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Abstract
We introduce a two-constituent porous continuum as a model describing the long-term

growth/resorption phenomena in bone tissues grafted with bio-resorbable materials as driven by
mechanical loads. The proposed model is able to account for the interplay between mechanical and

biological phenomena which are known to be important for the bone tissue synthesis and the resorption
of both bone tissue and bio-material. In particular, in the presented model the Lagrangian apparent
mass densities of the natural bone and of the artificial material evolve in time according to precise

ordinary differential equations. These latter are obtained by postulating a growth/resorption law and
suitable constitutive equations conceived to account for the influence on bone resorption and synthesis
of the action of different applied external loads as mediated by biological stimulus. The considered
constitutive equations are chosen on the basis of the known biological phenomena occurring in bone
resorption and synthesis. We present some numerical simulations for rod-bones subjected to axial

external load. These numerical simulations allow for the description of the most desirable situation in
which a gradual resorption of the artificial material takes place together with the contemporary

formation of new bone, finally giving rise to an almost complete replacement of the artificial material
with natural living tissue.

KeyWords : ODEs governing growth/resorption ; Coupling between mechanics and biological stimuli ;
Artificial bio-resorbable material ; Continuum mixture model ; Load-induced replacement of artificial

material with natural bone tissue ; Numerical simulations.
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1. Introduction, list of biological phenomena we want to describe and state of the art

In this paper a model based on well-established methodologies used in continuum mechanics is adapted
to the description of the complicated bio-mechanical phenomena occurring in bones reconstructed with
grafts of artificial bio-resorbable material. Some of the most important among these phenomena are the

external load-driven resorption and synthesis phenomena. Of course, while a living bone may be
resorbed or synthesised depending on the biological signal present in the bone tissue, artificial material

can eventually be only resorbed. This is one of the more complex peculiarities of considered
bio-mechanical systems which we aim to encompass in our model.

1.1. Motivation from medical practice

The use of bone substitute materials is nowadays a common practice in orthopaedic, jaw and skull
surgery: therefore the determination of the optimal properties of these materials poses important

challenges (see e.g. [12], [20], [27], [16]). Many bio-compatible materials of different chemical
composition, form, macro- and micro-structure, mechanical and biochemical characteristics are

available: some can be regarded as more or less bio-degradable and/or bio-resorbable (see e.g. [32], [14],
[42], [2], [19], [9]). It is evident first of all that the bone substitute materials used in surgery must be

bio-compatible and must exhibit a sufficient mechanical strength: indeed the implanted graft serves after
surgery, especially in case of big cavities in bone, as a supporting element. Another requirement which is
being considered more and more important is their ability to integrate with a natural tissue. Actually,
bio-mechanical characteristics and micro-structure of bone substitute materials must be conceived in

order to promote their integration with natural bone tissue: in particular an appropriate porosity of the
artificial material is necessary to enable living cells migration and their expected activities. A suitable
size of pores is also required for the development of vascularization necessary for survival of bone cells.
It is clear that the best possible expected situation after graft implantation is the gradual replacement

of artificial materials with a natural bone tissue, as this tissue has some capabilities of functional
adaptation which are far to be shared, at the moment, by artificial materials. In the desired replacement
process three different and simultaneous phenomena play a relevant role: bone and artificial material

resorption and new bone tissue formation. They are not independent and their coordinated contribution
in the remodelling process determine the actual topology changes and eventual variations of mechanical

state of the reconstructed bone. The resorption of both bone tissue and artificial material and the
formation of intracellular matrix are guaranteed by the action of so called “actor cells” which is

triggered by a signal determined by the mechanical state of bone tissue. The interplay of resorption and
formation processes determines the final properties of the reconstructed bone.

1.2. Some well-established biological facts on bone tissue resorption and synthesis and how we account
for them in the presented model

In the present paper we pay particular attention to the last phase of bone healing in presence of
bio-material when the bone tissue should replace the added artificial material. This process is possible
because of the activities of cells specialized in mechanosensation, mechanotransduction and tissue

resorption and synthesis, see e.g. [3], [43], [30], [40]. In particular, we can start distinguishing two types
of cells (which belong to the common class of so-called “actor cells”), namely the osteoblasts

(specialized in new bone tissue formation) and the osteoclasts (which are able to resorb both natural
bone and bio-resorbable material) which have different roles and which originate from two different
kinds of precursor cells. These precursor cells share the capability of freely moving inside porous
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materials which have a suitably large interconnected porosity and they can then penetrate and deposit
inside a pore in both the natural tissue and porous artificial material. We will assume that these two
kinds of precursor cells are present everywhere in both the living bone tissue and artificial material

under the condition that a suitable porosity is present. The precursor cells give rise to osteoblasts or to
osteoclasts following the instructions of a signal generated by a third kind of cells called osteocytes: this
signal is proportional to the deformation which the osteocytes can measure at a given point (for this
reason they are also called “sensor cells”). In order to accomplish their task of measuring deformation
energy at a given point, the sensor cells do not move and spend all their life in that point. Sensor cells
originate from osteoblasts when these latter have accomplished their task of synthesizing new bone
around them: when an osteoblast is completely surrounded by new natural bone tissue it changes its
nature and becomes an osteocyte, i.e. a sensor cell which starts to measure deformation and to emit a

signal proportional to its measured value.
Some additional remarks on the transformation of precursor cells into an osteoclast or an osteoblast are
needed at this point. In particular, if a precursor cell detects a very low signal it interprets this datum
as a very low deformation which the cell associates to the fact that more bone than needed is present
close to it. In this case the precursor cell deposits and becomes an osteoclast which starts resorbing the
exceeding material surrounding it. Conversely, if a precursor cell detects a very high signal, it associates
this measure of high deformation to the fact that there is no enough bone around it and this precursor

cell deposits and becomes an osteoblast which starts synthesising new bone tissue.
Surgery must assure the initial mechanical integrity and basic strength of reconstructed bone. After the
first phases of healing, the natural process of remodelling tries to enable the formation of a bone tissue
able to functional adaptation: a well-designed graft must favour this natural attitude. At this stage the
graft is generally surrounded by a new tissue: however two different possible graft evolutions may occur

subsequently. In a first one the graft and surrounding bone tissue micro-structure does not enable
migration of actor cells into the artificial material far enough from the interface with tissue, or does not
enable the vascular system growth inside the graft. In this case bone synthesis in the graft is possible

only very close to the interface with the tissue and the majority of graft mass remains as an inclusion in
the natural tissue. According to the second possible evolution, the precursor cells manage to penetrate
and survive into the domain occupied by the artificial material. The osteocytes signals, coming from
bone tissue, manage to activate osteoblasts inside the graft which start to synthesize bone tissue. The
action of osteoblasts and osteoclasts may therefore fill the pores in a graft with a new tissue or may
result into artificial material resorption and its eventual replacement by a new natural tissue. All of

these processes are interrelated, depend on many factors and must be efficiently described. Indeed, bone
tissue reformation in a region initially occupied by bio-resorbable material determines how good is the

final quality of reconstructed bone tissues.
In this study we focus our attention on this final stage of healing after graft implantation in bone as this

process is crucial for the success or failure of surgery. We consider a graft of porous bio-resorbable
material located in a region in contact with bone tissue. To render the mathematical formulation of the
model tractable it is useful to introduce a mixture of two porous materials: the grafted bio-material and
the natural bone tissue. The apparent mass density and porosity of the two components of the mixture
is allowed to change in time and space, together with its mechanical state, associated activity levels and

fraction of all considered cells.
The mathematical description we formulate in this paper for the bone remodelling process in presence

of bio-resorbable material is based on the following assumptions:

(i) Osteoblasts and osteoclasts fraction and activity are proportional to the intensity of the stimulus
they gather from the osteocytes: they elaborate and integrate all signals -sent by surrounding sensor
cells- which reach them.
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(ii) Osteocytes produce a signal proportional to the density of strain energy in the region where they are
located. This signal is instantaneously transmitted and its intensity decreases exponentially with
the distance from its source.

(iii) The sensor cells (osteocytes) are initially located only in the living tissue region (not in the artificial
material one). Moreover, even for further times, since the osteocytes take birth from the osteoblasts
when these latter are completely surrounded by natural tissue, the presence of sensor cells at a given
material point is possible only if there is a contemporaneous presence of natural bone tissue at the
same point.

(iv) The bone tissue can be resorbed or synthesized, while the artificial material can be only resorbed.

(v) The number of the cells which are active in a given place depends on the “effective” porosity of
host composite material. In particular, the minimal values of this number are associated with great
porosity (porosity = 1) and with absence of porosity (porosity = 0). Indeed, when the host material
is too porous then the precursor cells cannot deposit at the surface of the host material, simply
because there is not enough surface which they can attach to. When porosity is too low then the
precursor cells cannot reach the considered region of host material. We therefore assume that there
exists an optimal value of porosity associated with the presence of the largest number of cells and
the highest level of their activities.

1.3. Main features of proposed model and comparison with similar models presented in the literature

The model which we present in this paper has many contact points with some continuum models
already present in the literature. However, to our knowledge, the way we propose for describing the
coupling between mechanical and biological phenomena is novel for what concerns the following

features: i) the form of source term in growth/resorption ODEs, as depending non-linearly on stimulus
and porosity; ii) the non-local dependence of local stimulus on deformation energy field in the whole
body. For what concerns the specific phenomena we want to describe in this paper (and as described
carefully e.g. in [45]), the mechanical and biological structure of bone tissue is very complicated. A

complete and simultaneous description of all the phenomena occurring in its growth or resorption may
lead to models too complex to be treatable. Hence, we attempt here their synthetic description by

means of a model reaching a suitable compromise between capability of describing the phenomena we
are interested in and manageability. In this paper we use e.g. Cauchy continuum theory to model the
mechanical behavior of the natural-bone/artificial-material mixture. However, it is well established (see
e.g. [49], [39], [18], [31] and [1],) that the particular micro-structure of bone tissue which actually is a

composite material, may oblige us, in order to suitably describe some important mechanical phenomena,
to use second gradient continuum theories. Indeed, in the present paper we focus our attention on the

description of the process of graft resorption in reconstructed bones, assuming that a continuum
mixture theory is sufficient to model the mechanical behavior of the more complex composite material
constituted by artificial material and bone tissue. After having introduced a simplified description of
stress state of bone tissue and artificial material mixture we address the problem of the choice of

suitable constitutive equations for stress. To this purpose, we follow some of the indication found e.g. in
[34] and [13] and we introduce suitable elastic moduli for the considered mixture, refraining, at a first

stage, from any multi-scale modelling. Indeed, a multi-scale modelling should generalize the
considerations developed for a pure bone tissue e.g in. [15] or [48] (where again the trabecular bone is

regarded as a couple stress continuum). In this first investigation we also consider the bone
tissue/artificial material mixture as linear elastic: the present model needs to be improved by following

the results shown e.g. in [36] where a fabric-dependent fracture criterion for bone is introduced.
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In this paper an interface between pure bone tissue and artificial material will be considered: we will be
able to describe some scale and boundary layers at this interface. The considerations developed in [46]
are of relevance in this context. We believe that the final application of our theoretical investigations is
the design of improved surgical techniques. For this reason we accept here the spirit which guides the

investigations of many ”bio-engineers” as those presented e.g. in [35] (where the bone-implant
interaction is studied), in [44] (where a pre-operative planning procedure is conceived and a

post-operative estimation of the obtained results is presented), in [7] (where concurrent engineering and
design of prostheses and surgical techniques which account for the bone remodeling phenomenon are

developed). Even if only purely qualitative results are presented in this paper, we are able to show that
the model we present should be able to reduce the occurrence of artificial material inclusions in the

completely healed reconstructed bones. We finally underline the importance of the phenomena of load
transfer between bone tissue and artificial reinforcement materials used in bone reconstruction (see e.g.
[37]): the numerical simulations we have obtained show how the gradual artificial material replacement
is influenced by the modalities with which mechanical strain energy is differently distributed between

the pure bone tissue and the bone tissue/artificial material mixture.

2. Eulerian and Lagragian description of a solid mixture constituted by bone-tissue and
bio-resorbable material

For a reference concerning the basic concepts of continuum mechanics, which we use in this and all the
subsequent sections, we refer to [8], [41] and [3].

The considered solid material is constituted by a mixture of bio-resorbable material and living
bone-tissue.

In order to specify the kinematical descriptors which we want to introduce to describe the evolution of
considered bio-mechanical systems, it is suitable to consider the following (Eulerian!) fields, evaluated at

position x ∈ E, where E is the three-dimensional euclidean space, and at instant t:
• the (apparent) mass density of bone-tissue

ρb : (x, t) ∈ E × [0, T ] �→ ρb(x, t) ∈ R
+;

• the (apparent) mass density of the bio-resorbable bone-substitute material (in the sequel, we also use
the shorter expressions “artificial material” or “ bio-material”)

ρm : (x, t) ∈ E × [0, T ] �→ ρm(x, t) ∈ R
+;

• the porosity of the bone tissue/bio-material mixture i.e. the Eulerian volume fraction which is not
occupied by bone tissue or bio-material

ϕ(x, t) : (x, t) ∈ E × [0, T ] �→ ϕ(x, t) ∈ R
+;

• the (apparent) total mass density and the bone tissue mass fraction

ρ(x, t) := ρb(x, t) + ρm(x, t), ξb(x, t) := ρb(x, t)/ρ(x, t);

• the (adsorption-growth) stimulus, i.e. a scalar quantity which measures the activation signal collected
at (x, t) by the actor cells

S : (x, t) ∈ E × [0, T ] �→ S(x, t) ∈ R
+;

• the volume strain-energy density i.e. the energy needed to deform the elementary volume of the mixture
bio-material/bone tissue from a reference configuration to the current one

U : (x, t) ∈ E × [0, T ] �→ U(x, t) ∈ R
+;
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• the fraction of the active sensor cells, i.e. the number of active osteocytes over the number of potentially
available osteocytes in the REV centered at (x, t).

d : (x, t) ∈ E × [0, T ] �→ d(x, t) ∈ R
+.

This scalar parameter d is assumed to be dimensionless (like porosity).
The kinematical descriptors we have just introduced seem to supply the simplest mathematical model
able to describe an elementary bone adaptation/remodelling process in presence of artificially added

material.
We now introduce a reference configuration to describe deformation occurring in considered solid

mixture as it is well-known that the strain deformation drives the transformation of precursor into actor
cells. Sensor cells, after having measured the deformation energy, will convey to precursors cells a
suitable stimulus for the formation of the needed actor cells in the whole bone tissue/bio-material

mixture.
We assume that it is possible to suitably introduce

• a reference (or Lagrangian) “average” configuration C∗ ⊂ E;
• an “average” placement field

χ : C∗ ×R → E

which allows for the introduction of the current configuration of the bone/bio-material solid mixture:

Ct := χ(C∗, t);

• two referential mass density fields

ρ∗b : C∗ ×R → R+, ρ∗m : C∗ ×R → R+;

• the total Lagrangian mass density
ρ∗ := ρ∗b + ρ∗m;

• the deformation gradient , its determinant and the Green-Saint-Venant strain tensor ,

F := ∇χ, J := detF, 2G := FTF− I,

in such a way that the following equalities hold

J−1ρ∗b = ρb ◦ χ, J−1ρ∗m = ρm ◦ χ, J−1U∗ = U ◦ χ, J−1ρ∗ = ρ ◦ χ.
The introduced reference configuration is the domain where all fields describing the remodelling process

under study will be defined.
It is most suitable and must be preferred to the Eulerian configuration, which is a time-varying domain.
Once the placement field χ is introduced, it is straightforward to define, for any X ∈ C∗ and for any

time t, the classical displacement field

u : (X, t) ∈ C∗ × [0, T ] �→ χ(X, t)−X.

Presently we refrain from any effort directed to introduce any “homogenization” procedure, producing,
after suitable averages, an expression for deformation energy in terms of “microscopic” phenomena

occurring at a smaller scale. Indeed, the field χ is introduced to describe the “average” placement and
deformation of the solid mixture under consideration, and is assumed to “fully” determine the
deformation energy and able to relate the introduced referential and spatial mass densities.

3. Bio-Mechanical Constitutive, Evolution and Balance Equations

We start specifying, by means of suitable constitutive equations, the interaction between sensor cells
and actor cells (see [40]) as mediated by stimulus intensity. Indeed, as discussed in the introduction, it is
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well-established (see e.g. [3] and [40]) that sensor cells produce a signal which is sent to precursor cells
surrounding them and which drives their behaviour. Another phenomenon which we want to account for
in our model concerns the effect of biological actions on mechanical behaviour of the mixture of bone
tissue and bio-material: these actions affects the (apparent) densities of both materials, the mixture
porosity and the elastic coefficients of bone tissue. We model the listed cause/effect relationships by

means of simple evolution equations, when dealing with resorption of both bio-material and bone tissue
or when dealing with synthesis of bone tissue. On the other hand, we introduce suitable constitutive
equations when dealing with the relationships among biological and mechanical states, signal and

stimulus, or stimulus and remodelling.
We feel necessary to comment here about the modelling assumptions which have driven the formulation

of the presented model. We assume a standard continuum mechanical model in which the elasticity
coefficients can slowly vary with respect to time. Therefore, the standard considerations about

constitutive equations and their relationship with second principle of thermodynamics hold. We are
aware, however, that some energy must be supplied to the system in order to be assured that the

postulated evolution equations for Lagrangian mass densities are valid. We are also aware that a general
thermomechanical formulation encompassing also biological phenomena is needed and has been

attempted in the papers [21], [22], [23]. In the present paper, we content ourselves to base the evolution
equations of Lagrangian mass densities on phenomenological considerations which are guided by

experimental evidence.

3.1. Deformation energy, fraction of sensor cells, porosity and stimulus constitutive Equations

The Lagrangian deformation energy density is assumed to be a function of the Green Saint-Venant
strain tensor G, of the apparent volume Lagrangian mass densities and eventually of the considered

material particle X. Indeed, differently to what happens in standard continuum mechanics, the
Lagrangian mass densities may evolve with time in the considered resorption/synthesis problem. These
changes are assumed to be slow enough so that inertia effects are negligible. In other words, we assume
the existence of a function U∗ such that J−1U∗(G, ρ∗b , ρ

∗
m,X) = U ◦χ. In the sequel we will consider the

following particular case of this constitutive equation in order to perform our numerical simulation,
suggested by the biological phenomena which we have in mind:

U∗(G, ρ∗b , ρ
∗
m,X) = μG2 +

λ

2
(tr(G))

2
, where μ = μ̂(ρ∗b , ρ

∗
m,X) and λ = λ̂(ρ∗b , ρ

∗
m,X). (1)

The introduced elasticity parameters are usually taken of the form (see e.g [3] and [40]):

μ = μ0+μ1b

(
ρ∗b − ρ∗0b
ρmax

)Ab

+μ1m

(
ρ∗m − ρ∗0m
ρmax

)Am

; λ = λ0+λ1b

(
ρ∗b − ρ∗0b
ρmax

)Bb

+λ1m

(
ρ∗m − ρ∗0m
ρmax

)Bm

,

or even

μ = μ2b

(
ρ∗b

ρmax

)Cb

+ μ2m

(
ρ∗m
ρmax

)Cm

; λ = λ2b

(
ρ∗b

ρmax

)Db

+ λ2m

(
ρ∗m
ρmax

)Dm

, (2)

where all the quantities which have not been introduced before are constants and, in particular, the
constant ρmax stands for the mixture apparent density corresponding to vanishing porosity. Both these

equations for elastic moduli as functions of densities are admissible and seem to be coherent with
experimental evidence available (see e.g. in [38]). We choose to use equations (2) in our numerical

simulations.
As for the fraction of sensor cells, we assume that the biological activity of a material particle of the

bone/bio-material solid mixture depends on its content of osteocytes. Therefore, in order to describe at
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least some of the biological mechanisms occurring in the solid mixture of bone and bio-resorbable
material we need to introduce a constitutive equation relating the bone-tissue and bio-resorbable

material mass densities to the fraction of sensor cells and porosity. According to the assumptions (iii)
and (v) we made in section 1.2, we set

d = d̂(ρb, ϕ), (3)

where the fraction of sensor cells d is assumed to be an increasing function (ceteris paribus) of the total
mass of living tissue in the mixture bone/bio-material.

We now want to consider a constitutive equation for porosity. In order to do so, we recall that the
biological process leading to the activation of osteoclasts and osteoblasts involves the diffusion of their
precursor cells through the bone-tissue. Physiologically, bone-tissue is porous and a fluid is filling its
pores. This fluid transports the precursor cells. In order to be assured that the activation process of

precursor cells, leading to the formation and action of osteoclasts and osteoblasts, is made possible one
needs to be sure that the considered mixture is porous in order to allow for the needed precursor cell
diffusion phenomena. Moreover, the actor cells need to have pore surface where to sit in order to start
their action. Of course, in the following considerations we will assume that the pores inside the bone
tissue/bio-material mixture have a “regular” shape: this means that the pores have not any fractal

nature, their shape ratio is not too big, and so on. This is needed in order to be assured that porosity is
a correct measure of the available pore surface where actor cells may deposit.

Porosity is a kinematical parameter which therefore needs to be introduced if one wants to describe
remodelling phenomena in living bone-tissues and also in bone/bio-material solid mixture. In this

mixture, if porosity is too low (and pores have a “regular” shape!) then living cells will not be able to
efficiently adsorb the resorbable material neither to form new bone tissue, as the available space will not
allow for the action of a suitably large number of actor cells. If porosity, on the other hand, is too large
then we do not have enough matter (i.e. bone tissue or bio-material) on which actor cells may deposit.

Also in this circumstance remodelling will not occur quickly enough or will not occur at all.
To describe the mechanical phenomena which influence the porosity variation in considered solid
mixture we introduce a constitutive equation for the Lagrangian porosity ϕ∗ = ϕ ◦ χ of the type

ϕ∗ = ϕ̂(G, ρ∗b , ρ
∗
m,X), (4)

which links the “effective porosity” (effective for the deposit of actor cells) to the strain-tensor G and to
apparent mass volume densities.

Behind this constitutive assumption for the porosity there is an implicit “instantaneous local
microscopic equilibrium” hypothesis. We assume that locally (i.e. inside any elementary volume of

considered mixture and at a microscopic level) transient phenomena, which adjust the porosity when
local deformation state and apparent mass densities vary, occur in characteristic times which are

negligible with respect to the time scale at which happen the macroscopic evolutionary phenomena
which we want to describe. Moreover, we will assume that the final porosity in a macroscopic material
particle of the considered mixture depends only on the “average” micro-elasticity moduli and on the

“total” mass of bone tissue and bio-material present inside it and is nearly independent on the “micro”
distribution of mass inside it. This assumption, rather standard in mixture theory, seems well-grounded

even if maybe a more detailed analysis about it is required, by using suitable and delicate
homogenization arguments. This assumption allows for the formulation of a macroscopic theory

formally self-consistent: all informations about the phenomena occurring at micro-level are assumed to
be accounted for by the introduced constitutive equation.

Let us now consider the constitutive assumptions we want to make on the stimulus emitted by the
sensor cells, as already stated at point (ii) of section 1.2. We assume that, similarly to what occurs in

physiological bone-tissue, such a stimulus is conveyed in every material particle of the bone/bio-material
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solid mixture by the surrounding osteocytes. Moreover, we assume that the signal stemming from a
sensor cell in a given material particle of the bone/bio-material mixture is instantaneously transmitted

(i.e. the transmission time scale is negligible when compared with the characteristic time of the
remodelling phenomena) and that its intensity decays exponentially with the distance from the emitting
sensor cell. We also assume that the signal sent by any sensor cell located in a given material particle is
of the same intensity, so that the total intensity of the signal sent by considered material particle is

proportional to d. Finally, we assume that all sensor cells elaborate a signal which is proportional to the
deformation energy concentrated in the elementary volume in which they are located. In conclusion, we

assume that

S(x, t) =

( ∫
Ct

U(x0, t)d(x0, t) exp(−D ‖x− x0‖)dx0

)
− S0(x, t) (5)

where the length D−1 represents the range of action of sensor cells and the value S0 is an activation
threshold (eventually depending on the position and time) the meaning of which will become clear later,
when a resorption-synthesis law will be formulated. For detailed discussion of the biological evidence

which is the basis of the just formulated constitutive equation we refer to [3] and [40]. As for dimensions
of the stimulus, it can be checked that, since d is dimensionless, then S turns to have the dimensions of

a work [N m].
Expression (5) for the stimulus is easily rewritten in the Lagrangian configuration by means of a simple

change of variables

S∗(X, t) =

( ∫
C∗

U∗(X0, t)d
∗(X0, t) exp(−D ‖χ(X) − χ(X0)‖)dX0

)
− S∗

0(X, t), (6)

where we set J−1U∗ = U ◦ χ, d∗ = d ◦ χ and S∗
0 = S0 ◦ χ.

3.2. Evolution Equations for Remodelling and Balance Equation of Force

We are now ready to formulate a well-posed evolutionary problem for the introduced kinematical fields
which, in our opinion, is able to catch the most important features of the remodelling process occurring
in bone tissue after initial healing and in presence of bio-material as a bone tissue filler and support.

Again, we believe that remodelling phenomena occur without any inertial effect. Therefore, the
evolutionary equation for apparent densities will be simply first order ordinary differential equations
with respect to time. Moreover, we will assume that no spatial gradient of apparent densities occur in
the remodelling equation. Also this assumption maybe discussed: we simply assume that the process of
remodelling depends on what is occurring outside the elementary volume element only by means of the
stimulus and is not influenced by other non-local (e.g. purely mechanical) phenomena. In formulas, we

assume that the total mass density rate depends on the local value of the stimulus

∂ρ∗b
∂t

= Ab(ϕ
∗, S∗),

∂ρ∗m
∂t

= Am(ϕ∗, S∗) (7)

The remodelling-constitutive equations for Ab and Am are assumed to account for different phenomena
of biological and mechanical nature and for some geometrical circumstances: i) the surface available for

resorption or synthesis “inside” the considered macroscopic material particle depends, as already
discussed, on the “effective” porosity field; ii) the different properties of bone tissue and bio-material

determine different resorption rates, due to the different effect of actor cells on these different material;
iii) the rate of synthesis of bone tissue which is consequence of a positive stimulus is different from the

resorption rate determined by a negative stimulus of the same amount.
The previous considerations are consequence of the biological nature of the process of synthesis and

resorption: in particular, osteoclasts adsorb at the same time (and presumably they are not able to be
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completely selective!) both the bone-tissue and the resorbable material while osteoblasts produce only
bone tissue. In particular, we will assume that

Ab(ϕ
∗
, S∗) = Ab(S

∗)H(ϕ∗), Am(ϕ
∗
, S∗) = Am(S∗)H(ϕ∗), (8)

where the functions Ab and Am are piece-wise linear functions with different slopes for negative and
positive values of stimulus (remark that, according to assumption (iv) of section 1.2, for the bio-material
and positive values of the stimulus, Am must vanish, as there cannot be synthesis of bio-material) and
the function H is designed in order to account for the influence of “effective” porosity on the biological
activity of actor cells: when “effective” porosity is too large there is not enough material on which actor
cells may deposit, when it is too small there is not enough free space in the pores to allow their mobility
and deposit. We choose the shape of H in such a way that H = 0 for ϕ = 0 or ϕ = 1. In particular, the
following forms for the functions H(ϕ), Ab and Am have been chosen to perform numerical simulations:

H = k ϕ∗(1− ϕ∗), Ab(S
∗) =

⎧⎨
⎩ sb S

∗ for S∗ > 0

rb S
∗ for S∗ < 0

, Am(S∗) =

⎧⎨
⎩ 0 for S∗ > 0

rm S∗ for S∗ < 0
, (9)

where k is a suitable constant parameters, sb and rb will be called synthesis rate and resorption rate for
bone tissue respectively and rm will be called resorption rate for bio-material. The evolution equations
(7), because of constitutive equations (8) are non-linear and depend on the value of strain energy of the
whole body by means of the integral operator which gives the stimulus. Also this integral operator is
strongly non-linear. However, they do not depend on the gradients of Lagrangian mass densities. In a
sense, these mass densities are internal variables, following the definitions given e.g. in [10], [11], [28].
We remark that, because of the presence of the stimulus in the argument on RHS of equation (7), the
presented theory considers internal variables the evolution of which depends non-locally on coupled
fields. Moreover, we have some difficulties in calling “observable” only the displacement field of

considered continuum: our Lagrangian mass densities can be observed by means of X rays, even if,
following the standard definitions, they are internal.

Concerning the mechanical equilibrium of considered body, we will assume that inertia effects are not of
relevance when considering the applied external load and the time scale of remodelling process.
Therefore, we will assume that the loads applied to the system are varying so that a quasi-static

deformation process is occurring. Hence, the balance of forces in the bulk reads:

Div

(
F · ∂U

∗

∂G

)
= −bext, (10)

where Div is the usual divergence operator, the central dot indicates a simple contraction between two
tensors of order greater or equal than one and bext accounts for the external body forces. As for the

boundary conditions, we assume traction type conditions on the external boundary ∂C∗ and continuity
of forces (which also implies continuity of displacement) at any internal discontinuity surface Σ∗ inside

C∗. In formulas

F · ∂U
∗

∂G
·N = fext on ∂C∗,

[∣∣∣∣F · ∂U
∗

∂G
·N
∣∣∣∣
]
= 0 on Σ∗, (11)

where fext stands for the external forces per unit area applied at the boundaries of C∗, N is the unit
normal vector to this boundary (or to the internal discontinuity Σ∗) and [|a|] := a+ − a− stands for the

jump of the quantity a trough the discontinuity surface Σ∗. No difficulty arises when one needs to
consider some “kinematical” excitation applied to the body, and we will not detail this point.
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3.3. A simple one-dimensional, linearised case

Let us now consider a reference frame (x1, x2, x3). We assume that the displacement vector has only one
non-vanishing components along the x1 axis, i.e. u(x1, t) = (u(x1, t), 0, 0). With this assumption, it is

easy to show that

Fs =

⎛
⎜⎜⎜⎝

(u′ + 1) 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ , G =

1

2

⎛
⎜⎜⎜⎝

[(u′ + 1)2 − 1] 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎠ .

where we clearly denote by an apex the partial differentiation with respect to the space variable x1.
Moreover, we also assume that the vectors of applied external bulk and surface forces are of the form

bext = (bext, 0, 0) and fext = (fext, 0, 0) respectively and we remark that in the considered
one-dimensional case the unit normal takes the simple form N = (1, 0, 0). It can be recovered that in the
introduced one-dimensional case the equation of motion and boundary condition given in Eqs. (10) and

(11) take the following form(
(λ+ 2μ)

2

[
(u′ + 1)

(
(u′ + 1)2 − 1

)])′
= −bext on C∗,

(12)

(λ+ 2μ)

2

[
(u′ + 1)

(
(u′ + 1)2 − 1

)]
= fext on ∂C∗,

[∣∣∣∣(λ + 2μ)

2

[
(u′ + 1)

(
(u′ + 1)2 − 1

)]∣∣∣∣
]
= 0 on Σ∗.

where, in virtue of the constitutive equations (2) for the Lamé parameters λ and μ, we explicitly note
that these parameters are not constant in space and time but depend on the Lagrangian densities of

natural bone and artificial bio-resorbable material.
These equations are then linearised around an undeformed equilibrium configuration thus simplifying

into(
(λ+ 2μ)

2
u′
)′

= −bext on C∗,

(13)

(λ+ 2μ)

2
u′ = fext on ∂C∗,

[∣∣∣∣ (λ+ 2μ)

2
u′
∣∣∣∣
]
= 0 on Σ∗,

where, with a slight abuse of notation, u indicates here the perturbation of displacement around the
equilibrium configuration. These one-dimensional, linearised equations will be used in the numerical

simulations which we propose in the following section.
As it is well known, these equations can be equivalently rewritten in terms of Young’s modulus E and

Poisson’s coefficient ν as

(E u′)′ = −Bext on C∗,
(14)

E u′ = F ext on ∂C∗, [|E u′|] = 0 on Σ∗,

To obtain these equations we consider that the Poisson’s coefficient is constant and we set
Bext = bext(1 + ν)(1− 2ν)/(1− ν) and F ext = fext(1 + ν)(1 − 2ν)/(1− ν).

We do not repeat here equations (7) as they involve internal variables (see e.g. [10], [11], [28]), i.e.
variables the evolution of which is governed by ODEs with respect to time, so that their 1D version has
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a form which is not simplified with respect to their 3D version. The evolution equations for apparent
Lagrangian mass density have a mathematical structure similar to the one studied in [24], [25], [26], [6].

One must remark that, unfortunately, the analysis which leads to a “bifurcation chart” of the type
found in figure 4 of [24] cannot be easily repeated in the present instance. Indeed, in our problem, the
evolution equations for internal variables depend on the stimulus, which is itself obtained by an integral
operator from the solution of the PDEs representing mechanical balance of force. Therefore, the study
of bifurcation in the present instance also must account for the possible variations of resorption and
synthesis parameters, which will be seen in the next sections to dramatically influence the final form

and structure of reconstructed bone. As a consequence, we are forced, to rely on the result of numerical
simulations in order to study how introduced constitutive parameters influence the final structure of

reconstructed bone.

3.4. Non-dimensional form of mechanical and biological equations

We now want to write all the equations in non-dimensional form. To do so, we start from mechanical
equations and we introduce the non-dimensional variables x̃ = x/L, ũ = u/u0, Ẽ = E/Eb, where L is a
characteristic length of the specimen, u0 is a characteristic displacement and Eb is a constant Young
modulus which we chose to be that of compact bone. With these notations, the dimensionless form of

equations (14) reads(
Ẽ ũ′

)′
= −BextL2

u0Eb
=: −B̃ext on C∗,

(15)

Ẽ ũ′ =
F extL

u0Eb
=: F̃ ext on ∂C∗,

[∣∣∣Ẽ ũ′
∣∣∣] = 0 on Σ∗,

where, with a slight abuse of notation, the apex now indicates the derivative with respect to the
non-dimensional variable x̃. In the sequel we will let the Young modulus of the mixture vary with

density according to E =
(
Eb (ρ

∗
b/ρmax)

β
+ Em (ρ∗m/ρmax)

β
)
, which is actually equivalent to equations

(2) when considering a constant Poisson’s ratio and when setting Cb = Cm = Db = Dm = β. Indeed, it
can be recognized that, in this case,

Eb = (λ2b + 2μ2b)(1 + ν)(1 − 2ν)/(1− ν) and Em = (λ2m + 2μ2m)(1 + ν)(1 − 2ν)/(1− ν)

. As a consequence, the corresponding dimensionless Young modulus thus takes the form

Ẽ =

((
ρ∗b

ρmax

)β

+ Ẽm

(
ρ∗m
ρmax

)β
)
, (16)

where Ẽm := Em/Eb.
Moreover, in the considered one-dimensional, linearised case the deformation energy given in Eq.(1)

simplifies into

U∗ =
1

2
(λ+ 2μ)(u′)2 =

1

2

(1− ν)E

(1 + ν)(1 − 2ν)
(u′)2,

or equivalently, in terms of the introduced dimensionless variables

U∗ = U0 Ẽ (ũ′)2, with U0 =
1

2

(1− ν)Eb

(1 + ν)(1 − 2ν)

(u0

L

)2
12



We now want to find a dimensionless form of the biological evolution equations (7). To do so, we first
introduce the dimensionless Lagrangian stimulus S̃∗ as

S̃∗ =
S∗

U0L3
=

( ∫
C̃∗

Ẽ (ũ′)2 d∗(X0, t) exp
(
−D̃

∥∥∥X̃− X̃0 +
u0

L

(
ũ(LX̃)− ũ(LX̃0)

)∥∥∥) dX̃0

)
− S̃∗

0 , (17)

where Eq. (6) has been used to get the second equality and where we introduced the dimensionless
quantities D̃ = DL, X̃ = X/L, X̃0 = X0/L, C̃

∗ = [0, 1]× [0, 1]× [0, 1], ũ = u/L and S̃∗
0 = S∗

0/(U0L
3).

Note that, since in linear elasticity the quantity u0/L is often very small, the third term inside the norm
can be neglected in most of practical applications.

Dividing equations (7) by ρmax, introducing the dimensionless time t̃ = t/t0 and considering the
constitutive assumptions (9), their dimensionless form reads

∂

∂t̃

(
ρ∗b

ρmax

)
= H(ϕ∗)Ãb(S̃

∗),
∂

∂t̃

(
ρ∗m
ρmax

)
= H(ϕ∗)Ãm(S̃∗). (18)

In these equations we set

H = k ϕ∗(1− ϕ∗), Ãb(S̃
∗) =

⎧⎨
⎩ s̃b S̃

∗ for S̃∗ > 0

r̃b S̃
∗ for S̃∗ < 0

, Ãm(S) =

⎧⎨
⎩ 0 for S̃∗ > 0

r̃m S̃∗ for S̃∗ < 0
, (19)

where

s̃b =
U0L

3t0
ρmax

sb, r̃b =
U0L

3t0
ρmax

rb, r̃m =
U0L

3t0
ρmax

, rm. (20)

Finally we choose, for the particular numerical simulations we present in this paper, the following
simple forms of the constitutive equations (3) and (4) for the Lagrangian fraction of sensor cells and for

the Lagrangian porosity respectively

d∗ = η
ρ∗b

ρmax
, ϕ∗ = 1− θ

(ρ∗b + ρ∗m)

ρmax
with, 0 < η ≤ 1, 0 < θ ≤ 1 (21)

4. Some numerical examples showing the potentialities of the presented model

In order to show that the simple model presented in this paper is actually able to describe different
possible mechanisms of bone remodelling we address the study of a simple 1-D problem which seems to
be the simplest possible presenting some of the required complex features of formulated model. In order
to simplify the study of the mechanical part of the problem, we consider a sample which behaves as a
rod (composed by two materials) with variable (with respect to time and space) axial rigidity and
porosity. However, time variations of rigidities and variations of loads occur in a time scale which is
much bigger than the transient characteristic time leading to macroscopic mechanical equilibrium.

Therefore inertia effects can be neglected in evolutionary problems considered here. The numerical code
used to calculate the sequence of configurations of the considered bar-bone includes a simple closed form
expression which links external mechanical applied loads to the corresponding equilibrium deformation
states, once the profile of space varying rigidity is given. In the present treatment only mechanical

boundary conditions are needed. Therefore the evolutionary problem which we study will simply involve
the equations for time variations of apparent mass densities of bone tissue and bio-material. In these
equations the previously listed constitutive equations, and the parameters appearing in them, will

appear, which establish the required link between mechanical and biological phenomena.
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The used numerical code was written in C Language and we implemented a discrete time step increment
algorithm. The flow chart which has been considered for formulating the numerical code used in the
following section can be reconstructed when considering that it is composed by the following steps:

(i) Calculate the variations of the values of ρ∗b/ρmax and ρ∗m/ρmax at time t by means of Eqs. (18).
N.B.: at first time step ( when we assume that the history of applied external loads starts to be
known) the values of ρ∗b/ρmax and ρ∗m/ρmax are assumed to be also known (e.g. piecewise constant
initial distribution of natural bone tissue and artificial material densities).

(ii) Given the time history of externally applied load, use equilibrium equations (15) (loads are assumed
to vary quasi-statically) to calculate the displacement at considered time.

(iii) For considered time, calculate fraction of sensor cells and porosity according to Eqs. and (21)
respectively.

(iv) Calculate the stimulus at considered time according to Eq. (17).

(v) Solve, for subsequent time step, the evolution equations (18) in order to get the value of the variation
of the two densities at this subsequent time.

(vi) Continue with step (ii).

A very delicate issue in the performed numerical simulations regards the choice of time step. Indeed the
integro-differential equations we are integrating are strongly non-linear. Therefore too large time step
may direct the calculated evolution towards configurations which actually are non-reachable in reality.
This issue may become a serious one when dealing with coupled PDE for mechanical equilibrium and
the equations for bone tissue and bio-resorbable material time evolution. In the 1-D case which we will
study in the next sections, however, a careful choice of time step depending on the values of constitutive

parameters used is simply resolving the problem.
We consider the case of a 1D rod sample of length L with initially completely separated bone tissue and
bio-material thus assuming that one part of the rod is initially occupied by pure bone tissue and the
remaining part is occupied by pure bio-material. The rod is clamped at x = 0 (u(0) = 0) and is loaded

by a dimensionless static load F̃ ext at x = L.
In the case of compact bone, characteristic values of Young modulus and Poisson’s coefficients are
Eb = 17GPa and ν = 0.3, so that, considering a characteristic displacement u0 = 10−4L, a unit

dimensionless force F̃ ext = 1 corresponds to a dimensional applied force fext = 2.3 106Pa. In other
words, if the cross section of the specimen is 1mm2 and the length is L = 10mm then one needs to
apply a force of 2.3N in order to get characteristic displacements of the order of u0 = 10−3mm.

We are interested into the phenomena occurring in the neighbourhood of the interface separating the
two considered zones (it has to be remarked that most likely some interesting boundary layer

phenomena may occur at this interface and that second gradient continua maybe of use in describing
them, but we will postpone these considerations to further investigations, see e.g. [5]).

Table 1
Values of the parameters used in numerical simulations

ρb/ρmax at t = 0 ρm/ρmax at t = 0 k θ s̃b r̃b r̃m

0.5 0.5 4 1 0.1 0.1 0.15

4.1. The effect of applied loads on the time evolution of healing process in surgically reconstructed bones
in presence of bio-material graft

The following pictures illustrates two different possible scenarios depending on the level of externally
applied forces. It is well known that loading affects dramatically the process of formation, healing and
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Table 2
Values of the parameters used in numerical simulations

B̃ext Ẽb Ẽm β η D̃ S̃∗
0

0 1 1 1.9 1 10 0.1

remodelling of bones. The biological system which naturally has been developed by evolution is capable
of an action of remodelling excited by mechanical loading which is often called functional adaptation.

Our aim is to determine under which conditions the surgical reconstruction with graft does not interfere
or at least does not impeach the action of natural functional adaptation. More precisely, we want to
determine in which conditions and to what extent the action of functional adaptation will lead to a

replacement of bio-adsorbable material with bone tissue or at least to the final constitution of a stable
composite.

It has to be explicitly remarked that the presence of a very small bio-material apparent mass density is
not forbidden when only “biological” processes are considered. Indeed when a small mass density for

bio-material is present, the bone tissue from the interface may always penetrate into the region occupied
by bio-material eventually reconstructing partially the rod bone. The problems related to void

formations in presence of small density of bio-material are of mechanical nature: a weak bio-material
graft is not able to sustain the applied mechanical loads!

Therefore a warning should be formulated at this point: in our model it is not included the description
of mechanical damage and crack formation. The material is always assumed to be elastic and in the
performed simulations even linear elastic. Further planned investigation will include the inclusion of

damage description and evolution in our model.
As already pointed out in Tab. 1, we consider a constant initial distribution of the densities of bones

and bio-material as shown in Fig. 1. In particular, we initially have only natural bone tissue on the left

Initial distribution of tissue and bio-
material
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0.4
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Figure 1. Initial distribution of densities of bone and artificial material

side (ρ∗b/ρmax = 0.5 and ρ∗m/ρmax = 0) and only artificial material on the right side ( (ρ∗b/ρmax = 0 and
ρ∗m/ρmax = 0.5) ). We remark that, due to the fact that we are using a two-solid macroscopic mixture
theory, at each point of the specimen (x axis) one needs to have both a material point of natural bone

tissue and of artificial material, eventually with different densities.
We start discussing the time evolution of mass densities distributions for low level of mechanical loading
shown in Fig.2. In order to correctly interpret all the following figures, it must be remarked that the
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black colour stands for zero (or very low) concentration of the considered constituent (natural bone
tissue or artificial material), the red colour stands for the natural bone tissue density and the blue color

stands for the bio-material density. The intensity of the color is proportional to the density of the
considered constituent, e.g. a more brilliant red means that the concentration of the natural bone tissue

is higher. Thin bars display separately the distributions of bone tissue (red) and bone-substitute
material (blue), while the thick bar reflects the sum of these distributions, so rendering the density

distribution for the composite bone-tissue/bone-substitute material. In the authors opinion, figures of
the type of Fig.2 are suggestive, but we also report the same result in Fig.3 in order to fit other stylistic

tastes.

Figure 2. Time evolution of bone tissue and artificial material mass density for a low value of the applied external forces
(F̃ ext = 1)

We can observe in this case that an insufficient loading leads to a rapid resorption of bio-material
everywhere, while bone tissue is resorbed in some regions and in others is formed. The formation of
bone tissue is not rapid enough to fill the region of bio-material which is being resorbed too quickly
(especially far from the interface with bone tissue) and the process results into an increasing void

formation. These phenomena can be explained if one thinks that low external loads are associated to
low value of the corresponding deformation energy and so to a low stimulus which initially stems from
the region occupied by natural bone tissue. The precursor cells which are located far from the interface
do not receive any signal and interpret this datum as very low deformation so transforming themselves

in osteoclasts which start a quick resorption of the bio-material.
The second considered case is illustrated in Fig. 4. The attained equilibrium configuration is also

reported in Fig. 5
The described process has different features. As before, no (or very low) signal can reach the regions of

bio-material far from the interface in the earlier times so that resorption starts occurring in these
regions. The resorption process, however, increases the porosity so that the stimulus (which is much

higher than the stimulus in the previous case due to a bigger value of the deformation energy measured
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Final distribution of tissue and bio-
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Figure 3. Equilibrium configuration of bone tissue and artificial material mass density for a low value of the applied external
forces (F̃ ext = 1)

Figure 4. Time evolution of bone tissue and artificial material mass density for higher values of the applied external forces
(F̃ ext = 1.7)

by sensor cells located in the bone tissue) can reach the precursor cells located in the bio-material.
These precursor cells thus become osteoblasts and start synthesising new bone tissue. At the end of the
process, we can observe that the new bone tissue has almost completely replaced the bio-material far

from the interface, while an inclusion of bio-material is left closer to the interface. This simulation hence
predicts the presence of bio-material inclusions surrounded by bone tissues in the equilibrium

configuration attained by grafted bones. We can explain the residual presence of bio-material by
remarking that the porosity is not, in these inclusions, large enough to allow for the action of both kind
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Figure 5. Equilibrium configuration of bone tissue and artificial material mass density for higher values of the applied
external forces (F̃ ext = 1.7)

of actor cells.
Such kind of analysis may also enable a future optimization of both bio-material and mechanical
conditions necessary to assure the absence of inclusions or, more generally, the final production of

efficient bone tissues.

4.2. The effect of applied load on the final distribution of bone tissue and bio-material in rod-bones

The set of numerical simulations which we show in this section were aimed to consider the effect of
external applied loads on the final result of the remodelling process producing the reconstructed bone

after surgery. In the following figure we show the final result of remodelling process with varying
externally applied loads. The simulations show that for different values of applied external mechanical

load, at least two different ranges of values are possible.
For lower values of external loads the resorption phenomenon is prevailing in both considered regions.
However in the region previously occupied by the bio-material there are no sensor cells so the only

signal possible is the one originating from the sensor cells located in the bone tissue. This results into a
lower stimulus and hence in a faster resorption in the region occupied by bio-material. Therefore,
because of the absence of a sufficient number of actor cells being activated in this region, a void

formation occurs. As the signal from the bone tissue towards the artificial region is too low, then the
bio-material is finally bio-resorbed. Also in the bone tissue region the net result of the activity of actor

cells produce resorption and also this tissue is finally reduced in mass.
For higher values of externally applied loads a different sequence of events arises. The signal from bone
tissue is much stronger and it penetrates into the region occupied by bio-material. This results into the
following different steps in bone remodelling. First the bio-material far from the bone tissue starts to be
resorbed, Therefore porosity is available for actors cells. Simultaneously close to the interface (and in
the region initially occupied by bio-material) bone formation occurs resulting into the formation of a

composite. These phenomena enables the increase of stimulus in the far region where actor cells
resorbed the bio-material. In the so formed porosity, precursor cells become osteoblasts and new bone
tissue appears and finally becomes dominant. Unfortunately when this process comes to an equilibrium
configuration, porosity in the central part of the bar-bone reaches the values for which no actor cells can
access the composite material and all biological activities stop. This is due to the fact that no resorption
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Figure 6. Equilibrium configurations for different values of the applied external forces

of bio-material is any more possible.
The presented numerical simulations show how it may happen that in a remodelling process some
bio-material may be residual. These results, although only qualitative in nature, may result into an

interesting indication for practical surgery: the reconstructed bone must be loaded, but the load cannot
be too large, as otherwise the residual amount of bio-material maybe too large, while in presence of too

low loads large void formation occurs in the regions initially occupied by bio-material.

5. Conclusions

In this paper we formulate a mathematical model suitable for describing bone tissue synthesis and
resorption in presence of a bio-resorbable material, to be used in bone reconstruction. Porosity of bone
tissue and bio-material mixture is accounted for, as it plays a relevant role in the biological activity of
actor cells which results into the resorption of both bone tissue and bio-material and into bone tissue

formation.
Different resorption and synthesis rates are considered possible in the presented model, together with
different biological signal propagation distances and stimulus excitation. In order to investigate and
explain some of the possible mechanisms of interaction of bone tissue and bio-material a simple

one-dimensional case has been formulated and studied. To see how the different external loads influence
the process of interaction between bio-material and bone tissue, in some numerical examples, we

considered these loads as applied to bar-type bones, the dimensions of which are few millimeters. The
performed numerical tests are so promising that we believe they must be used as a starting point for
more general further investigations. In particular, it is shown that, in the framework of the presented

model, one can forecast in which ranges of applied external loads, characteristic signal distance,
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synthesis and resorption rates and other bio-mechanical parameters, void formation occurs in the bone
tissue/bio-material composite remodelling so facilitating the gradual substitution of the bio-material

with natural tissue.
Moreover, it is seen in which ranges of the aforementioned parameters residual regions of bio-materials
remain in remodelled bone and when one can hope to get a final reconstructed bone constituted by pure

bone tissue, i.e. when all bio-material is completely replaced by bone tissue.
Many important problems are left open for further investigations in the theoretical development of the
model, which seems promising for future researches. One of the most intriguing from the mathematical
point of view concerns the description of bone tissue and bio-material micro-structure at different length

scales by means of the introduction of higher gradient continuum models.
However, the most urgent next investigations should concern i) the effects of the interplay of the
different introduced parameters when their values are changed and the explanation of the different

bio-mechanical phenomena described ii) the possibility of extending the proposed model by including
the fluid flow phenomena occurring in the interconnected pores present in both bone tissue and

bio-material. Indeed, evolution equations and natural boundary conditions which are able to describe
fluid flow in porous media are already available in the literature (see e.g [4]) and can be suitably

adapted to the present model.
The introduction of a second or third dimension in the numerical examples may lead to new interesting
observations as more complicated geometry would surely include more complex bio-mechanical synthesis

and resorption mechanisms and scenarios.
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