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ABSTRACT
This work deals with the source-seeking problem in which
the task is to locate the source of some signal using a °eet
of AUVs (autonomous underwater vehicles). The present
paper proposes a distributed solution in which a group of
vehicles uniformly distributed in a ¯xed circular formation,
estimates the gradient direction of the signal propagation.
The distributed algorithm takes into account the commu-
nication constraints and depends on direct signal measure-
ments. Our approach is based on the previous results in
formation control to stabilize the °eet in a circular forma-
tion with time-varying center and in a collaborative source-
seeking algorithm. The results are supported through com-
puter simulations.

Keywords
Multi-agent systems, collaborative control, gradient estima-
tion.

1. INTRODUCTION
Cooperative control problems and multi-agent systems have
received much attention in recent years. The ¯eld includes
consensus algorithms for multi-agent systems [1, 2], °ocking
[3], distributed sensor networks [4, 5], and autonomous sys-
tems as underwater and unmanned air vehicles (AUVs and
UAVs) [6, 7]. Cooperative formation control and motion co-
ordination have been extensively studied, see [8, 9, 10, 11],
among many others. Control laws have been provided to
make a °eet of agents (vehicles) obtain circular and parallel
formations [6, 12]. Many extensions based on these works
have been developed: three-dimensional formation control
[13, 14], planar circular formation control in a °ow-¯eld [15],
and stabilization of a °eet to other closed forms [16, 17].

In [18], a new control law is proposed to translate a circular

¤This work was supported by EU STREP project FeedNet-
Back FP7-ICT-2007-2.

formation following a desired external reference trajectory
of its center. Designing a collaborative reference to move
the formation is a ¯rst step to achieve the source location
of some signal. For example, the source could be a point of
chemical contamination and the signal would be that chemi-
cal's concentration in the environment. The objective of the
source-seeking problem is to obtain the direction to steer the
formation towards the source by a cooperative algorithm us-
ing the concentration measurements of the agents.

There exist many di®erent approaches to resolve the source-
seeking problem in the literature. The extremum seeking
problem is solved under di®erent hypotheses using a single
nonholonomic vehicle, [19, 20]. In this case all the mea-
surements would come from a single vehicle as it changes
position over time. Another strategy consists in approxi-
mating the gradient value of the signal using concentration
measurements of multiple vehicles at di®erent locations [4].
Some collaborative methods have been proposed, based on
distributed estimation of the concentration plume [21, 22].
In theses cases, the fonction signal is estimated or approx-
imated and the source localization becomes a distributed
optimization problem.

The work presented in [23] deals with a collaborative multi-
agent algorithm to solve the source seeking problem using
only direct signal measurements by a circular formation of
agents. This new approach considers all-to-all communica-
tion (i.e. every agent talks to every other agent) between the
agents and the control law needs the information of all the
agents to converge. Our objective now is to design a collab-
orative algorithm based on this previous one but considering
restricted communication. The present paper adresses an-
other possible solution to the source localisation problem.
We show how a group of vehicles uniformly distributed in
a circular formation, is able to approximate the gradient
direction of the signal propagation to steer the formation
towards the source location. The signal propagation, which
will be considered here, is either constant or time-varying.
In order to achieve this objective under limited communi-
cation, each agent estimates its own direction based on its
neighbors' concentration measurements. We include a con-
sensus algorithm to converge to the same desired gradient
direction. In literature there are some results in the ¯eld of
consensus ¯lters and sensor fusion [2, 5] which deal with the
consensus problem of a sensor network measuring a signal
corrupted by noise. These approaches could be applied to



reduce the noise propagation and to cooperative exploration
missions.

This paper is organized as follows. First, Section 2 recalls
previous work on translation control of a circular formation.
Section 3 presents a result on gradient approximation and
the problem formulation. In Section 4, we propose a ¯rst
algorithm for the case of constant signal distribution that
combines standard consensus tools, and show its limitations
both by theoretical convergence analysis and simulations.
Then, Section 5 re¯nes the previous approach by introduc-
ing an improved estimation algorithm based on averaging.
Section 6 deals with the case of time-varying signal distribu-
tions. Conclusions and future works are presented in Section
7.

Notation. Let G = ( V; E) be an undirected graph with an
adjacency matrix A = [ akj ] that speci¯es the communica-
tion topology of the multi-agent system: akj = 1 if agents
k and j 2 V communicate, else akj = 0 . The set of nodes
(agents) is denoted by V = f 1; : : : ; N g. Let N k = f k 2 V :
akj 6= 0 g the set of neighbors of agentk and J k = N k [ f kg.
The Laplacian matrix L of graph G is de¯ned as L = ¢ ¡ A
where ¢ is the diagonal matrix which contains the degree
of each agent, i.e. ¢ kk = dk =

P
j akj . In the sequel, ­

denotes the Kronecker product and, for simplicity, we de¯ne
M 2 = M ­ I 2 where M is a square matrix and I N is the
identity matrix of order N . Moreover, R ¼

2
2 R2£ 2 denotes

the rotation matrix counterclockwise through an angle ¼
2 .

2. BACKGROUND
The algorithm to estimate the gradient direction of a signal
distribution presented in this paper builds on the previous
result on formation control [18]. Consider a group of N
agents modeled as kinematic unicycle vehicles of the follow-
ing form, for each vehicle k:

_xk = vk cosµk (1a)

_yk = vk sin µk (1b)

where r k = ( xk ; yk )T is the position vector, µk is the head-
ing angle, and the control inputs are the vehicle's forward
velocity vk > 0 and turning rate _µk , see [18]. With appro-
priate limits on the control inputs, this model can provide
a reasonable approximation for many air and underwater
vehicles.

Stabilization of a °eet of N agents to a circular forma-
tion around its center of mass was developed in [6]. In
[18] a control law which asymptotically stabilizes the vehi-
cles to a circular formation around a dynamic center point
c(t) = ( cx ; cy )T with a uniform distribution (i.e. with the
agents evenly separated on the circle by2¼=N radians each)
is presented. The center of the formation c(t) is an exter-
nal reference known for all the agents. With a ¯xed radius
R > 0, desired rotational velocity ! 0 and the control param-

eters · > 0 and K , the control law of [18] is given as:

vk =
°
°
° Rj! 0 j(cosÃk ; sin Ãk )T + _c

°
°
°

_µk =
µ

1 ¡
_r T
k _c
v2

k

¶
_Ãk ¡

_r T
k R ¼

2
Äc

v2
k

_Ãk = ! 0(1 + ·R j! 0 j(cosÃk ; sin Ãk )( r k ¡ c)) ¡
@U
@Ãk

U(Ã) = ¡
K
N

bN= 2cX

m =1

1
2m2

aT
m L 2am (2)

where bN=2c is the largest integer less than or equal to N=2,
am = (cos mÃ1 ; sin mÃ1 ; : : : ; cosmÃN ; sin mÃN ), L is the
Laplacian matrix associated with the communication net-
work of the vehicles, and Ãk (t) is an inner state of the dy-
namic controller, and initialized to

Ãk (0) = arctan
_yk (0) ¡ _cy (0)
_xk (0) ¡ _cx (0)

+ ²k ¼

where ²k = 0 if _xk (0) ¡ _cx (0) > 0 and ²k = 1 otherwise.

Assuming that c(t) is twice di®erentiable, has bounded ¯rst
and second time-derivatives, and satis¯es supt ¸ 0 j _c(t)j < R j! 0 j,
then the control law above drives the vehicles to trajectories
that lie on the circle with radius R and whose center fol-
lows the time-varying external reference c(t). Moreover, if
K > 0 and a geometric ring communication graph (i.e. each
agent is linked to its two closest neighbors on the circle) is
assumed, then the vehicles will be uniformly distributed on
that circle.

Consider now the stable circular formation described by a
center point c, a radius R and an angle Á which is linearly
increasing with time (i.e. Á = ! 0 t for some angular speed
! 0 > 0. Therefore, the position of each agent k is given by
the following equation:

xk = cx + R cos
µ

Á + k
2¼
N

¶

yk = cy + R sin
µ

Á + k
2¼
N

¶
(3)

This equation describes a formation where the agents are
uniformly distributed on a circle of radius R. In the context
of source-seeking problem, the objective is that the center
of the formation c(t) follows a trajectory which converges
to the maximum of a signal, that is usually its source. Us-
ing this previous work on formation control, a ¯rst result
in collaborative source-seeking is accomplished in [23]. The
authors consider here a stable circular formation of N mo-
bile agents in the plane. The agents are stabilized by the
previous control law (2). The authors provide an outer-loop
control that steers the formation by determining _c(t) in a
collaborative way. This control law allows the formation to
move such that its center converges to the source location, if
the signal distribution decreases around the source in such a
way that level sets are circles or ellipses centered on source
location. The main constraint of the algorithm of [23] is the
all-to-all communication assumption.

3. PROBLEM FORMULATION
The objective of this work, is to estimate the gradient direc-
tion of the source distribution based on the concentration
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Figure 1: Problem formulation

measurements obtained by a circular formation of agents
taking into account the communication contraints. This es-
timated direction will be the reference velocity of the for-
mation center in order to steer the group of agents to the
source location.

Consider a °eet of N vehicles uniformly distributed along a
circular formation. The position of each agent k is described
by equation (3). Our approach considers that the circular
formation is not moving. Only the estimation of gradient
direction is addressed here.

Assumption 1 For the following, we suppose that the cen-
ter of the circular formation c is ¯xed and known to all the
agents.

The distribution of the signal strength in the environment
will be described by an unknown positive spatial mapping
½: R2 ! R+ , and so agentk measures the signal strength at
its position as ½(r k ). Our approach deals with the approx-
imation of the gradient direction of this signal distribution
½by a circular formation of agents at a given location c, see
Fig.1.

3.1 Gradient Approximation
Consider a °eet of agents given by (3) taking measurements
of a signal distribution ½. Let r ½(c) = ( r x ½(c); r y ½(c))
denote the gradient of function ½in the center of the circular
formation. The following Lemma is proposed:

Lemma 1 Let ½be a bounded function and½(r k ) the mea-
sure obtained by agentk where r k is its position vector given
by (3). If Assumption 1 is satis¯ed and the agents are uni-
formly distributed in the circle centered at c, then:
(i) Considering a °eet of N > 2 agents the following equa-
tion is satis¯ed:

1
N

NX

k =1

½(r k )( r k ¡ c) =
R2

2
r ½(c)T + o(R2) (4)

(ii) Considering only one agent moving along the circular
formation, the following equation is satis¯ed:

1
T

Z T

0
½(r (w0 t ))( r (w0 t ) ¡ c)dÁ =

R2

2
r ½(c)T + o(R2) (5)

where T = 2 ¼=w0

Proof. In both cases (i) and (ii) the uniform distribution
of the agents along a ¯xed circle is assumed, then

P N
k =1 (r k ¡

c) = 0 and
R2¼

0 (r k ¡ c)dÁ = 0 respectively. By de¯nition of
gradient of the function ½at a ¯xed location c the following
equation holds:

½(r k ) ¡ ½(c) = r ½(c)( r k ¡ c) + o(R) (6)

Multiplying this previous equation by the relative vector
(r k ¡ c) and summing over k = 1 ; : : : ; N , it yields:

1
N

NX

k =1

½(r k )( r k ¡ c) =
1
N

NX

k =1

[r ½(c)( r k ¡ c)]( r k ¡ c) + o(R2)

Analyzing in terms of components and using (3) to express
the position of the agents r k , the right-hand side of the pre-
vious equation is given by:

R2

N

NX

k =1

µ
r x ½(c) cos2 Ák + r y ½(c) cosÁk sin Ák

r x ½(c) sin Ák cosÁk + r y ½(c) sin2 Ák

¶

where Ák = Á + k 2¼
N . Thanks to the uniform distribution

if N > 2 then
P N

k =1 cos (2k 2¼
N ) = 0 (the same equality also

holds for the sinus) and trigonometric properties ensure that:

1
N

NX

k =1

[r ½(c)( r k ¡ c)]( r k ¡ c) =
R2

2
r ½(c)T

Thus, the equality (4) is satis¯ed.

A similar analysis can be applied to second case (ii). Using
trigonometric properties, integrating along the circle (in the
interval [0; 2¼]) and thanks to the equality

R2¼
0 cosÁdÁ = 0

(the same equality also holds for sin Á) we obtain the follow-
ing equation:

1
T

Z T

0
[r ½(c)( r (w0 t ) ¡ c)]( r (w0 t ) ¡ c)dt =

R2

2
r ½(c)T (7)

and equality (5) is straightforwardly obtained.

This result provides an approximation of gradient of the
signal distribution at the center of the circular formation.

3.2 Problem Formulation
Our objective is to develop a distributed algorithm to esti-
mate the gradient direction of the signal distribution ½at
the center of a circular formation of agents.

The communication contraints are taken into account through
a communication graph G. Due to these communication re-
strictions each agent estimates its own gradient direction zk

using the information of its neighbors according to the com-
munication topology. The objective is to make all estimated
directions zk converge to the mean direction de¯ned as:

u¤ =
1
N

NX

k =1

uk ; uk = ½k (r k ¡ c) (8)

where uk is the relative position vector of agent k weighted
by its concentration measurement ½k = ½(r k ). Thanks to



Lemma 1 (i), this mean vector u¤ approximates the gra-
dient direction of the signal distribution at the center of
the formation c. A consensus algorithm is implemented to
obtain the same estimated gradient direction of the signal
distribution for all the agents.

4. COLLABORATIVE ESTIMATION OF
GRADIENT DIRECTION

4.1 Consensus algorithm
Consensus ¯lters for sensor networks are developed in [2].
In this work, the authors consider a sensor network of size
N with information °ow (communication graph) G. Each
sensork measures the same signal that is corrupted by noise.
Based on this approach for sensor networks, we propose the
following consensus algorithm for the multi-agents system
to estimate the gradient direction of the signal propagation
by a ¯xed circular formation in a collaborative way:

_zk = ·
X

j 2N k

akj (zj ¡ zk ) +
X

j 2J k

akj (uj ¡ zk )

where · > 0 is a control parameter which is introduced to
make the algorithm more °exible. The consensus variable is
the vector zk 2 R2 which represents the estimated gradient
direction by agent k. The input uk = ½k (r k ¡ c) 2 R2 , de-
pends on the concentration measurements and the position
of the agent in the formation. Therefore, the input of the
algorithm is not the same signal corrupted by noise, but a
di®erent vector for each agent. This is the main di®erence
with respect to the consensus ¯lter algorithm.

Using the Laplacian matrix of the communication topol-
ogy of the multi-agents system the previous equation can
be rewritten in a matrix way:

_z = ¡ · L ­ I 2z + I N ­ I 2(u ¡ z) + A ­ I 2u ¡ ¢ ­ I 2z

= ¡ (I N + ¢ + · L )2z + ( I N + A )2u

where z = ( zT
1 ; zT

2 ; : : : ; zT
N )T and u = ( uT

1 ; uT
2 ; : : : ; uT

N )T are
vectors of dimension 2N , and I N the identity matrix of order
N . Let A · = ( I N + ¢ + · L )2 , and B = ( I N + A )2 . Note
that by de¯nition, A · is a positive de¯nite matrix. Then,
the previous equation becomes:

_z = ¡ A · z + Bu (9)

Consider the vector of dimension 2N , u¤ = 1­ u¤ , where 1 =
(1; : : : ; 1)T 2 R2 is the vector of ones that is always a right
eigenvector of L corresponding to the eigenvalue 0. Then
the error equation is ´ = z ¡ u¤ . Using (9), the dynamics of
the error can be written as:

_́= ¡ A · ´ + B (u ¡ u¤ ) ¡ _u¤

The stability of this algorithm is analyzed using the Lya-
punov function V = 1

2 ´ T A · ´ . Di®erentiating this function
we obtain:

_V = ¡ ´ T A T
· A · ´ + ( u ¡ u¤ )T B T A · ´ ¡ _u¤T A · ´

Let k _u¤k · º , due to the soft variation of the concentration
levels of the signal distribution considered here, then

_V · ¡ ¸ 2
min (A · )k´ k2 + º

p
2N (1 + dmax )k´ k

+ k(u ¡ u¤ )T B T A · ´ k

This is because

_u¤T A · = 1T ­ _u¤T (I N + ¢ + · L )2

= (1 + d1 ; : : : ; 1 + dN ) ­ _u¤T

and thus

k _u¤T A · k · k _u¤k

vu
u
t 2

NX

k =1

(1 + dk )2 · º
p

2N (1 + dmax )

It is plausible to assume that a bound on maximal signal
concentration is known from the problem setting. Therefore,
k(u ¡ u¤ )k · ® where ® depends on the radius of the circular
formation and on the greatest concentration measurement
obtained by the agents. For simplicity, let ° be a bound
of the following matrix norm

°
° B T A ·

°
° · ° . Taking these

considerations into account the following equation holds:

k(u ¡ u¤ )T B T A · k · ®°

The derivative of the Lyapunov function is bounded by:

_V · ¡ ¸ 2
min (A · )k´ k2 +

³
º

p
2N (1 + dmax ) + ®°

´
k´ k

Based on the proof of Proposition 2 in [2] a closed ball B ¯

centered at ´ = 0 is de¯ned with radius

¯ =
º

p
2N (1 + dmax ) + ®°

¸ 2
min (A · )

Let ­ m = f ´ : V (´ ) · mg be a level set of the Lyapunov
function V (´ ) with m = 1

2 ¸ max (A · )¯ 2 . Then, B ¯ is con-
tained in ­ c because

k´ k · ¯ =) V (´ ) =
1
2

´ T A · ´ ·
1
2

¸ max (A · )¯ 2 = m;

and thus ´ 2 ­ m . As a result, any solution of (10) starting
in R2N n­ m satis¯es _V < 0. Thus, it enters ­ m in some
¯nite time and remains in ­ m thereafter. This guarantees
global asymptotic ²-stability of ´ = 0 with a radius ² =
¯¸ max (A · )=¸ min (A · ). To show this, note that

1
2

¸ min (A · )k´ k2 · V (´ ) ·
1
2

¸ max (A · )¯ 2

Thus, the solutions enter the region

k´ k · ¯

s
¸ max (A · )
¸ min (A · )

which implies the radius of ²-stability is

² =
º

p
2N (1 + dmax ) + ®°

¸ 2
min (A · )

s
¸ max (A · )
¸ min (A · )

²-stability of ´ = 0 implies ²-tracking of the mean vector
u¤ by every agent, therefore ²-consensus is asymptotically
reached.

After the previous detailed analysis this result can be pre-
sented as a Theorem:

Theorem 1 Consider a circular formation of N agents de-
¯ned by (3) with a connected communication graph G and
Assumption 1 is satis¯ed. Let ½: R2 ! R+ be a bounded
fonction and the mean vector u¤ de¯ned in (8) satis¯es k _u¤k ·
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Figure 2: Simulation of a circular formation of ¯ve
agents centered at c = (2 ; 2)T . The function ½repre-
senting the signal distribution centered at the origin
has circular level sets. The consensus algorithm of
Theorem 1 is implemented with · = 50 .

º . Then, z¤ (t) = 1 ­ u¤ is a globally asymptotically ²-
stable equilibrium of the dynamics of the distributed algo-
rithm given by

_z = ¡ · L 2z ¡ L 2u + ( I N + ¢) 2(u ¡ z) (10)

with u = ( ½1(r 1 ¡ c)T ; : : : ; ½N (r N ¡ c)T )T and

² =
(º

p
2N (1 + dmax ) + ®°)¸

1
2
max (A · )

¸
5
2
min (A · )

where the matrix A · and the constants ® and ° are previ-
ously de¯ned.

Remark 1 Analyzing the linear system (9) it seems evident
that the control parameter · has an important role in the
convergence velocity of the algorithm. The simulation results
show that taking · >> 1 the amplitude of oscillations of
the estimated gradient directions zk are smaller. Therefore,
the error ´ is also reduced. However, the analysis of this
property is still under investigation.
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(a) Estimated directions zk for t = 0 s
(black dashed lines) and for t = 50s (red
lines)
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Figure 3: Simulation of a circular formation of ¯ve
agents centered at c = (0 ; 0)T . The function ½repre-
senting the signal distribution centered at the origin
has circular level sets. The consensus algorithm (10)
is implemented with · = 50 .

4.2 Simulations
In this section we present simulations results of the previous
algorithm. All simulations show a circular formation of ¯ve
agents with radius R = 1 m and angular velocity of ! 0 =
1rad=s. The communication graph is a ring.

In Fig.2 and 3, the source-seeking consensus algorithm (10)
from Theorem 1 is implemented with · = 50 . For these sim-
ulations, the function ½representing the signal distribution
centered at the origin has circular level sets,

½(x; y ) = 100 e¡ ( x 2 + y 2 ) =10

. Therefore, the gradient vector r ½(c) provides the adequate
direction to steer the formation to the source location. Both
¯gures (a) show two snapshots. The void circles represent
the initial conditions and the black dashed lines the initial
estimated direction zk of each agent. The red circles repre-
sent the position of the agents at t = 50s and the red lines
are the estimated gradient directions at that time. The blue
line is the real direction of the gradient at center c. Both
¯gures (b) show the components of the consensus variable



zk and the mean vector u¤ . The estimated directions zk

oscillate around the vector u¤ which approximates the true
gradient direction for any initial conditions.

In Fig.2 the circular formation is centered at c = (2 ; 2) and
the oscillations of the estimated gradient directions zk are
smaller than in Fig.3 where the formation is centered at
source location. In this second case, as the mean of the
directions is equal to zero, the convergence region of radius
² leads to completely wrong gradient direction estimations.

4.3 Conclusions and limitations of the algo-
rithm

The ¯nal gradient direction zk estimated by each agent os-
cillates with period T = 2 ¼=!0 . The amplitude of these
oscillations depends on the concentration measurements½k .
When the formation is closer to the source location, the mea-
surements are greater, thus, the amplitude of oscillations are
greater as well. Moreover, as the gradient is closed to zero in
the neighborhood of the source (at least with the Gaussian
pro¯le we use), a ball of radius ² around 0 leaves the gradi-
ent direction essentially unknown; thus Theorem 1 does not
guarantee good behavior in the neighborhood of the source.

Another limitation of the previous consensus algorithm (10)
is that the radius ² depends on the constants® and ° which
cannot necessarily be small values. In order to avoid these
problems, an averaging approach is presented in the follow-
ing section.

5. REFINED COLLABORATIVE ESTIMA-
TION OF GRADIENT DIRECTION RE-
SULT

The previous section presents a collaborative algorithm, which
uses the concentration measurements obtained by a forma-
tion of agents to estimate the gradient direction of a signal
distribution in its center.

The agents describe a periodic movement, it means that
r k (t) = r k (t + T ) with T = 2 ¼=!0 . Therefore, the mea-
surements ½k obtained by agent k is a periodic map because
½(r k (t)) = ½(r k (t + T )) . In conclusion, the input variable
of the consensus algorithm uk = ½k (r k ¡ c) is a T-periodic
function with T = 2 ¼=!0 . Estimated directions zk obtained
by the consensus algorithm (10) shown in Fig.2 and 3 are
also periodic. The average of these solutions approximates
the gradient direction of the source. Thanks to these ob-
servations, an analysis of the average properties of the input
variable uk seems adequate. In this section, the previous dis-
tributed consensus algorithm is improved using the periodic
properties of the measurements½(r k ).

5.1 Estimation Algorithm using time-average
inputs

We present an improved estimation algorithm based on the
periodic properties of the input uk . The input vector uk in
previous consensus algorithm is replaced by its mean value
over one period T = 2 ¼=!0 which is de¯ned as:

uk =
1
T

Z t

t ¡ T
½k (r k (¿) ¡ c)d¿ (11)

Therefore, thanks to Lemma 1 (ii) the new mean vector u¤

approximates the gradient of the signal propagation ½in the
center of the circular formation:

u¤ =
1
N

NX

k =1

uk (12)

The new input variable of the improved algorithm based on
(10), is the mean vector u = ( uT

1 ; uT
2 ; : : : ; uT

N )T , and the
objective is de¯ned as u¤ = 1 ­ u¤ . Following the analy-
sis developed in section 4.1, let us assume that the following
inequality k(u ¡ u¤ )k · ® is satis¯ed. Using these considera-
tions, a new algorithm is proposed in the following theorem:

Corollary 1 Consider a circular formation of N agents de-
¯ned by (3) with a connected communication graph G and
Assumption 1 is satis¯ed. Let ½: R2 ! R+ be a bounded
fonction and the mean vector u¤ de¯ned in (12) satis¯es
k _u

¤
k · º . Then, z¤ (t) = 1 ­ u¤ is a globally asymptoti-

cally ²-stable equilibrium of the dynamics of the distributed
algorithm given by

_z = ¡ · L 2z ¡ L 2u + ( I N + ¢) 2(u ¡ z) (13)

with

² =
(º

p
2N (1 + dmax ) + ®°)¸

1
2
max (A · )

¸
5
2
min (A · )

Remark 2 Considering Assumption 1 (the circular forma-
tion is ¯xed) by de¯nition, the mean input u is a constant
vector after a time period T . Therefore, the input variable u
converges to the mean vectoru¤ and moreover, its derivative
is equal to zero. Then, º ! 0 and ® ! 0. It implies that
the radius of the convergence region² converges to zero after
a period T , the consensus is achieved and all the agents es-
timate the mean vector u¤ which approximates the gradient
direction at the center of the formation.

Remark 3 The gradient direction estimated by the agents
will be the velocity reference of the formation center to steer
the °eet of agents to the source location. If the formation
is moving, the gradient of the signal distribution in the cir-
cle center becomes time-varying and the concentration mea-
surements does not satisfy the periodic properties anymore.
Therefore, the consensus algorithm makes that the agents
would estimate the gradient direction before a period T . A
detailed investigation of our algorithms when the formation
moves along the estimated gradient direction towards the
source location is our next research goal.

5.2 Simulations
The simulations show the same circular formation of ¯ve
agents from the previous simulations. In Fig.4 and 5 the
improved distributed algorithm (13) from Corollary 1 is im-
plemented with · = 1 by a circular formation centered at
c = (2 ; 2)T and at source location, respectively. The mea-
sured signal is the same as in previous simulations. Due to
the circular level sets of the signal propagation the gradient
vector r ½(c) provides the adequate direction to steer the
formation to the source location. Both ¯gures (a) show two
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(a) Directions zk for t = 0 s (black dashed
lines) and for t = 50s (red lines)
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Figure 4: Simulation of a circular formation of ¯ve
agents centered at c = (2 ; 2)T . The function ½repre-
senting the signal distribution centered at the origin
has circular level sets. The mean input consensus al-
gorithm (10) is implemented.

snapshots, the initial conditions and the stable situation at
t = 50s. Both ¯gures (b) show the components of consensus
variable zk . This algorithm allows to remove the oscillations
and the ¯nal vectors zk (red lines) are parallel to the gra-
dient direction for all the agents (blue line). The problem
of oscillations when the formation is centered at source lo-
cation is also solved and the ¯nal directions zk are equal to
zero, i.e. the formation decides to stay in the desired loca-
tion. The estimated directions zk converge to the gradient
direction approximated by the mean vector u¤ for any initial
conditions.

In Fig.6 the same algorithm (13) is implemented with an el-
liptical signal distribution de¯ned by ½(x; y ) = 100 e¡ ( x 2 =10+ y 2 =2) =10 .
The estimated directions zk converge to the gradient direc-
tion r ½(c). In this case, this direction will not directly steer
the formation to the source location, but a formation moving
along the respective gradient direction will be progressively
steered towards the source over several consecutive steps.
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(a) Directions zk for t = 0 s (black dashed
lines) and for t = 50s (red lines)
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Figure 5: Simulation of a circular formation of ¯ve
agents centered at c = (0 ; 0)T . The function ½repre-
senting the signal distribution centered at the origin
has circular level sets. The mean input consensus al-
gorithm of (13) is implemented.

6. COLLABORATIVE GRADIENT ESTIMA-
TION OF TIME-VARYING SIGNAL DIS-
TRIBUTION

6.1 Gradient approximation
In this section, we assume that the signal distribution ½de-
pends both on the position and on time, i.e. ½(r k ; t ). Con-
sider a °eet of agents given by (3) taking measurements of a
signal distribution ½. An extension of the previous Lemma 1
is proposed in the sequel to cope with this time-varying sig-
nal distribution.

Lemma 2 Let ½be a bounded function and½(r k ; t ) the mea-
sure obtained at time t by agent k, where r k is its position
vector given by (3). If Assumption 1 is satis¯ed and the
agents are uniformly distributed in the circle centered at c,
then for a °eet of N > 2 agents, the following equation is
satis¯ed:

1
N

NX

k =1

½(r k ; t )( r k ¡ c) =
R2

2
r ½(c; t)T + o(R2) (14)
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Figure 6: Simulation of the distributed algorithm
(13) by a circular formation of ¯ve agents centered
at c = (2 ; 2)T . The function ½representing the signal
propagation centered at the origin has elliptical level
sets.

Proof. The proof is similar to the one of Lemma 1(i).

A direct consequence of the previous lemma is that the dis-
tributed estimation algorithm from Theorem 1 with the uk 's
de¯ned in (8) also holds for time-varying signal distribution.

However the extension of the case (ii) from Lemma 1 to
time-varying signal distributions is not straightforward. In-
deed, if the signal distribution depends on the time variable,
equation (7) is not valid anymore.

6.2 Simulations
The same circular formation of ¯ve agents from the previous
simulations is still considered. Figure 7 shows the simulation
results of the gradient estimation of a time-varying signal
distribution. The distribution is given by

½((x; y ); t ) = 100 e¡ (( x ¡ 2cos ( t= 10)) 2 + y 2 ) =10

In order to compare the directions of the e®ective gradient
and of the resulting estimations, we consider the angle (in
radians) between the r ½(c; t)T (and zk , respectively) and
(1; 0)T . In Figure 7 (a), one can see that each estimated
direction, obtained by the algorithm (10) with · = 100,
oscillates around the e®ective gradient direction with an
amplitude as in Theorem 1. Figure 7 (b) shows the same
situation but implementing the algorithm from Corollary 1
with · = 100. In this case, a consensus on the estimates is
clearly reached. However there exists an error between the
estimated direction and the e®ective one.

Figures 8 and 9 show three snapshots of of the previous sim-
ulations. They shows the di®erence between the resulting
estimates from Theorem 1 and Corollary 1. As a conclu-
sion, the gradient estimation by using a uniform distributed
formation agent appears as a more accurate solution when
the signal distribution becomes time-varying.

7. CONCLUSIONS
This paper presents a cooperative multi-agent algorithm to
estimate the gradient direction of a signal distribution. This
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Figure 7: Evolution of the direction, given in radians
of the estimates (soft lines) and the real gradient
(red bold line) for a time-varying signal distribution.

distributed algorithm uses the concentration measurements
of the signal obtained by a group of vehicles uniformly dis-
tributed in a ¯xed circular formation. Our approach takes
into account the communication constraints of the network,
avoiding the case of all-to-all communication. To achieve
this objective, a ¯rst distributed consensus algorithm based
on instantaneous sensor measurements is presented. Then,
we propose an improved algorithm based on the average in-
puts. For time-invariant signal distributions, we note that
if the formation is ¯xed, this second algorithm reaches ex-
act consensus and converge to the gradient direction at the
formation center.

However, when the signal distributions become time-varying,
we show that the ¯rst algorithm is still valid whereas the
analysis of the the second one leads to additional di±cul-
ties. In simulations, we indeed show that the ¯rst one seems
more promising than the second one.

This analysis requires that formation is ¯xed. Our ¯nal ob-



(a) t = 1 s (b) t = 15s (c) t = 25s

Figure 8: Simulation of a circular formation of ¯ve agents centered at c = (1 ; 3)T . The function ½representing
the signal distribution of a moving source has circular level sets. The distributed consensus algorithm (10) is
implemented with · = 100.

(a) t = 1 s (b) t = 15s (c) t = 25s

Figure 9: Simulation of a circular formation of ¯ve agents centered at c = (1 ; 3)T . The function ½representing
the signal distribution of a moving source has circular level sets. The distributed consensus algorithm (13) is
implemented with · = 100.

jective is to use this estimated direction to locate the source.
Then, our next research aim is to analyze and improve these
algorithms when the formation moves along the estimated
gradient direction towards the source location.
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