia, with the

following equations:

adults n: Soss fsws Jowws

gametes n: 8= M gw =1-gs

zygotes n+l: 7. =gi; Zsw = 2858w Zyw = 8

adults n+1: fos = @ZSS; fow = @Zgw; Sow = “ww Zyw
® ® ®

alleles  n+1:  pg= fg +§f;w Py =1-pg

where f represents the frequency of individuals at generation n, g the frequency of gametes at

generation 1, and f the frequency of individuals at generation n+ 1.

10
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Here we only considered mutations that are both deleterious and recessive. We termed s the
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w=1-s. Thus, for the simulations of the fate of a newly-arisen W — S mutation in a WW

p { Deleted: .And

©CoO~NOUTA,WNPE

population, we have o, = @ and @y, = @,,, =1_whereas for the simulations of the fate of a -

12 /{Deleted:

14 P { Deleted:

17 (8=0, =0.00013 and 8=0.0013) and selection coefficient (s=0, s=10"*, s=10" and s=107).

22 Supporting Information
The dataset used in this publication is freely available at the following website:

27 ftp://pbil.univ-lyon!.fr/pub/datasets/Necsulea2010
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Results

gBGC hallmarks are observed for deleterious SNPs

To investigate whether gBGC affects the segregation of deleterious mutations in human
populations, we studied the spectrum of derived allele frequencies (DAFs) of non-
synonymous SNPs as a function of the local recombination rate across human chromosomes.

We first analyzed the HapMap dataset of human SNPs, which provides frequencies of each

allele in different human populations [Frazer, et al., 2007], We inferred the ancestral and .-

derived alleles for SNPs by means of a maximum likelihood approach that incorporates CpG

Three distinct subsets of non-synonymous polymorphisms were investigated: 1) all HapMap

non-synonymous SNPs; 2) HapMap non-synonymous mutations for which the impact on the

function of the protein was predicted by PolyPhen [Sunyaev, et al., 2001] to be ‘probablyﬁ/ii/,

damaging’; and 3) HapMap SNPs corresponding to disease-associated non-synonymous
dataset in order to analyze specifically those inherited mutations which are considered to be a
direct cause of disease (DM), thereby excluding those mutations that have only been

associated statistically with disease (Supp. Table S3). As a control, we also analyzed SNPs at

negatively correlated with the strength of purifying selection: SNPs in non-coding regions or

at synonymous codon positions exhibited the highest mean DAFs, whereas the lowest mean

were predicted by PolyPhen to be deleterious (Fig. 1, Supp. Tables S8-S10).

The gBGC model makes two firm predictions: first, in regions of high recombination, the

spectrum of derived allele frequencies (DAFs) for SNPs is expected to be skewed, with higher

12
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frequencies for AT—GC than for GC—AT mutations; second, this skewing is expected to be
weaker in genomic regions characterized by a lower recombination rate. To test these

predictions, we classified SNPs into groups of high and low recombination on the basis of

B {Deleted: (

their physical distance to the nearest recombination hotspot [Myers, et al., 2005]; similar - {Deleted, ,

average crossover rate in fixed-size sliding windows (not shown). We found that in regions of
high recombination, AT—-GC mutations segregated at higher frequencies than GC—AT
mutations (Fig. 2, Supp. Tables S8-S10, Supp. Fig. S2-S4). This difference was statistically
significant in all HapMap samples, both for silent SNPs and for the three sets of non-

synonymous SNPs (Table 1). This pattern was evident even within the DM subset. For this

that our observations for the more abundant classes of mutations (silent sites, non-

synonymous SNPs) were always in agreement with the gBGC hypothesis, and significantly

so, the uncertainty related to the DM class is most likely only a consequence of the reduced

sample size. As predicted by the gBGC model, the difference between the mean AT—GC and
GC—AT frequencies is much stronger for SNPs located in regions of high recombination rate

as compared to SNPs located in regions of low recombination rate (Fig. 1, Table 1, Supp.

b { Deleted: )

~” {Deleted: a

) ‘[Deleted: a

o L

T w Deleted: , probably due to the
N
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limited amount of data available)

) { Deleted: .
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Tables S13-S15). Thus, all classes of SNPs exhibit the hallmarks of the gBGC process, not .-

only the silent sites but also the three subsets of non-synonymous sites.

Control for variations in selective pressure on non-synonymous mutations

We observed that at non-synonymous sites, GC—AT mutations segregate at lower frequency

than AT—GC mutations. One potential explanation for this observation is that AT—GC non-

synonymous mutations might be, on average, less deleterious than GC—AT non-synonymous

mutations. To test this hypothesis, we compared AT—GC and GC—AT SNPs that lead to the

13
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same amino-acid replacement and hence are expected to have the exact same fitness impact.

In total, there are 10 amino-acid changes that can be caused both by AT—>GC and GC—AT

mutations. For each of the three populations, we performed pairwise comparisons of the mean

DAF of AT—>GC and GC—AT SNPs causing the same amino-acid changes: in 23 out of 30

comparisons, the AT—>GC SNP had the highest mean DAF (Supp, Table S19). For example, .-~

the mean DAF of Q—H non-synonymous SNPs in the CEU population is 0.19 when it results

from an AT—GC mutation, compared to 0.16 when it results from a GC—AT mutation.

Conversely, the mean DAF of the reverse amino-acid change (H—Q) is 0.35 when it results

from an AT—GC mutation, compared to 0.23 when it results from a GC—AT mutation.

Thus, the mean DAF varies according to the direction of the GC-content change (AT—GC vs.

GC—AT), independently of the nature of the amino-acid change. Hence, the observed

differences in mean DAF between AT—GC and GC—AT non-synonymous SNPs cannot be

attributed to differences in selective pressure on the corresponding amino-acid changes.

Control for SNP ascertainment bias and ancestral misidentification

The HapMap dataset is known to be biased towards high frequency polymorphisms, and this

Page 14 of 61
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representation bias can confound some population genetic analyses [Clark et al., 2005], There .~ - {Deleted; .

is however no a priori reason why this ascertainment bias should differentially affect
AT—GC- and GC—AT-derived allele frequencies. This notwithstanding, to ensure that our
observations were not affected by this intrinsic bias in HapMap data, we repeated our analysis

on an independent polymorphism dataset that was acquired through direct exon re-sequencing

b ‘[Deleted: )

L

B {Deleted: (

in two human populations [Lohmueller, et al., 2008], and which should therefore be free ofﬁ//:// {Deleted:

ascertainment bias. Our conclusions remained unchanged with the re-sequencing dataset: in
regions of high recombination, AT—>GC mutations segregated at higher frequencies than
GC—AT mutations and this excess was higher than in regions of low recombination. This

pattern was observed in both populations, not only for the synonymous sites but also for the

14
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three datasets of non-synonymous sites (Table 1, Supp. Tables S11-S12, S16-S17, Supp. Fig.
S5-S6). We may therefore conclude that the observed skewing of derived allele frequencies
to be stronger with the HapMap dataset as compared to the re-sequencing dataset (Table 1).

By means of simulations, we showed that this difference is due to the fact that the HapMap

SNP sampling strategy provides greater power to detect gBGC (see Supporting Information). -

s

One other potential artifact that had to be considered and assessed was the possibility that the

genomes), maximum parsimony tends to incorrectly ascribe directionality for GC—AT

following reasons. First, instead of using parsimony-based reasoning, we determined SNP

directionality using a maximum-likelihood approach that takes CpG hypermutability into

were excluded (Supp. Table S7). Third, we repeated our analyses using the context-dependent

model proposed by Hernandez and colleagues [Hernandez, et al., 2007a] to correct for .-

potential ancestral allele misidentification. With this method, the results remained in
agreement with our previous observations (Supp. Table S6). Finally, it should be highlighted
that the difference between the mean DAFs of AT—GC and GC—AT mutation was found to

be much stronger in regions of high recombination (Fig. 1). This observation, which is

Indeed, the pattern of substitution is more biased toward AT in regions of low recombination

15
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increase in AT—GC DAFs caused by ancestral misinference would be expected to be -
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P {Deleted: which is

stronger in regions of low recombination, jn contradistinction fo our own observations (Fig. .~ - { Deleted: with

D).

Simulation of the impact of gBGC in a finite population

To investigate the impact of gBGC on the fate of deleterious mutations (AT—GC or

GC—AT), we performed simulations in a finite population (effective population size

gBGC coefficients (9, see methods). The population-scale gBGC coefficient (N.0) in the

coding SNPs. In genomic regions of high recombination (defined as the top 20% of the

genome with the highest recombination rate; average crossover rate= 2.5 cM/Mb) their

cM/Mb [Myers et al., 2006], it is expected that the gBGC coefficient should be about 16 times _-~

B T e

therefore considered two values for the population-scale gBGC coefficient: N,0=1.3 (for a
moderate recombination hotspot) and N,6=13 (for a more intense recombination hotspot).

With gBGC parameters corresponding to those of a moderate human recombination hotspot,
the impact of gBGC on the DAF spectrum was clearly detectable for both nearly-neutral (IN,s!
= 1) and mildly deleterious mutations (IN.sl = 10): compared to a situation without gBGC

(N.5=0), AT—GC segregate at higher frequency, whereas GC—AT segregate at lower

DAF spectrum was detectable even for highly deleterious mutations (IN.sl = 100).
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Recombination hotspots occupy only a small fraction of the genome: among the non-
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recombination hotspot. Thus, only a limited fraction of SNPs is expected to be affected by
gBGC. This explains why the skewing observed in real data (Fig. 2) is intermediate between
the patterns obtained in simulations corresponding to moderate hotspots (N,0=1.3) or to the
absence of gBGC (N,5=0) (Fig. 3). Thus, the pattern observed with real data appears to be

compatible with the hypothesis that the skew in the DAF spectrum is due to gBGC affecting

deleterious mutations in recombination hotspots. It should be noted that the location of
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observed excess of high-frequency SNPs in regions of high recombination does not result

from sampling biases nor from artifacts of SNP directionality determination.

: But

explain the fact that non-synonymous GC—AT mutations segregate at lower frequency than
AT—GC mutations is that GC—AT mutations could be more deleterious that the AT—GC
mutations. For instance, it has been recently shown that GC—AT mutations at hypermutable

CpG sites within coding regions are under stronger purifying selection than other non-
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DAF of the latter cannot be attributed to a weaker impact on the encoded protein. Moreover,
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their mean DAF increases with the recombination rate. Finally, we have shown that the DAF
pattern is consistent over all classes of SNP, including those located in intergenic and intronic
regions, which may be presumed to be largely free of selective pressure. It has been
previously demonstrated that the relationship between recombination and the evolution of {
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sites and non-synonymous sites are subject to gBGC.

Taken together, the data presented are consistent with the hypothesis that biased gene
conversion is responsible for the excess of AT—GC SNPs segregating at high frequency in

regions of high recombination. This result has important implications for human health

disease-causing AT—GC mutations in human populations._It should be stressed that the
impact of gBGC on deleterious mutations is not always negative. Indeed, a majority (58.7%)
of known DMs correspond to GC—AT mutations. Thus, for a majority of DMs, gBGC acts in
such a way as to limit their probability of spreading. However, the price to pay for this
positive influence of gBGC is that it can lead to an increase in the frequency of disease-
causing AT—GC mutations in human populations. We speculate that the genes most likely to
be influenced by this effect will be those that are AT-rich (i.e. for which there are more

opportunities for AT—GC mutations) and which coincide with recombination hotspots: an
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Figure legends

Figure 1. Mean derived allele frequencies for AT—GC and GC—AT alleles in regions of

high and low recombination, for the HapMap YRI sample, for different genomic regions and

©CoO~NOUTA,WNPE

classes of non-synonymous SNPs. Dark gray: AT—GC, light gray: GC—AT mutations.
11 Solid bars: low recombination, hatched bars: high recombination. Probably damaging:
13 HapMap non-synonymous SNPs predicted by Polyphen to be probably damaging. HGMD:
15 entire HGMD dataset. DM: inherited mutations known to be a direct cause of disease (HGMD

17 mutations minus those that have only been associated statistically with disease).

19 Figure 2. Derived allele frequency spectra for the HapMap YRI sample, for different genomic
21 regions and classes of non-synonymous SNPs. The data presented here relate only to the high

23 recombination class. Dark gray: AT—GC mutations, light gray: GC—AT mutations.
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Figure 3. Derived allele frequency, spectrum obtained through simulations with different e
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parameter sets. Represented in light gray are the distributions of derived allele frequencies for -
GC—AT alleles, and in dark gray, those of AT—GC alleles. The population-scaled selection
coefficient (Nes) and the population-scaled biased gene conversion parameter (Ne 9) is

indicated for each graph.
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Table 1: Summary table for the BGC
hallmarks for the HapMap and
resequencing SNP datasets. The
difference in mean derived allele
frequencies between AT—GC and
GC—AT SNPs is denoted by d. dy is
the value of d in regions of high
recombination. Ad represents the
difference in d between the high and
low recombination regions. Dark
green: values are positive and
significantly different from zero,
with a p-value < 0.05. Light green:
values are positive but not
significantly different from zero.
Light red: values are negative but not
significantly different from zero. No
cases were found where dy or Ad
were significantly lower than zero.
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Probably
Dataset Population Intergenic Introns Synonymous Nonsynonymous HGMD DM damaging
dy Ad dy Ad dy Ad dy Ad dy Ad dy Ad dy Ad

CEU 0.03 0.013 0.03 0.022 0.08 0.043 0.09 0.016 0.09 | 0.052 | 0.07 |0.031| 0.08 | 0.055
HapMap CHB+JPT 0.03 0.013 0.03 0.02 0.08 0.052 0.11 0.015 0.09 | 0.026 | 0.11 | 0.062 | 0.14 | 0.086
YRI 0.03 0.016 0.03 0.028 0.07 0.033 0.07 0.034 012 | 0.076 | 0.1 |0.056| 0.07 | 0.042
Resequencing | AFR 0.1 0.073 0.06 0.05 0.1 0.09 | 0.05 | 0.052| 0.02 | 0.046
CAU 0.1 0.092 0.05 0.035 0.07 | 0.098 | -0.01 | 0.039 | 0.04 | 0.026
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Table 1: Summary table for the BGC hallmarks for the HapMap and resequencing SNP

datasets. The difference in mean derived allele frequencies between AT—GC and GC—AT

©CoO~NOUTA,WNPE

SNPs is denoted by d. dy is the value of d in regions of high recombination. Ad represents the
1 difference in d between the high and low recombination regions. Bold font: values are
13 positive and significantly different from zero, with a p-value < 0.05. Italic font: values are
positive but not significantly different from zero. Normal font: values are negative but not
18 significantly different from zero. No cases were found where dy or Ad were significantly

20 lower than zero.
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Figure 1. Mean derived allele frequencies for AT—GC and GC—AT alleles in regions of high and low
recombination, for the HapMap YRI sample, for different genomic regions and classes of non-
synonymous SNPs. Dark gray: AT—GC, light gray: GC—AT mutations. Solid bars: low
recombination, hatched bars: high recombination. Probably damaging: HapMap non-synonymous
SNPs predicted by Polyphen to be probably damaging. HGMD: entire HGMD dataset. DM: inherited
mutations known to be a direct cause of disease (HGMD mutations minus those that have only been
associated statistically with disease).
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Figure 2. Derived allele frequency spectra for the HapMap YRI sample, for different genomic regions
and classes of non-synonymous SNPs. The data presented here relate only to the high
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1 Supplementary Text

The effect of sampling bias on the power of gBGC detection

To search for a potential effect of gBGC, we measured the difference between the mean
AT — GC and GC — AT frequencies (denoted d) in regions of low or high recombina-
tion. We performed this analysis on two independent SNP datasets: the HapMap SNP dataset
(Frazer et al., 2007), and the SNP dataset from Lohmueller et al. (2008), which was obtained
by direct exon resequencing. Both datasets revealed the hallmarks of gBGC (Table 1): i) in
regions of high recombination, d is positive; ii) d increases with the recombination rate. This
pattern is observed not only for the silent sites but also for the three classes of non-synonymous

sites (Table 1).

We noted however that for the two subsets of non-synonymous sites under the strongest
purifying selection (DM and probably damaging mutations), the parameter d was lower in the
re-sequencing dataset than in the HapMap dataset, and was no longer significantly different
from zero (Table 1). We suspected that this difference might be a consequence of the differ-
ences between the SNP sampling strategies that were used to prepare the two datasets. On the
one hand, the HapMap dataset prioritized using validated SNPs in order to focus resources on
common (rather than rare or false positive) candidate SNPs from the public databases (Frazer
et al., 2007). This strategy would omit very rare alleles. On the other hand, the SNP dataset
from Lohmueller et al. (2008) was obtained by direct exon resequencing, and therefore contains
no a priori bias in allele frequencies. To assess the impact of these two sampling strategies on

the detection of biased gene conversion, we performed theoretical simulations.

First we simulated populations (N=10%) whose genome is subject to mutation, mild negative
selection (w=0.9999) and medium gBGC (§=0.00013), as described in the main text (Methods).
We recorded the allele frequencies at each polymorphic locus (SNP) in these initial populations.
Simulations were performed on a large number of loci, so as to obtain a total of more than
10,000 SNPs within each initial population. We sampled N, chromosomes from these initial
populations. Two values were tested for N.: 120 (60 pairs of chromosomes in a sample, similar

to the number of chromosomes in the HapMap samples), 40 (20 pairs of chromosomes in a

John Wiley & Sons, Inc.
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sample, similar to the Lohmueller et al. (2008) sample). In order to test the influence of
sampling alone, both strategies were compared for the same value of N..

To simulate the re-sequencing strategy used by Lohmueller et al. (2008), we randomly
drew SNPs in the initial population, and then determined their DAF in the sample of N,
chromosomes. SNPs for which only one allele was present in the sample (i.e. that were not
detected as polymorphic) were discarded. This random sampling of SNPs was repeated until
a dataset of 100 W—S and 100 S—W SNPs was obtained. Then we calculated the statistic
d, which is defined as the difference between the mean DAFs of W—S SNPs and of S—W
SNPs. To obtain the distribution of the d statistic, this procedure was repeated until at least
60 independent SNP datasets were obtained (Supplementary Table S18).

We used the same procedure to simulate the HapMap strategy, except that rare SNPs (i.e
SNPs whose DAF in the initial population was lower or higher than given thresholds) were
excluded. The threshold values for rare SNPs were chosen in order to have 95% of DAFs in the
final sample within the interval [0.03, 0.97].

In the initial simulated population, the derived allele frequency spectrum shows the hallmark
of gBGC: DAFs are significantly higher for W—S SNPs than for S—=W SNPs (Figure 3).
This excess of high-frequency W—S SNPs (i.e. a positive d statistic) was detected with both
sampling strategies. However, independently of the number of sampled chromosomes (/N.=120
or N.=40), the d statistic obtained by the re-sequencing strategy was on average lower than that
obtained with the HapMap strategy (Supplementary Figure S1. For N, = 40 - Resequencing:
d=0.1129; HapMap: d=0.146, Wilcoxon rank sum test: p=1e~*. For N, = 120 - Resequencing:
d=0.0893; HapMap: d=0.1318, Wilcoxon rank sum test: p=0.). This indicates that all else
being equal, the HapMap SNP sampling strategy has a greater power to detect the effect of
gBGC than the re-sequencing strategy. This can be explained by the fact that the impact of
gBGC is more readily detectable on the upper part of the DAF spectrum.

John Wiley & Sons, Inc.
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Figure S2: Derived allele frequencies spectra obtained for the HapMap CEU sample, for high
recombination regions (as defined by the distance to recombination hotspots). The ancestral
and derived alleles were determined using a maximum likelihood method that takes into account
CpG hypermutability (Duret and Arndt, 2008). m represents the mean derived allele frequency,
and N is the number of SNPs in each category.
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Figure S3: Derived allele frequencies spectra obtained for the HapMap CHB+JPT sample,
for high recombination regions (as defined by the distance to recombination hotspots). The
ancestral and derived alleles were determined using a maximum likelihood method that takes
into account CpG hypermutability (Duret and Arndt, 2008). m represents the mean derived
allele frequency, and N is the number of SNPs in each category.
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Figure S4: Derived allele frequencies spectra obtained for the HapMap YRI sample, for high
recombination regions (as defined by the distance to recombination hotspots). The ancestral
and derived alleles were determined using a maximum likelihood method that takes into account
CpG hypermutability (Duret and Arndt, 2008). m represents the mean derived allele frequency,
and N is the number of SNPs in each category.
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Figure S5: Derived allele frequencies spectra obtained for the Lohmueller et al. (2008) CAU
sample, for high recombination regions (as defined by the distance to recombination hotspots).
The ancestral and derived alleles were determined using a maximum likelihood method that
takes into account CpG hypermutability (Duret and Arndt, 2008). m represents the mean
derived allele frequency, and N is the number of SNPs in each category.
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Figure S6: Derived allele frequencies spectra obtained for the Lohmueller et al. (2008) AFR
sample, for high recombination regions (as defined by the distance to recombination hotspots).
The ancestral and derived alleles were determined using a maximum likelihood method that
takes into account CpG hypermutability (Duret and Arndt, 2008). m represents the mean
derived allele frequency, and N is the number of SNPs in each category.
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3 Supplementary Tables

Type CEU CHB+JPT YRI All samples
Intergenic 1,705,876 | 1,621,044 | 1,903,673 | 2,151,095
Introns 1,044,507 | 998,219 1,168,601 | 1,329,002
Synonymous 15,313 14,545 17,155 20,095
Non-synonymous | 18,251 18,467 18,594 24,609
Other 31,011 29,405 34,093 41,576
Total 2,814,958 | 2,681,680 | 3,142,116 | 3,566,377

Table S1: SNP dataset from HapMap release 27. 5 and 3’ UTR exons are excluded from
our dataset. Note that the total sample size is given here and that further restrictions are
applied when computing the DAF spectrum: constant 5’ - 3’ context (i.e. positions with two
neighboring SNPs were removed, and we required that the human and chimpanzee nucleotides

should be identical) and non-ambiguous ancestral allele prediction.

Type AFR | CAU
Synonymous 17,011 | 11,931
Non-synonymous | 13,707 | 10,583
Total 30,718 | 22,514

Table S2: SNP dataset from Lohmueller et al., 2008. Note that the total sample size is given
here and that further restrictions are applied when computing the DAF spectrum: constant 5’
- 3’ context, (i.e. positions with two neighboring SNPs were removed, and we required that
the human and chimpanzee nucleotides should be identical) and non-ambiguous ancestral allele

prediction.
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Type | All HGMD CEU | CHB+JPT | YRI AFR CAU

DM | 41,949 (33,096) | 225 (221) | 213 (207) | 215 (210) | 163 (163) | 142 (142)
DP 837 (801) | 492 (477) | 441 (425) | 412 (399) | 241 (241) | 274 (274)
FP 923 (866) | 168 (162) | 140 (135) | 150 (145) | 71 (71) | 73 (73)
DFP 51 (51) 36 (36) | 32(32) | 31(31) | 23(23) | 22(22)
Total | 43,760 (34,814) | 921 (896) | 826 (799) | 808 (785) | 498 (498) | 511 (511)

Table S3: Number of non-synonymous disease-associated mutations in HGMD and found within
our SNP datasets.
(the remaining ones are nonsense mutations). Note that this table includes mutations for which

the disease-associated allele is ancestral, although in the derived allele frequencies spectra we

include only positions for which the disease-associated allele is derived.

Type CEU | CHB+JPT | YRI | AFR | CAU
Benign 12,338 12,468 12,681 | 9,698 | 7,366
Possibly damaging | 2,566 2,688 2,597 | 2,366 | 1,829
Probably damaging | 1,591 1,721 1,618 | 1,361 | 1,168
Total 16,495 16,877 16,796 | 13,425 | 10,363

Table S4: PolyPhen predictions for the non-synonymous SNPs in our dataset.

Type CEU | CHB+JPT | YRI | AFR | CAU

Intergenic 56 88 60
Intron 56 78 52

Synonymous 90 84 92 18 18

Non-synonymous 92 92 90 18 18

HGMD 100 144 100 18 18

DM 100 148 106 18 18

Probably damaging | 98 148 94 18 18

The numbers in parantheses represent the number of missense mutations

Table S5: The minimum number of genotyped chromosomes for each SNP dataset.

John Wiley & Sons, Inc.
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28 Initial frequencies 0=0 0 =0.00013
30 w=1 w = 0.9999
32 No of chromosomes N, =40 N, =120 N, =40 N, =120

34 No of classes 71 92 64 97

36 Range initial freq. 0.061-0.939 | 0.036-0.964 | 0.055-0.945 | 0.031-0.969

38 Table S18: Table of the number of classes each of size 100 polymorphic loci and the range of
40 initial frequencies for the HapMap biased sampling strategy. These variables depend on the
42 values of gBGC (§) and the fitness of the derived allele (w) which were used to obtain the initial

a4 distribution of derived alleles, as well as the number of chromosomes analyzed.
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