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ABSTRACT 

 

For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must be presented 

at the Regulatory Authority with the necessary confidence on the outcomes of the models 

used to analyze the plant safety behavior. In the present work, we consider the problem of 

providing a quantitative indication of the confidence in the safety margin estimation by a 

model with uncertain inputs giving in output the maximum outlet water temperature of 

the Residual Heat Removal system (RHRs) in accident scenarios of the High Temperature 

Reactor-Pebble Modular (HTR-PM). The quantitative evaluation is carried out by means 

of a computational procedure of literature, based on Order Statistics (OS). The 

procedure is analyzed with respect to some of its key parameters defining the sample size 

and the number of uncertain inputs. 
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NOTATION AND LIST OF ACRONYMS 

 
OS Order Statistics 
BE Best-Estimate 
NPP Nuclear Power Plant 
HTR-PM High Temperature Reactor-Pebble Modular 
DBA Design Basis Accident 
BDBA Beyond Design Basis Accident 
RHRs Residual Heat Removal system 
BSFs Basic Safety Functions 
x  Input values vector 

mx  mth element of the input vector 

y  Output values vector 

( )T x  Function that maps the input vector x  into the output vector y  

Lj Lower threshold for the j th output parameter 
 Uj Upper threshold for the j th output parameter 

( )ix  i th element of the representative sample of independent input vectors 
( )iy  i th element of the representative sample of independent output vectors 

 k Index of the accident scenario 
M(yj,k) Safety margin relative to the j th safety parameter for the kth accident scenario 

( )jy k  j th safety parameter relative to the kth accident scenario 

N Number of simulations 
 r Position of the ordered sample of simulations 
 Y Ordered set of values resulting from running the code N times 
 β Confidence value 
 γ Coverage value 
 m Number of values that lie beyond the γ coverage extent 
 γy Real γth percentile 
 ym Estimated γth percentile 

y����
 Real 95th percentile 

ŷ����
 95th percentile estimate 

0 95 0 5. .ŷ  Estimated median of the distribution of ŷ����
 

[ ]
0 95

r
. ŷ  Lower bound of random interval covering the median of the distribution of ŷ����

 

[ ]
0 95

s
. ŷ  Upper bound of random interval covering the median of the distribution of ŷ����

 

 

1 INTRODUCTION 

 

Conservative calculations are traditionally performed for the verification of the safety 

performance of a Nuclear Power Plant (NPP) under Design Basis Accidents (DBAs) 

conditions, in terms of the values reached by selected safety parameters in comparison to 
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threshold values enforced by regulation to ensure that sufficient safety margins are 

maintained for the integrity of the defense-in-depth barriers. The differences between the 

conservatively computed safety parameter values and the thresholds give the so called 

safety margins. Conservatism is introduced in the calculations to account for the 

uncertainties in the model representation of the actual plant behavior. 

For the Beyond Design Basis Accidents (BDBAs), the conservative approach is being 

challenged by a more realistic, Best-Estimate (BE) analysis, which sets forth the 

calculation of safety margins with realistic models and BE assumptions to account for the 

consequences related to the failures in some protective barriers. 

On one side, the reduction in the conservatism of the analyses leads to more efficient 

plant design and operation. On the other side, the relaxation of the conservatisms entails 

that sensitivity and uncertainty analyses be carried out to properly quantify the safety 

margins while capturing the associated uncertainty for confidence evaluation. This 

requires a revision in probabilistic terms of the concept of safety margins [Gavrilas et al., 

2004] and repeated model runs for the associated sensitivity and uncertainty analyses. 

This is even more so when i) analyzing requests for changes to the licensing bases, within 

a risk-informed decision-making philosophy and ii ) checking design solutions of new 

NPPs whose safety analysis relies on newly developed models and codes, because the 

combination of the uncertainties in the analysis could reduce significantly and in an 

unexpected way the safety margins [USNRC, 1998; Martorell et al., 2006]. This situation 

may increase the risk of accidents, leading to the dissatisfaction of some of the Basic 

Safety Functions (BSFs) (i.e., reactivity control, residual heat removal, primary pressure 
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control and containment release) that have to be carried out by the implemented safety 

systems to avoid major dangerous consequences. 

In general, uncertainty affecting the plant behavior can be considered of two types: that 

due to inherent variability in the system behavior and that due to lack of knowledge and 

information on the system. The former type of uncertainty is often referred to as 

objective, aleatory, stochastic whereas the latter is called subjective, epistemic, state-of-

knowledge [Apostolakis, 1990; Helton, 2004]. 

The distinction between aleatory and epistemic uncertainty plays a particularly important 

role in the risk assessment framework applied to complex engineered systems. In the 

context of risk analysis, the aleatory uncertainty is related to the occurrence of the events 

which define the various possible accident scenarios whereas epistemic uncertainty arises 

from a lack of knowledge of fixed but poorly known parameter values entering the 

evaluation of the probabilities and consequences of the accident scenarios. 

The present work addresses the epistemic uncertainty affecting the evaluation of the 

safety margins. Under the probabilistic viewpoint here undertaken to represent 

uncertainties, the code for safety margin evaluation needs to be repeatedly run with 

different values of the thermal-hydraulic parameters, sampled from predefined 

probability distributions; the outcomes of these runs are then statistically analyzed to 

estimate with a specified confidence a given percentile of the distribution of the safety 

parameter used to calculate the safety margin [Guba et al., 2003; Nutt et al., 2004]. The 

confidence intervals of the estimated safety margins is also computed: this additional 

information provides a realistic refinement of the estimates that is beneficial to power 

plant owners; on the other hand, from the viewpoint of the regulatory body it increases 
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the robustness of the safety case by allowing verification of the fact that uncertainty in 

the safety margin estimates does not lead to exceedance of the regulatory safety 

thresholds. 

In general terms, because of the large computing times required to run the codes, the 

procedure can be computationally quite expensive. Thus, tin this work the statistical 

analyses of the model evaluations for obtaining confidence intervals for safety parameters 

estimates rely on the use of Order Statistics (OS), along a non-parametric approach 

initially explored by [Wilks, 1941; Wilks, 1942]; this brings the advantage that the 

number of code calculations needed for safety margins evaluation is independent of the 

number of uncertain input parameters and provides a given confidence on the reliability 

of the calculated point-estimate obtained with a limited number of code runs. 

Figure 1 shows a schematic sketch of the non-parametric procedure here adopted [Secchi 

et al., 2008]; for ease of illustration, a single safety parameter y is considered. By this 

procedure for safety margin calculation, the analyst can produce results with the level of 

confidence against uncertainty required for presenting a robust safety case to the 

Regulatory Authority. 

The approach is applied to a case study regarding a set of accident scenarios related to the 

Residual Heat Removal system (RHRs) of the High Temperature Reactor-Pebble 

Modular (HTR-PM) [Zhengy et al., 2008]. The application is of safety significance 

because the RHRs is a passive safety system which operates without external input 

energy [IAEA, 1991] and is thus expected to contribute significantly to the improvement 

of plant safety [Mathews et al., 2008]. 
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However, the uncertainties involved in the modeling of the behavior of passive systems 

are usually larger than in active systems, due to lack of data on some underlying 

phenomena and scarce or null operating experience over the wide range of conditions 

encountered during operation [Pagani et al., 2005]. 

This situation may actually increase the risk of accidents leading to the dissatisfaction of 

some of the BSFs (i.e., reactivity control, residual heat removal, primary pressure control 

and containment release) that the safety systems are designed for. In fact, deviations in 

the natural forces and in the conditions of the underlying physical principles from the 

model expected ones can impair the function of the system itself [Marquès et al., 2005; 

Burgazzi, 2007]. 

The paper organization is as follows. In Section 2, the basic principles underpinning the 

BE nuclear safety analysis in the presence of uncertainties are provided together with an 

illustration of the method for uncertainty estimation here employed. In Section 3, the 

main characteristics of the High Temperature Reactor-Pebble Modular (HTR-PM) are 

briefly introduced, the Residual Heat Removal system (RHRs) accident scenarios are 

described and the simulations performed to analyze the system response to the accident 

scenario are presented. In Section 4, the results of the application of the proposed 

framework for the estimation of the safety margin of the maximum outlet water 

temperature reached during the accidents described in Section 3 are provided. Finally, 

some conclusions are drawn in Section 5. 
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Gŷ  , …, ( )G

Nŷ  
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Empirical γth percentile distribution ( ) ( ) ( ){ }1 2 Gˆ ˆ ˆ ˆY y , y ,..., yγ γ γ=  

 

 

Order Statistics 

 

 1) δth percentile: ŷγ δ  
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Figure 1 Flowchart of the non-parametric procedure for percentile and confidence interval 

estimation [Secchi et al., 2008] 

 

2 SAFETY MARGIN ESTIMATION 

 

2.1 The mathematical model 

 

Code Safety Parameter Evaluation, yi Step 1: Code calculations 

Step 2: Code batch-calculations 

Step 3: OS batch-percentile  
 estimation 

Step 4: OS percentile estimation 

Step 5: Confidence interval calculation 

ix   =  (x1 x2 xp)i … 

Input parameters 
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A quantitative model for safety analysis of a nuclear power plant may be viewed as 

composed of three main elements: an input vector { }1 2, ,..., px x x x= , a BE simulator code 

and an output vector { }1 2, ,..., ly y y y= . The elements of the input vector x  are all the 

model parameters and input variables needed to calculate one realization of the output 

variables y  describing the system response. The simulation code can be regarded as a 

black box which implements the complex, multidimensional, nonlinear function that 

maps the input vector x  into the output vector y  [Guba et al., 2003]: 

 ( )y T x=  (1) 

For fixed values of x , the output values y  is deterministically computed. 

 

2.2 Formulation of safety margins in presence of uncertainty 

 

The defense-in-depth principle of nuclear safety is founded on the implementation of 

protective barriers between the radioactive products and the environment. Each barrier is 

a physical device whose integrity is measured with reference to given characteristic 

safety parameters. When a barrier is subjected to abnormal conditions, some of the 

related safety parameters may exceed their safety envelope, which results in the failure of 

the barrier. 

With reference to a generic accident scenario k and a characteristic safety variable ( )ky j  

to be limited from above by an upper threshold limit jU , the safety margin M(yj,k) can be 

defined as: 
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 ( ),j j jM y k U y= −  (2) 

 

The dual definition of the safety margin for a safety parameter yj to be limited from 

below by a threshold value jL  is straightforward. 

 

2.3 Estimation of safety margins 

 

The safety margins are calculated by running the thermal-hydraulic codes used for safety 

analysis. In presence of uncertainty, a large number of runs of the code may be required 

to adequately represent the full distribution of the safety parameter values in output. The 

problem is that the computer runs of the complex models of plant dynamics used for 

safety analysis are computationally very expensive. To overcome this hurdle one may 

resort either to simplified analytical/numerical models, such as those based on lumped 

effective parameters [Marseguerra et al., 2004], or to empirical models, e.g. artificial 

neural networks and fuzzy logic systems [Marseguerra et al., 2003], suitably set up so as 

to best fit to the data available from the plant. 

Another possibility to reduce the computational burden, which may be used in 

combination with the former ones, is to only compute some percentiles of the output 

distribution, estimated with a limited number of runs. In this case, the confidence in the 

estimates becomes crucial for decision making and must, thus, be quantified [Wilks, 

1941; Wilks, 1942; Guba et al., 2003; Nutt et al., 2004]. 

This latter approach is undertaken in this work and the problem of confidence building 

and quantification is addressed. A sample of a small number N of input parameter values 



 10

is drawn by the Monte Carlo method from their probability distributions. The sample of 

N input vectors thereby obtained is input to the code which is correspondingly run N 

times, thus producing a random sample of N output vectors. These can be used to 

estimate a given percentile of the safety margin probability distribution. To obtain the 

desired confidence in the safety margin percentile, the number N of code runs is defined 

on the basis of the Order Statistics (OS) methodology, in its nonparametric formulation 

which applies independently from the type of probability distribution of the output data 

under study (in this case unknown) [Wilks, 1941; Wilks, 1942]. As we shall see, this 

amounts to ordering the elements of the random sample by increasing value, the element 

in the r th place being the statistic of order r, and using the order statistics for estimating 

the percentiles of the distribution (Section 2.4) with the desired confidence. Following 

this methodology, the number of runs required can be kept low because only statistical 

intervals are estimated and not the full probability distributions of the output. 

 

2.4 Estimation of percentiles using Order Statistics 

 

For ease of illustration, let us refer the discussion to a one dimensional output y, e.g. the 

Pellet Cladding Temperature (PCT) or the cooling water outlet temperature. 

The N runs of the code, each one with a different input vector ix , produce N output 

vectors iy , i=1,2,…,N. Let { }1 2 NY y ,y ,..., y=  be the ordered set of values resulting from 

running the code N times for N different input vectors { }1 2, ,..., NX x x x= . If the code 

were run a very large number of times ( )∞→N , it could be possible to give a 

sufficiently accurate estimate of the full distribution of the output y and draw 
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probabilistic conclusions on where it lies with respect to the threshold value U (or L) 

defining the safety limit for the integrity of the protective barriers. This would provide a 

more realistic assessment than the verification that a single run conservative estimate of y 

is within the safety envelope (e.g., PCT is less than 1200°C or the cooling water outlet 

temperature is less than 95°C). 

Given the computational costs associated with the estimation of the full distribution, one 

is forced to focus on verifying that with some level of confidence β, a certain percentage 

γ of the calculated values of y that would be obtained from running the code falls within 

the safety envelope. The thresholds defining the safety envelope and the values of the 

confidence and percentage are set by the regulations, considering the risk associated with 

exceeding the specified range. 

With reference to the safety parameter y to be limited from above by U, the approach 

aims at showing that the mth member ym of the N sorted outputs has a certain probability β 

of exceeding the unknown true γth percentile yγ  [Wald, 1943; Nutt et al., 2004]. Then, 

one has a level of confidence β that the actual value of yγ  is less than the value obtained 

for ym: if ym meets the criterion of being less than the safety threshold U, then the 

unknown yγ  will do so, too. In other words, the probabilities γ and β are defined as 

{ }P y yγγ = <  and { }ˆP y yγ γβ = < . 

 

Once γ and β are fixed, the OS method for calculating the ( )β γ -percentile estimate 

follows the lines of [Guba et al., 2003; Nutt et al., 2004] and consists in: 
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i) Determining the sample size N by fixing a positive integer m. The probability 

that at least m observations within a random sample of size N are greater than 

the γ-percentile of the distribution generating the sample is  

0

(1 )
N m

k N k

k

N
p

k
γ γ

−
−

=

 
= − 

 
∑  

Set p=β and compute the sample size N by solving the previous equation in 

terms of N. 

ii)  Sorting the observations in the sample by increasing value, the element in the 

r th place being the statistic of order r. 

iii)  Estimating the γ-percentile by setting ŷγ  equal to the statistic of order N-

m+1, i.e. the mth largest observation in the sample; then { }ˆP y yγ γβ = < . 

Note that higher values of m in step (i) imply higher values of the sample size N but 

generate less conservative estimates of the γ-percentile; in any case, the sample size N, 

i.e. the number of BE code runs, can be kept low because only intervals related to the γ
th 

percentile are estimated and not the full probability distribution generating the data. 

 

For the application of interest in the present work, the confidence intervals for the γth 

percentile are computed using the γth percentile estimates obtained from G batches of 

newly simulated accident transients. To verify that the estimated confidence interval does 

not exceed the safety thresholds, two-sided confidence intervals are computed. 
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2.5 The computational approach for percentile point- and confidence intervals- 

estimation 

 

The computational approach of Figure 1 for the evaluation of a point estimate of the γ-

percentile and of a confidence interval associated to it, to be used for the safety margin 

evaluation, is taken from [Secchi et al., 2008]. In what follows, the steps of the procedure 

are repeated for reader’s convenience (reference distributions and notations are shown in 

Figure 2): 

- Step 1: Code calculations. Given a set of np independent input parameters values 

ix , i=1,2,…,np sampled from the relative probability distributions, a set of np 

output values yi, i=1,2,…,np are evaluated by the BE simulation code. 

- Step 2: Code batch-calculations. Step 1 is repeated G times, each time with a new 

sample of N input values and resulting in a sample of size N values ( )g
nŷ , 

n=1,2,…, N, g=1,2,…,G. 

- Step 3: OS batch-percentile estimation. For g=1,2,…,G, the output sample of 

size N of the gth batch is used to compute the ( )β γ -percentile estimate ( )gŷγ  by 

means of the OS method. 

- Step 4: OS percentile estimation. The median 0.5ŷγ  of the sample of the G 

( )β γ -percentile estimates ( ) ( ) ( ){ }1 2 Gˆ ˆ ˆ ˆY y , y ,..., yγ γ γ=  is an estimate of the median 

of the distribution of the estimator ̂yγ  and is used as point estimate of the γ-

percentile of the output distribution for safety margin evaluations. 
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- Step 5: Confidence interval calculation. In alternative to the point estimate of 

Step 4, we generate a confidence interval estimate of the median of the 

distribution of the estimator ̂yγ , as follows: i) sort ( ) ( ) ( ){ }1 2 Gˆ ˆ ˆ ˆY y , y ,..., yγ γ γ=  by 

increasing values and let [ ] [ ] [ ]1 2ˆ ˆ ˆ, ,..., Gy y yγ γ γ  be the values of the order statistics; 

ii ) set r and s to positive integers satisfying the inequality 0 < r < (N+1)/2 < s ≤ N; 

iii ) then, the random interval [ ] [ ]ˆ ˆ,r sy yγ γ
 
   covers the median of the distribution 

of the estimator ŷγ  with probability 

 ( ) ( )1/ 2, 1, 1/ 2, 1,I N s s I N r rα = − + − − +  (3) 

where ( )I c, j,k  is the Regularized Incomplete Beta Function for non-singular 

cases [Kendall et al., 1979; Pál et al., 2002]. 

Hence, by fixing α  we may find suitable r and s, for instance in a symmetric 

position with respect to (N+1)/2, such that [ ] [ ]ˆ ˆ,r sy yγ γ
 
   is a level-α confidence 

interval of the median of the distribution of ŷγ . 

 

Note that, given the fact that ̂yγ  is the (β|γ)- estimator of the γ-percentile of the output 

distribution, we expect both the point estimate of Step 4 and the interval estimate of Step 

5 to cover values larger than the true value of yγ  (see Figure 2 for an illustration of the 

analysis setting). The method is efficient if these estimates will not be too conservative 

while guaranteeing the required level of confidence. 
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Figure 2 Sketch of the coverage value γ, the confidence β and the confidence interval level α; 

representation of the (unknown) safety parameter probability distribution ( )f y  and its γth percentile 

probability distribution ( )ˆγf y  

 

 

3 THE RESIDUAL HEAT REMOVAL SYSTEM BLOCKAGE SCENARIO IN 

THE HTR-PM 

 

3.1 The HTR-PM 

 

Starting from the gas-cooled reactors in the 1950s and advanced gas-cooled reactors in 

the 1960s, the high-temperature gas-cooled reactors have developed for nearly 50 years. 

Today’s Chinese design of the High Temperature Gas-Cooled Reactor-Pebble bed 

Modular (HTR-PM) is based on the technology and experiences of the HTR-10 10MW 

high-temperature gas-cooled test reactor (HTR-10) designed in China in 2000. 

At a first glance, the HTR-PM design has the following key technical features [Zhengy et 

al., 2008]: 

•  Characteristic coated fuel particles are used, which consist of uranium dioxide 

(UO2) fuel kernel coated by tri-isotropic (TRISO) ceramics such as pyrolytic 

y = safety parameter 
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carbon and silicon carbide (SiC), in order to retain fission products in the particle 

under a fuel cladding temperature of 1600ºC in accident cases. 

•  A one-zone core design is implemented, consisting of approximately 420,000 

spherical fuel elements in a pebble-bed with a diameter of 3m and an average 

height of 11m. 

•  Ceramic materials of graphite and carbon bricks, which are high-temperature 

resistant, surround the active reactor core. 

•  Decay heat in the fuel elements is dissipated by means of heat conduction and 

radiation to the outside of the reactor pressure vessel, and then taken away to the 

ultimate heat sink by water cooling panels on the surface of the primary concrete 

cell. Therefore, no coolant flow through the reactor core is necessary for decay 

heat removal in case of loss of coolant flow or loss of pressure accidents. 

Maximum accident fuel temperature shall be limited to 1600ºC. 

•  Spherical fuel elements are charged and discharged in a so-called “multi-pass” 

mode, which means that before the fuel elements reach the discharge burn-up, 

they go through the reactor core several times. 

•  Several of HTR-PM modular reactors can be built at one site to satisfy the power 

capacity demand of the utility. Some auxiliary systems and facilities can be 

shared among the modules. 
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3.2 The Passive RHRs 

 

The enhanced safety of the HTR-PM is mainly due to the implementation of passive 

safety systems [Zhao et al., 2008]. 

Figure 3 sketches the equipment layout of one of the 3 loops of the RHR system 

implemented in the HTR-PM. The water cooled wall gets the heat from the reactor vessel 

by thermal radiation; then, the pipe transfers the water to the air-cooled heat exchanger 

located in the air-cooled tower; the cool air takes the heat away from the heat exchanger 

to the environment. 

 

Figure 3 Schematics of 1 loop of the RHRs in the HTR-PM [Zhao et al., 2008] 

 

3.3 The RHRs blockage scenarios 

 

The outlet water temperature ,w outT  of the RHRs is considered as the safety parameter 

with respect to which the success or failure of the system is defined. From the 
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engineering experience, when ,w outT  exceeds the critical temperature cT , local boiling may 

occur which can significantly worsen thermal transmission. Although engineering 

experience recommends cT =95°C, in this work, a value of cT =90°C was conservatively 

chosen. 

 

The accident scenarios considered in the present study are: 

- Scenario A: 2/3 RHR loops out of service (i.e., simultaneously failed and/or under 

maintenance: this constitutes a BDBA) 

- Scenario B: 1/3 RHR loops out of service (i.e., failed or under maintenance: this 

is a scenario included in the set of DBA) 

- Scenario C: 0/3 RHR loops out of service (i.e., nominal condition) 

Scenarios A and B lead to a temporary decrease in the cooling capability of the RHR and 

to a corresponding increase of ,w outT  which may exceed cT  [Zhao et al., 2008]. For this 

reason, these scenarios are considered safety relevant and a careful analysis of it must be 

performed. 

 

3.4 Simulations of the accident scenarios 

 

A simplified zero-dimensional description of the thermo-hydraulic behavior of the RHRs 

has been implemented in MATLAB and used to simulate accident blockage transients. 

The model allows the computation of the maximum outlet water temperature reached 

during an accident scenario. 

The simulation code models the following phases of the process: 
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1. The residual heat radiates from the reactor vessel and other thermal sources to the 

water in the water-cooled wall; 

2. Because of the difference in temperature, natural convection will initiate through 

water, in the water-cooled wall and pipes connected with the air-cooled heat 

exchanger; then, heat will transfer to the water side of the heat exchanger; 

3. The heat will transfer by thermal conduction from the water side to the air side of 

the heat exchanger, due to the difference of temperature; 

4. As the air-cooled heat exchanger is located in the air-cooled tower, natural 

convection of air will set up and take heat to the final heat trap–atmosphere. 

 

The model fed with the nominal “best estimate“ values of the input parameters is 

assumed to be “sufficiently best estimate”. The RHRs accident complete blockage 

transients are generated by sampling the involved 37 input parameters from probability 

distributions defined on the basis of previous experience and/or information obtained by 

skilled experts (Table 1). 

 

N Parameter Distribution Note 
1 W Normal Residual heat power 
2 Ta,in Bi-Normal Temperature of inlet air in the air cooled tower 
3 xi1 Uniform Resistance coefficient of elbow 
4 xi2 Uniform Resistance coefficient of header channel 
5 xiw Uniform Resistance coefficient of the water tank walls 
6 xia,in Uniform Sum of the resistance coefficients of inlet shutter and  air cooling tower and silk net 
7 xia,out Uniform Sum of the resistance coefficients of outlet shutter and  air cooling tower and silk net 
8 xia,narrow Uniform Resistance coefficient of the narrowest part of the tower 
9 Pa,in Uniform Pressure of the inlet air in the cooler tower 
10 dx Uniform Roughness of pipes 
11 Ha Normal Height of chimney 
12 La Normal Length of pipes in the exchanger 
13 Na Normal Total number of pipes in the air cooler 
14 Af Normal Air flow crossing are in the narrowest part of the tower 
15 Af,in Normal Inlet air flow crossing area in the tower 
16 Af,out Normal Outlet air flow crossing area from the tower 
17 Af,narrow Normal Crossing area in the narrowest part of the tower 
18 S1 Normal Distance between centers of adjacent pipes in horizontal direction 
19 S2 Normal Distance between centers of adjacent pipes in vertical direction 
20 S Normal Distance between fins in the ribbed pipe 
21 Da Normal Pipes inner diameter in the air cooling exchanger 
22 Do Normal Pipes outer diameter 
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23 Douter Normal Rib outer diameter 
24 Pw Normal Water pressure in the pipes 
25 Hw Normal Elevatory height of water 
26 Nw Discrete Normal Number of water cooling pipes for each loop 
27 Lw Normal Length of the water cooling pipes 
28 Dw Normal Inner diameter of the water cooling pipes 
29 D1 Normal Inner diameter of the in-core and air cooler connecting pipes 
30 D2 Normal Inner diameter of the in-core header  
31 LC Normal Length of the in-core and air cooler connecting pipes (“cold leg”) 
32 LH Normal Length of the in-core and air cooler connecting pipes (“hot leg”) 
33 Ri Log-normal Thermal resistance of pipes inside of the heat exchanger 
34 Ro Log-normal Thermal resistance due to the dirt of the pipes fins 
35 Rg Log-normal Thermal resistance of the gap between fins 
36 Rf Log-normal Thermal resistance of fins 
37 lamd Normal Heat transfer coefficient of the pipes 

Table 1 Parameters which are regarded relevant for the behavior of the passive RHRs. 

 

4 RESULTS 

 

The non-parametric procedure for percentile estimation introduced in Section 2.5 is 

hereafter illustrated with reference to the estimation of the safety margin of the maximum 

outlet water temperature ,w outT  reached during the accident scenarios A, B and C of 

complete/partial blockage of the passive RHRs of the HTR-PM described in Section 3. 

Order Statistics has been applied to a sample of maximum outlet water temperature 

values obtained by simulation, for estimating the γ
th percentile with γ=0.95. Then, G 

estimates of the γth percentile have been collected by the OS applied to G different batch 

samples. Finally, confidence intervals for the real γth percentile have been evaluated. 

The procedural steps described in Section 2.5 have been performed as follows: 

Step 1: BE code calculations. 

To demonstrate the feasibility of the procedure, we take m=1 and β=γ=0.95; this leads to 

the smallest sample size N=59 for the OS ( )β γ -percentile estimates. 

Step 2: Code batch-calculations. 

A number of G=50 batches of N output values have been computed. 



 21

Step 3: OS batch-percentile estimation. 

For each of the G=50 batches, the ( )β γ -percentile estimates have been computed and 

collected in the sample ( ) ( ) ( ){ }1 2 50
0 95 0 95 0 95. . .

ˆ ˆ ˆ ˆY y , y ,..., y= . 

Step 4: OS percentile estimation. 

The median of the sample Ŷ  and its safety margin are evaluated for the accident 

scenarios A, B and C. The results are provided in the second column of Tables 2, 3 and 4, 

respectively. 

Step 5: Confidence interval calculation. 

Because of the limitation on the sample size used in the estimation, the safety acceptance 

criteria cannot be based solely on the best estimate results. Hence, the uncertainty of the 

estimated safety margin must be properly informed, e.g. by computing its confidence 

interval. With reference to the accident scenarios A, B and C, the confidence interval of 

level α=0.95, with r=1 and s=49, are provided in the second column of Tables 2, 3 and 4, 

respectively. 

 

Scenario A 
m 1 
N 59 
G 50 100 

Median safety margin ( )0.95 0.5ŷ A  -6.67 -6.55 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y A y A 
   [-3.12,-11.85] [-3.07,-11.38] 

Table 2 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario A, m=1, N=50 and G=50, 100. 
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Scenario B 
m 1 
N 59 
G 50 100 

Median safety margin ( )0.5ŷ Bγ  37.78 37.29 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y B y B 
   [40.72, 34.01] [40.88, 33.19] 

Table 3 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario B, m=1, N=50 and G=50, 100. 

 
Scenario C 

m 1 
N 59 
G 50 100 

Median safety margin ( )0.95 0.5ŷ C  56.49 56.55 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y C y C 
   [58.92, 52.59] [58.79, 52.70] 

Table 4 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario C, m=1, N=50 and G=50, 100. 

 

It can be seen that: 

- scenario A has a negative safety margin: the occurrence of this accident scenario 

has to be avoided; 

- from scenario C to scenario B the safety margin shrinks; 

- scenarios B and C can be classified as safe, because with positive safety margins. 

This means that, in absence of any other component failure in the system, 

although one of the loops is failed the system can continue to produce energy; on 

the other hand, in case of occurrence of scenario B, a maintenance action has to 

be adopted quickly to reactivate the failed RHR loop; 

- as shown in Figure 4, in general terms, the probability distributions of the safety 

parameter y ( )Xf y scenario , with X=A, B and C, are different. As a 

consequence, also the distributions of the 95-th percentiles ( )0.95 ˆ Xf y scenario , 

based on the results obtained with the G estimates of 0.95 ŷ , are different: the more 
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the accident scenario is unsafe, the more the related distributions shift towards the 

safety threshold (Figure 4). 

 

 

Figure 4 Conceptual sketch of the results obtained for the accident scenarios A, B and C 
 

4.1 Improvements of the estimation accuracy by means of higher values of m, N and G 

 

It is known that using higher values of m, N and G would allow increasing the reliability 

on the estimated confidence interval [Zio et al., 2008]. Indeed, conservatism is reduced 

by taking higher values of m, N and G [Nutt et al., 2004] and, by comparison of the 

results, the analyst would feel reassured that the estimates obtained have a low 

probability of differing significantly from the true values (usually unknown), and that the 

estimated maximum outlet water temperature value satisfies the safety threshold limit U. 

In this view, the same procedure detailed in Section 2.5 has been repeated increasing the 

number of samples G. For the accident scenarios A, B and C, the results are provided 
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with m=1, N=59, G=100, α=0.95, r=3 and s=97 and reported in the third column of 

Tables 2, 3 and 4, respectively: 

- despite the higher computational time ( )b N Gθ ∝ ⋅ , with b a constant 

coefficient, and the greater accuracy in the estimates, the medians for the 3 

accident scenarios are practically the same. 

- for all 3 accident scenarios, the application of the procedure with G=100 reduces 

the conservatism in the results since it provides the lowest point-estimate values 

of the maximum outlet water temperature (larger positive safety margins for 

scenarios B and C and smaller negative safety margin for Scenario A). 

 

For comparison, the procedure detailed in Section 2.5 has been repeated increasing the 

number of simulations N: the value m=50 leads to a sample size N=1228. The results are 

provided in Tables 5,6 and 7. It can be seen that: 

- increasing m and correspondingly increasing the number of values that are 

requested at least to lie beyond the “extent” γ of the cumulative probability, the 

estimation 0.95 ŷ  of the percentile tends to narrow the true 0.95y , which have been 

evaluated running the code 100000 times for each accident scenario. By testing 

the 100000 outputs for Normality by means of the Lilliefors Test [Lilliefors, 

1967] and then applying a parametric approach for the 95-th percentile 

estimations, the estimate of 0.95y  has turned out to be equal to -3.22, 40.66 and 

58.70 for scenarios A, B and C, respectively. 
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- for all the 3 accident scenarios the application of the procedure with m=50 

increases the confidence on the estimated percentile value with respect to that 

with m=1, as demonstrated by the shrinking of the confidence intervals. 

 

As an example, Figure 5 shows the combined effect of larger values of m and G with 

reference to the results provided for the accident scenario C. 

 

Scenario A 
m 50 
N 1228 
G 100 150 

Median safety margin ( )0.95 0.5ŷ A  -3.86 -3.93 

Confidence interval ( ) ( ) ( ) ( )4 147
0.95 0.95ˆ ˆ,y A y A 
   [-3.76, -4.24] [-3.23,-4.63] 

Table 5 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario A, m=50, N=1280 and G=100,150. 

 
Scenario B 

m 50 
N 1228 
G 100 150 

Median safety margin ( )0.95 0.5ŷ B  39.86 39.85 

Confidence interval ( ) ( ) ( ) ( )4 147
0.95 0.95ˆ ˆ,y B y B 
   [40.53, 39.22] [40.56, 39.12] 

Table 6 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario B, m=50, N=1280 and G=100,150. 

 
Scenario C 

m 50 
N 1228 
G 100 150 

Median safety margin ( )0.95 0.5ŷ C  58.27 58.28 

Confidence interval ( ) ( ) ( ) ( )4 147
0.95 0.95ˆ ˆ,y C y C 
   [58.82, 57.71] [58.83, 57.78] 

Table 7 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario C, m=50, N=1280 and G=100,150. 
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Figure 5 Conceptual comparison of the results obtained for the accident scenario C with m=1, 50 and 

G=50, 150, respectively 
 

4.2 Safety margin estimation based on a reduced set of input parameters 

 

The same calculations have been repeated by sampling values only of the power ,W  the 

inlet temperature of air in the air-cooled tower ,a inT  and the water pressure in the pipes 

wP , which have been identified by sensitivity analysis as the most relevant parameters 

affecting the outlet water temperature ,w outT  [Yu et al, 2010a; Yu et al., 2010b]. The 

results are provided in Tables 8-10. By comparison to Tables 2-4, respectively, it can be 

seen that an overall qualitative agreement exists between the safety margins evaluated 

resorting to the complete analysis considering all 37 input parameters and those obtained 

with only the 3 most relevant input parameters: this demonstrates the efficacy of 

sensitivity analysis and allows for an even faster safety margin evaluation, freeing the 

procedure from the numerous time-consuming samplings of all the input parameters 

values and related code calculations. 
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Scenario A 
m 1 
N 59 
G 50 100 

Median safety margin ( )0.95 0.5ŷ A  -7.51 -7.08 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y A y A 
   [-3.07,-11.13] [-3.49,-11.36] 

Table 8 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario A, m=1, N=50, G=50, 100 and only 3 input parameters. 

 
Scenario B 

m 1 
N 59 
G 50 100 

Median safety margin ( )0.95 0.5ŷ B  37.56 37.34 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y B y B 
   [41.06, 33.14] [40.83, 33.19] 

Table 9 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario B, m=1, N=50, G=50, 100 and only 3 input parameters. 

 
Scenario C 

m 1 
N 59 
G 50 100 

Median safety margin ( )0.95 0.5ŷ C  55.65 56.31 

Confidence interval ( ) ( ) ( ) ( )3 97
0.95 0.95ˆ ˆ,y C y C 
   [58.88, 53.36] [58.73, 52.59] 

Table 10 Median of the 95th percentile distribution and the corresponding confidence interval, 
obtained for the accident scenario C, m=1, N=50, G=50, 100 and only 3 input parameters. 

 

Finally, the physical conclusion that can be drawn from the analysis is that, for the safe 

operation of the plant, two RHR loops are enough; the 3rd loop can be considered as a 

redundancy in the RHRs to guarantee high availability of the safety function. The large 

safety margins computed in case of the safe scenarios (B and C) suggest a possible 

improvement of the whole system design to avoid excessive conservatism leading to a 

more efficient plant design and operation. 
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5 CONCLUSIONS 
 

A computational framework of literature has been applied for the estimation of the safety 

margin on the maximum outlet water temperature of the passive RHRs reached during 

some accident scenarios of the HTR-PM. 

The procedure exploits non-parametric Order Statistics performed on a limited number of 

BE code calculations for providing confidence intervals on the estimated percentiles. An 

analysis has been performed on the effects of some key parameters, related to the size of 

the statistical sample and on the number of uncertain input variables considered in the 

analysis. 

The procedure has been demonstrated to give reliable (the estimates are similar despite of 

the increase of the number of simulation), robust (confidence intervals are very narrow) 

and conservative (increasing the number of simulations, the estimates tend to narrow 

down to the true value) estimates of the 95th percentiles of the safety parameters 

distributions. 

The method has been demonstrated effective in that it is capable of indicating the passive 

system safety conditions, accounting for the uncertainties in the model parameters and in 

the estimate itself. 
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