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Abstract

We revisit a set of symplectic variables introduced by Andre Deprit in [5],
which allows for a complete symplectic reduction in rotation invariant Hamil-
tonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the
nodes. In particular, we introduce an action–angle version of Deprit’s vari-
ables, connected to the Delaunay variables, and give a new hierarchical proof
of the symplectic character of Deprit’s variables.
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1 Deprit’s reduction of the nodes

In 1983 Andre Deprit [5] introduced a new set of symplectic variables particularly
suited to describe the phase space of Hamiltonian systems having rotational sym-
metries. The construction of Deprit may be viewed as a full extension to arbitrary
numbers of degrees of freedom of Jacobi’s reduction of the nodes for the three–body
problem [6]. But in contrast with Jacobi’s celebrated result, Deprit’s variables seem
to be not well known1 and often believed to be unpractical (as mentioned by De-
prit himself [5, p. 194] or, e.g., in2 [7]). On the contrary, Deprit’s variable may be
very useful and can be effectively used (after a suitable “Poincaré regularization”)
to compute, for example, Birkhoff normal forms for the planetary (1 + n)–body
problem or to check KAM nondegeneracies; compare [4], [3].

Our presentation differs from that of Deprit in two respects. First we introduce
action–angle variables (which are related to Delaunay’s action–angle variables),
while Deprit uses polar symplectic variables (compare (7) below); similarly to De-
launay’s variables, our action–angle variables are particularly suited to describe
planetary models. Secondly, we provide a different proof (presented in § 2) of the
symplectic character of the variables: such a proof is inductive on the number of
dimensions and makes more transparent the hierarchical nature of Deprit’s vari-
ables.

It has to be remarked that the action–angle version of Deprit’s variables (as in-
troduced below) may be defined only for osculating Keplerian orbits which lie on
ellipses; on the other hand, Deprit is able to define his original variables on an open

1At the present date (September 2010) the MathSciNet database reports only one citation of
Deprit’s paper.

2In [7] a different formal procedure for the reduction of the angular momentum is worked
out: After restricting to the vertical angular momentum manifold, the authors construct a set of
symplectic variables perturbatively, through Taylor expansion, restoring the standard symplectic
form at each step; the convergence of the formal power series thus obtained is not discussed.
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set of full measure of the global phase space. This is a minor technical point: using
“energy–time” symplectic variables (i.e., giving up normalizations of the coordi-
nates) one can easily generalize our symplectic construction to an open set of full
measure of the global phase space; see Appendix A.

We conclude the paper (Appendix B) by comparing, in the n = 2 case, with
Jacobi’s reduction: we show how, for n = 2, Deprit’s variables may be viewed as an
“unfolding” of Jacobi’s reduction, making more precise the statement that Deprit’s
variable extend to arbitrary dimensions Jacobi’s reduction of the nodes.

More comments and remarks are made at the end of this section.

To define Deprit’s variables on the phase space P6n (specified below), fix 2n positive
“mass parameters” Mi, m̄i and consider the two–body Hamiltonians

hi(y
(i), x(i)) :=

|y(i)|2

2Mi

− Mim̄i

|x(i)|
, (1 ≤ i ≤ n) , (1)

where (y(i), x(i)) are Cartesian variables in R3×R3
∗ := R3×(R3\{0}), endowed with

the standard symplectic form
∑n

i=1 dy
(i)∧dx(i). Assume that the Hamiltonian flow

φt
hi

(y(i), x(i)) evolves on Keplerian conics Ei with eccentricity ei 6= 0.

In our presentation we will focus on the case hi < 0 for all i (corresponding to
osculating ellipses), but the formulae can be easily extended to any energy, as
explained in Appendix A below.

Let ai, Pi denote, respectively, the semimajor axis and the perihelion of the ith

ellipse Ei and let `i be mean anomaly of x(i) on Ei.

Define, now, (n+ 1) nodes ν1, ν2, · · · , νn+1 as follows.

Put

C(i) := x(i) × y(i) , S(i) :=
i∑

j=1

C(j) . (2)

In particular, C := S(n) =
∑

1≤j≤n C(j) is the total angular momentum. Assuming

that the couples of vectors (S(i+1),C(i+1)), (C, k(3)) are independent, put
νi+1 := S(i+1) × C(i+1) , 1 ≤ i ≤ n− 1
ν1 := ν2

νn+1 := k(3) × C =: ν̄ ,
(3)

(k(1), k(2), k(3)) being the standard orthonormal triple in R3.

Notice that ν̄ is the node of the invariable plane (i.e. , of the plane orthogonal to
C) with the fixed (k(1), k(2))–plane; ν2, · · · , νn are the nodes of the orbital planes
(i.e. , orthogonal to the C(i+1)’s) with those orthogonal to the S(i+1)’s. For later
convenience, the node of the orbital plane of C(1) (with respect to S(2)) is chosen
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Pi

νi
ν̄i

C(i)

S(i)

k(3)

gi γi

Pi := perihelion

νi := S(i) × C(i)

ν̄i := k(3) × C(i)

Figure 1: The angle γi

here3 to be in the same direction of ν2, i.e. , it is chosen to be ν1 := −S(2) ×C(1) =
−S(2) × (S(2) − C(2)) = ν2.

For u, v lying in the plane orthogonal to a vector w, denote by αw(u, v) the positively
oriented angle (mod 2π) between u and v (orientation follows the “right–hand
rule”).

Deprit’s action–angle variables (Λ,Γ,Ψ, `, γ, ψ) may be, now, defined as follows
(compare also Figures 1, 2 and 3).

{
Λi := Mi

√
m̄iai

`i := mean anomaly of x(i) on Ei{
Γi := |C(i)| = Λi

√
1− e2i

γi := αC(i)(νi, Pi)

(4)

Ψi :=

{
|S(i+1)| 1 ≤ i ≤ n− 1
C3 := C · k(3) i = n

ψi :=

{
αS(i+1)(νi+2, νi+1) 1 ≤ i ≤ n− 1
αk(3)(k(1), ν̄) i = n

Notice that Deprit variables are defined on an open set of full measure P6n
∗ of

the Cartesian phase space P6n := R3n × R3n
∗ , namely, on the set where C(i) 6= 0,

3In [5] the definition of the node ν1 has the opposite sign.
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νi+1

C(i+1)

C(i+2)

νi+2

S(i+1)

ψi

πS(i+1)

νi := S(i) × C(i)

Figure 2: The angle ψi for 1 ≤ i ≤ n− 2
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ν̄ := k(3) × C

νn := C × C(n)

Figure 3: The angles ψn−1 =: g and ψn =: ζ
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ei ∈ (0, 1) and the above nodes are well defined. In fact is it not difficult (see [4,
Appendix A.1]) to write down inverse formulae showing that the map

φ(n)
∗ : (y, x) ∈ P6n

∗ → (Λ,Γ,Ψ, `, γ, ψ) ∈ R3n × T3n (5)

is a real–analytic diffeomorphism from P6n
∗ onto its image, namely, the set where4

0 < Γi < Λi , 1 ≤ i ≤ n ,

−Ψn−1 < Ψn < Ψn−1 ,

|Ψi−1 − Γi+1| < Ψi < Ψi−1 + Γi+1 , 1 ≤ i ≤ n− 1 ,

where Ψ0 := Γ1 is introduced just here.

The main point is the following.

Theorem (Λ, Γ, Ψ, `, γ, ψ) are real–analytic symplectic coordinates on P6n
∗ .

Before giving the proof (in the next section), we make a few remarks.

• The variables Ψn−1, Ψn and ψn (usually denoted also, respectively, G, C3

and ζ) are integrals for any rotation invariant Hamiltonian, i.e., for Hamil-
tonians Poisson–commuting with the three components of the total angular
momentum C. Indeed, assigning G, C3 and ζ corresponds to assign the three
components of the total angular momentum C. This fact allows for partial and
total symplectic reductions of the phase space of rotation–invariant Hamil-
tonian systems (compare also next item).
It has to be noted, however, that these action–angle variables, similarly to
Delaunay’s variables, are particularly suited for the planetary (1 + n) body
problem, i.e, a system of (1+n) points of masses, m0, µm1,..., µmn, µ being,
a small number, interacting only through gravity. In such a case if the mass
parameter are chosen as 

Mi :=
m0mi

m0 + µmi

m̄i := m0 + µmi

then the limit µ = 0 represents an integrable system ruled by the familiar
Keplerian Hamiltonian

−
n∑

i=1

M3
i m̄

2
i

2Λ2
i

describing n decoupled two–body systems formed by the “Sun” (i = 0) and
the ith planet with rescaled mass mi.

4Recall that: Γi = |C(i)| = Λi

√
1− e2i ; Ψn−1 = |C|; Ψn := C3 = C · k(3); Ψi = |S(i+1)| =

|S(i) + C(i+1)|.
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• A special rôle is played by the four pairwise conjugated variables
Ψn−1 = |C| =: G

ψn−1 = αC(ν̄, νn) =: g


Ψn = C · k(3) =: C3

ψn = αk(3)(k(1), ν̄) =: ζ
(6)

Since G, C3 and ζ are functions of C , they commute with rotational–invariant
Hamiltonians. Hence, such Hamiltonians would not depend upon the variables
g (conjugated to the integral G = |C|) nor the pairwise conjugated integrals
C3 and ζ (but would, in general, depend on G).
The cyclic angles g and ζ are directly related to the rotations of the system.
In fact,

ζ → ζ + α , or g → g + α ,

correspond to rotations of all the y(i)’s and the x(i)’s by an angle α around,
respectively, the k(3)–axis or the C–axis. Notice that, differently from ζ, whose
motion is trivial (indeed, constant), g is not an integral and it describes the
rotation of the node νn around the C–axis. However, its motion is known by
a trivial quadrature when the remaining motion is integrated.
The fact of having two ignorable angles is what we call reduction.
In general, such reduction lowers the number of degrees of freedom from 3n
to 3n− 2. For three bodies, as well known, the degrees of freedom are 4.
We stress that such reduction is symplectic, meaning that it is obtained by a
(“full dimensional”) symplectic transformation of the phase space: this fact
is deeper than the usual Jacobi nodes reduction in the three body problem,
obtained through restriction to the vertical angular momentum manifold (see
below). More precisely, such symplectic reduction “unfolds” the Jacobi reduc-
tion, as will be explained in details in the appendix. Indeed, for n = 2, the
variables (4) reduce to two quadruples of (Λi,Γi, `i, γi)’s and to the four vari-
ables in (6) where C = C(1) + C(2), ν̄ = k(3) ×C, ν2 = C×C(2) = C(1) ×C(2).
Since the variables C3, ζ, g, are cyclic, they can be regarded as fixed once
and for all in the Hamiltonian. Choosing the values (G, 0, 0) physically cor-
responds to refer the system to a rotating frame having the k(3)–axis in the
direction of C, the k(1)–axis in the direction of the rotating node ν2 and to
consider the motion of the remaining 8 variables (Λi,Γi, `i, γi)’s (with G re-
garded as a parameter). The reduced Hamilton equations correspond to the
classical Jacobi’s equations.

• The fact that C3 (which is a symplectic action) also disappears in rotational–
invariant Hamiltonians is of deeper nature and is related to having three non
commuting integrals, or, equivalently, to the fact that the group of rotations in
R3 is not Abelian. We remark, at this respect, that having a cyclic conjugate
couple (C3, ζ) into the Hamiltonian has strong consequences on the symplectic
structure of the phase space. It is at the basis of a “rotational invariance

7



proper degeneracy” which, e.g., prevents direct applications of KAM theories
to the N–body problem in the unreduced setting.

• The Theorem is due to A. Deprit even though his setting is slightly different
to that described above. More precisely, the original Deprit’s reduction goes
as follows.
On the instantaneous planes of (y(i), x(i)), consider the (planar) polar coordi-
nates  Ri :=

y(i) · x(i)

ri

ri := |x(i)|


Φi := |C(i)| = Γi

ϕi := αC(i)(νi, x
(i))

(7)

Notice that the anomaly ϕi is referred to the node νi in (3) as polar axis.

Deprit, then, introduces the variables

(R,Φ,Ψ, r, ϕ, ψ) , (8)

with the (Ψ, ψ)’s as in (4). He proved that such variables are homogeneous–
symplectic with respect to the Cartesian variables (y, x), namely, that the
1–form y · dx is preserved by the transformation (R,Φ,Ψ, r, ϕ, ψ) → (y, x).
Now, since the map

(Ri,Φi, ri, ϕi) → (Λi,Γi, `i, γi) , (9)

is symplectic5, the symplecticity of the variables (4) is equivalent to that of
the variables (8).
Notice, however, that the map (Λ,Γ,Ψ, `, γ, ψ) → (y, x) is not homogeneous,
because it involves the (“complicated”) Kepler map (compare its definition
in § 2.1).

• The proof presented in §2 below of Deprit’s Theorem will be based on two
ingredients. The first is the analysis of the three–body case, which reduces
to considering a suitable 8–dimensional map φ̂(2). The second ingredient is a
hierarchical (inductive) approach based on a suitable iteration of φ̂(2), which
allows to obtain the variables (4) through a natural inductive construction.
Quite informally (the details are in § 2.2 below), the mechanism is the follow-
ing. At each step (i.e., when the nth planet is added), the new set of variables
is obtained using the formulae relatively to two planets: a fictitious planet
of angular momentum equal to S(n−1) (the sum of the angular momenta of
the previous (n − 1) planets: compare (2)) and the new planet, of angular
momentum C(n). The first new case (after the three–body’s one) is for n = 3
(four–body case) and the definition of the new angle variable ψ1 appears quite
naturally as if it were the “perihelion argument of the fictitious planet”.

5The proof is classical but beware that the node of the anomaly ϕi is νi, while in the classical
case one would take the fixed node ν̄i of the orbital plane with the coordinate plane (k(1), k(2)).
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An analogous inductive construction could be carried out also for the Deprit’s
set (R, Φ, Ψ, r, ϕ, ψ): compare the Remark at the end of § 2.2.

• In [5], Deprit declares that his variables realize a generalization of a set of
variables studied by Radau in a paper of 1868 [8], leaving the reader with
the feeling that the “full” symplectic reduction in the case n = 2 was already
known since then. But it is not quite so and the generalization Deprit speaks
about is only related to the Hamilton equations. Let us briefly discuss this
and other historical matters.

– The original spirit of reduction was that of lowering the order of the
differential equations governing the motion of two planets around the
Sun. This was achieved by Jacobi [6] in 1842, who succeeded by writing
a set differential equations of eighth order6. As well known, Jacobi’s
main idea consisted in taking the invariable plane as horizontal plane,
so to obtain the opposition relation between the nodes ν̄i’s of the orbital
planes with such plane

ν̄1 + ν̄2 ≡ 0 . (10)

Such relation causes the lowering of order through the disappearance of
nodes from the motion equations.

– In 1868, Radau [8] made such procedure canonical, rewriting the mo-
tion equations in Hamiltonian form, in terms of eight canonical variables
(the Ri, Φi, ri, ϕi above, with i = 1, 2). More precisely, Radau treats
the Euclidean length of the angular momentum G = |C| as an external
parameter and shows that the node reduction can be performed “before
taking derivatives” obtaining an “effective reduced” Hamiltonian gov-
erning the three–body motion. Radau himself attributes the procedure
to Jacobi7. As far as we can say, the original contribution of Radau to the
question of the reduction of order in the paper [8] is seemingly related
to a different reduction: The construction of canonical variables on the
plane of the three bodies, together with a (Jacobi–like) reduction of the
node of such plane with the invariable plane. Such different procedure
was later extended to n ≥ 2 by Bennett [1].

– For a long time no one succeeded in extending the Jacobi–Radau reduc-
tion technique to more than three bodies. In fact the first non–trivial
extension of Jacobi–Radau’s method to the four–body case appeared
more than a century later, in 1982, and it is due to Françoise Boigey
[2]. She introduces a symplectic transformation into the phase space,
which realizes a reduction by one degree of freedom using C3 as an ac-
tion variables (so as to obtain an ignorable coordinate, corresponding

6Jacobi wrote a system of seven differential equations, six of them of first order and one of
second order.

7Quite mysteriously, Whittaker [9] attributes it instead to Radau.
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to the anomaly of ν̄3). Next, she introduces a conjugate couple (P2, Q2)
of symplectic variables so that the vertical angular momentum manifold
has equation P2 = 0 = Q2. In other words, Boigey’ couple (P2, Q2), dif-
ferently from Deprit’s (C3, ζ), is not cyclic. Rather, the origin of (P2, Q2)
is an equilibrium for it (corresponding to vertical angular momentum).
This is enough to write the motion equations of the four–body prob-
lem as an Hamiltonian system of 7 degrees of freedom. Boigey’s basic
tools are essentially two: the first, reminiscent of Jacobi’s reduction, is
the use of two invariant relations coming from the triangular relation
ν̄1 + ν̄2 + ν̄3 ≡ 0 which generalizes (10), in order to construct the couple
(P2, Q2). The second remarkable ingredient (later used by Deprit) is the
use of the action variable Ψ1 = |C(1) + C(2)|. Boigey also proves that
such variable has also some uniqueness features. Finally, to construct its
conjugate angle, Boigey introduces a “pseudonode” N which plays the
rôle of Deprit’s ν3.

– One year later, in 1983, Andre Deprit gave his beautiful and complete
picture in the paper [5], which we are revisiting.

2 Proofs

In this section we prove Deprit’s Theorem by showing that8

Λ · d`+ Γ · dγ + Ψ · dψ = y · dx+ dχ (11)

where χ is a real analytic function on9 P6n
∗ .

Our argument makes explicit use of comparison with Delaunay’s variables, which
we now recall. Denote, for 1 ≤ i ≤ n, by

ν̄i := k(3) × C(i) (12)

the “Delaunay nodes” and assume that they do not vanish. Then, the Delaunay
variables are defined as (Λ, Γ, Θ, `, g, θ), where Λ, Γ, ` are as in (4), while

Θi := C(i) · k(3) , θi := αk(3)(k(1), ν̄i) , gi := αC(i)(ν̄i, Pi) . (13)

In particular, the variables Γi, Θi and θi uniquely define the angular momenta C(i)

through the formulae

C(i)(Γi,Θi, θi) =


√

Γ2
i −Θ2

i sin θi

−
√

Γ2
i −Θ2

i cos θi

Θi

 (14)

8As usual, Λ·d`+Γ·dγ+Ψ·dψ :=
∑

1≤i≤n(Λid`i+Γidγi+Ψidψi) and y·dx :=
∑

1≤i≤n y
(i)·dx(i).

9Recall the definition of the set P6n
∗ before Eq.n (5).
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2.1 Case n = 2 (three–body case)

By Eq.s (14) one can express the total angular momentum C = C(1) +C(2) and the
nodes ν1 = ν2, ν̄, ν̄1, ν̄2 as functions of Γ, Θ, θ. This , in turn, allows to express
the four variables G, C3, ζ, g in (6) in terms of Γ, Θ, θ. The Deprit perihelia are
instead shifted with respect to Delaunay’s:

γi = αC(i)(νi, Pi) = αC(i)(ν̄i, Pi) + αC(i)(νi, ν̄i) = gi + αC(i)(νi, ν̄i) . (15)

The core of reduction relies upon the eight–dimensional map

(Γ,Θ, g, θ) → (Γ,Ψ, γ, ψ) . (16)

Notice that such map is in turn the symplectic lift of the family of 4–dimensional
maps (parametrized by Γ) (Θ, θ) → (Ψ, ψ) which act as the identity on the Γ’s
variables.

As said before, to avoid overflow of (elementary) computations based on the gen-
erating function of the map (16), we prove the symplecticity of (16) indirectly, i.e. ,
as Deprit, we prefer to use Cartesian variables, namely, we check the symplecticity
of the map φ

(2)
∗ in (5). To do this, we shall use the explicit expression of φ

(2)
∗ , given

in [4], which now we recall, after having fixed some notations.

• We denote by R1(i), R3(θ) the following rotations

R1(i) =

 1 0 0
0 cos i − sin i
0 sin i cos i

 , R3(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (17)

• We let y
(i)
pl := (y

(i)
pl , 0) and x

(i)
pl := (x

(i)
pl , 0), where

(y
(i)
pl , x

(i)
pl ) =

(
y

(i)
pl (Λi,Γi, `i, γi), x

(i)
pl (Λi,Γi, `i, γi)

)
is the planar Kepler–map, i.e. : on the Keplerian ellipse with perihelion argu-
ment γi, eccentricity ei and semimajor axis ai as in (4), x

(i)
pl = (x

(i)
1 , x

(i)
2 ) ∈ R2

is the point of mean anomaly `i;

y
(i)
pl = (y

(i)
1 , y

(i)
2 ) := βi∂`i

x
(i)
pl := Mi

√
m̄i/a3

i ∂`i
x

(i)
pl

its conjugate momentum. Indeed, it is well known that

y
(i)
1 · dx(i)

1 + y
(i)
2 · dx(i)

2 = Λid`i + Γidγi + dχi (18)

for some real–analytic function χi.

• The variables (Ψ, ψ) in (4) will be denoted with the names in (6):

Ψ1 = G , Ψ2 = C3 , ψ1 = g , ψ2 = ζ .

11



Claim 1 For n=2, the map

φ−1
∗ : (Λ,Γ,Ψ, `, γ, ψ) → (y, x)

has the following analytical expression:

y(i) = Ri y
(i)
pl , x(i) = Ri x

(i)
pl , i = 1, 2 , (19)

where Ri ∈ SO(3) are the unitary matrices depending upon Γi, G, C3, g and ζ
given by

R1 = R3(ζ)R1(i
∗
2)R3(g)R1(−i∗1) , R2 = R3(ζ)R1(i

∗
2)R3(g)R1(i2), (20)

with i∗1, i
∗
2, i2 ∈ (0, π) defined by

cos i∗1 =
G2 + Γ2

1 − Γ2
2

2GΓ1

, cos i∗2 =
C3

G
, cos i2 =

G2 + Γ2
2 − Γ2

1

2GΓ2

. (21)

Proof Let F= (k(1), k(2), k(3)) denote the prefixed orthonormal basis with respect
to which y(i), x(i) split, respectively, as

y(i) =
3∑

j=1

y
(i)
j k(j) , x(i) =

3∑
j=1

x
(i)
j k

(j) .

Consider the three following orthonormal bases. The “invariant basis” F∗ formed
by the triple (k

(1)
∗ , k

(2)
∗ , k

(3)
∗ ) with k

(1)
∗ in the direction of the node ν̄ and k

(3)
∗ in

the direction of the total angular momentum C=C(1)+C(2) and the “orbital bases”
F1 = (k

(1)
1 , k

(2)
1 , k

(3)
1 ) and F2 = (k

(1)
2 , k

(2)
2 , k

(3)
2 ), with k

(1)
i in the direction of ν1 = ν2

and k
(3)
i in the direction of C(i). Here, the nodes ν1, ν2 and ν̄ are as in (3) (with

n = 2). Let us consider similar splittings y
(j)
∗ , y

(j)
pl and x

(j)
∗ , x

(j)
pl of y(j), x(j) with

respect to F∗ and Fj. Notice that the expression of y
(j)
pl , x

(j)
pl in terms of Λj, Γj,

`j and γj is just the one claimed at the beginning of this section, as it follows
from the definitions of these variables. Furthermore, from the definition of ν̄ and
ζ, there follows that z(j) = R3(ζ)R1(i

∗
2)z

(j)
∗ , where z denotes either y or x, and i∗2

is the (convex) angle between k(3) and C. Similarly, from the definition of ν1 = ν2

and g there easily follows that z
(1)
∗ = R3(g)R1(−i∗1)z

(1)
pl and z

(2)
∗ = R3(g)R1(i2)z

(2)
pl ,

where i∗1, i2 are the angles of C(1) and C and of C(2) and C. Considering the triangle
spanned by C(1), C(2) and C and the definitions of G, C3, Γ1 and Γ2, one finds the
expressions of i∗1, i

∗
2 and i2 as in (21). The claim then follows.

To check (11), we shall use the following simple fact

Claim 2 Let

x = R3(θ)R1(i)x̄ , y = R3(θ)R1(i)ȳ , C := x× y , C̄ := x̄× ȳ ,

12



with x, x̄, y, ȳ ∈ R3 .Then,

y · dx = C · k(3)dθ + C̄ · k(1)di+ ȳ · dx̄ .

Proof Since the Rk’s are unitary matrices, denoting (·)′ the derivative with respect
to θ or i and by (·)T matrix transposition, we find

y · dx = y ·
(
R′

3R1x̄ dθ +R3R′
1x̄ di+R3R1 dx̄

)
= y · R′

3RT
3 x dθ + ȳ · RT

1R′
1x̄ di+ ȳ · dx̄ ,

and observing that

R′
3RT

3 =

0 −1 0
1 0 0
0 0 0

 RT
1R′

1 =

0 0 0
0 0 −1
0 1 0


the claim follows.

We are now ready to check (11). Notice the following expressions for the angular
momenta, easily implied by (19) and well known relations on the planar Kepler
map

C(i) = Ri(x
(i)
pl × y

(i)
pl ) = ΓiRik

(3) . (22)

From such expressions, the following formula for the total angular momentum fol-
lows

C = C(1) + C(2) = Γ1R1k
(3) + Γ2R2k

(3)

= R3(ζ)R1(i
∗
2)R3(g)

(
Γ1R1(−i∗1) + Γ2R1(i2)

)
k(3)

= GR3(ζ)R1(i
∗
2)k

(3) (23)

having used R3(g)
(
Γ1R1(−i∗1) + Γ2R1(i2)

)
k(3) = R3(g)Gk

(3) = Gk(3), as it easily

follows from (21).

Let
x̄(1) := R3(g)R1(−i∗1)x

(1)
pl , ȳ(1) := R3(g)R1(−i∗1)y

(1)
pl

so as to write (compare (19) and (20) )

x(1) = R3(ζ)R1(i
∗
2)x̄

(1), y(1) = R3(ζ)R1(i
∗
2)ȳ

(1) .

Put
C̄(1) := x̄(1) × ȳ(1) , C

(1)
pl := x

(1)
pl × y

(1)
pl .

13



Using Claim 2 twice, one easily finds

y(1) · dx(1) = C(1) · k(3)dζ + C̄(1) · k(1)di∗2 + ȳ(1) · dx̄(1)

= C(1) · k(3)dζ + C̄(1) · k(1)di∗2 + C̄(1) · k(3)dg + C
(1)
pl · k

(1)d(−i∗1)

+y
(1)
pl · dx

(1)
pl

= C(1) · k(3)dζ + C(1) · e(1)di∗2 + C(1) · e(3)dg + y
(1)
pl · dx

(1)
pl (24)

We have used C
(1)
pl ·k(1) = Γ1k

(3) ·k(1) = 0, C(1) = R3(ζ)R1(i
∗
2)C̄

(1) and we have let

e(i) := R3(ζ)R1(i
∗
2)k

(i) . (25)

With a similar procedure, one finds

y(2) · dx(2) = C(2) · k(3) dζ + C(2) · e(1) di∗2 + C(2) · e(3) dg + y
(2)
pl · dx

(2)
pl . (26)

The claim (11) now follows taking the sum of (24) and (26), using (18) and recog-
nizing that 

k(3) · (C(1) + C(2)) = k(3) · C = C3

e(1) · (C(1) + C(2)) = e(1) · C = 0
e(3) · (C(1) + C(2)) = e(3) · C = G

(the first equality is just the definition of C3; for the second and the third equality,
use (23) and (25)), with χ = χ1 + χ2.

2.2 Induction (n ≥ 2)

In this section we complete the induction making an explicit use of the Delaunay
variables (Λ,Γ,Θ, `, g, θ) (compare the definition at the beginning of §2.1). We
recall that the map

(Λ,Γ,Θ, `, g, θ) → (Λ,Γ,Ψ, `, γ, ψ)

is “product map”, as the (4n)–dimensional map

φ̂(n) : (Γ,Θ, g, θ) → (Γ,Ψ, γ, ψ)

is independent of10 (Λ, `). Therefore, it is enough to prove that φ̂(n) is symplectic,
provided φ̂(n−1) is.

The idea of the proof is the following. Assume that φ̂(n−1) is symplectic and consider
the Delaunay coordinates (Γ,Θ, g, θ) at rank n. Split such coordinates as

Γ = (Γ̃,Γn) , Θ = (Θ̃,Θn), , g = (g̃, gn) , θ = (θ̃, θn) (27)

10This follows from the explicit expression of φ̂(n) in (28) below. By (14), the angular momenta
C(i) (and hence also their sums S(i) and the nodes νi, ν̄i) depend only on Γ, Θ and θ.

14



where Γ̃, Θ̃, g̃ and θ̃ denote the first (n − 1) components of Γ, Θ, g, θ. With
the set (Γ̃, Θ̃, g̃, θ̃), using φ̂(n−1), construct a set of Deprit variables (Γ̃, Ψ̃, γ̃, ψ̃) of
dimension 4(n− 1) and leave the variables (Γn,Θn, gn, θn) unvaried. In particular,
the variables Ψ̃n−2 and Ψ̃n−1 will be related to the angular momentum S(n−1) of
(n− 1) particles by

Ψ̃n−2 = |S(n−1)| , Ψ̃n−1 = S(n−1) · k(3) ;

the angle ψ̃n−1 will correspond to the longitude of the node of S(n−1) with the
(k(1), k(2))–plane11. Namely, Ψ̃n−2, Ψ̃n−1 and ψ̃n−1 can be regarded as three of the
Delaunay coordinates of a fictitious body whose perihelion argument is ψ̃n−2 (the
angle conjugated to Ψ̃n−2). The idea is now to use the formulae (16) of the three–
body case, with (Γ1,Θ1, g1, θ1) and (Γ2,Θ2, g2, θ2) replaced by the two following
quadruples of coordinates: the quadruple (Ψ̃n−2, Ψ̃n−1, ψ̃n−2, ψ̃n−1) and the quadru-
ple (Γn,Θn, gn, θn), left unvaried at the previous step. This will define the right
variables at rank n, which, by construction, will turn to be symplectic.

The details are as follows. Let us begin with the analytical expression of φ̂(n), which
is

γi = gi + αC(i)(νi, ν̄i) ,

Ψi =

{
|S(i+1)| i 6= n
Θ1 + · · ·+ Θn i = n

ψi =

{
αS(i+1)(νi+2, νi+1) i 6= n
αk(3)(k(1), νn+1) i = n

(28)

It is therefore enough to check that

Γ · dg + Θ · dθ = Γ · dγ + Ψ · dψ + dχ(n) (29)

on12 on the set D4n of
(
(Γ,Θ), (g, θ)

)
∈ (Rn

+ × Rn)× T2n where

|Θi| < Γi , νi+1 6= 0 , ∀ 1 ≤ i ≤ n . (30)

Such inequalities imply that nor the nodes ν̄i = k(3) × C(i) nor the vectors C(i) or
S(i+1) vanish, so that equations (28) are well put.

Assume, inductively, that (29) holds up to n− 1 ≥ 2.
Let us define an auxiliary symplectic map φ̃ = φ̃(n). Denote by D4n

∗ ⊂ D4n the set
where k(3) × S(n−1) 6= 0. If (Γ,Θ, g, θ) ∈ D4n

∗ , define (Γ̃, Θ̃, g̃, θ̃) as in (27). Since

11Compare the definition (4), with (n− 1) replacing n, (Γ̃, Ψ̃, γ̃, ψ̃) replacing (Γ,Ψ, γ, ψ).
12 The restriction |Θi| < Γi is needed to use Delaunay variables, but, regarding the Deprit

variables in terms of the Cartesian variables as in (4), the map φ(n)
∗ in (5) remains symplectic on

the larger set P6n
∗ , defined in §1. Notice in fact that the subset P6n

∗∗ of P6n
∗ where (30) holds is

dense in P6n
∗ and that φ(n)

∗ is regular on P6n
∗ .
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k(3) × S(n−1) 6= 0, the point (Γ̃, Θ̃, g̃, θ̃) lies on the domain D4(n−1) of φ̂(n−1); let
(Γ̃, Ψ̃, γ̃, ψ̃) ∈ R2(n−1) × T2(n−1) the image

(Γ̃, Ψ̃, γ̃, ψ̃) = φ̂(n−1)(Γ̃, Θ̃, g̃, θ̃) . (31)

Define then

φ̃ : (Γ,Θ, g, θ) ∈ D4n
∗ →

(
(Γ̃,Γn), (Ψ̃,Θn), (γ̃, gn), (ψ̃, θn)

)
. (32)

By the inductive assumption, φ̂(n−1) verifies, on D4(n−1),

Γ̃ · dg̃ + Θ̃ · dθ̃ = Γ̃ · dγ̃ + Ψ̃ · dψ̃ + dχ(n−1) ,

for some χ(n−1). Hence φ̃ verifies, on D4n
∗

Γ · dg + Θ · dθ = Γ̃ · dγ̃ + Ψ̃ · dψ̃ + Γndgn + Θndθn + dχ(n−1) . (33)

Being S(n−1) not parallel to the k(3)–axis, there follows that |Ψ̃n−1| < Ψ̃n−2.
From (Γ,Θ, g, θ) ∈ D4n there also follows that

|Θn| < Γn

(S(n−1) + C(n))× C(n) = S(n) × C(n) =: N2 6= 0

k(3) × (S(n−1) + C(n)) = k(3) × S(n) =: N̄ 6= 0 .

From such formulae one has that(
(Ψ̃n−2,Γn), (Ψ̃n−1,Θn), (ψ̃n−2, gn), (ψ̃n−1, θn)

)
∈ D8 (34)

where D8is the domain of φ̂(2).
Let

(
(Γ̃,Γn), (Ψ̃,Θn), (γ̃, gn), (ψ̃, θn)

)
be any point for which (34) holds. On such

set of points, consider the following transformation φ̌. Denote by(
(Ψ̌n−2, Γ̌n), (Ψ̌n−1, Ψ̌n), (ψ̌n−2, γ̌n), (ψ̌n−1, ψ̌n)

)
the image of (

(Ψ̃n−2,Γn), (Ψ̃n−1,Θn), (ψ̃n−2, gn), (ψ̃n−1, θn)
)

under φ̂(2). Such image has the following analytical expression. Let C(1), C(2) be the
angular momenta defined as in (14) but with the following substitutions:

(Γ1,Θ1, θ1) → (Ψn−2, Ψ̃n−1, ψ̃n−1)

(Γ2,Θ2, θ2) → (Γn,Θn, θn)

C → C(1) + C(2) =: σ(2) (35)

ν1 = ν2 → σ(2) × C(2) = C(1) × C(2) =: N1 = N2

ν̄i → k(3) × C(i) =: N̄i

ν̄ → k(3) × σ(2) =: N̄
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Then, φ̂(2) has the expression Ψ̌n−2 := Ψ̃n−2, Γ̌n := Γn and13 ψ̌n−2 = ψ̃n−2 + αC(1)(N1, N̄1)

γ̌n = gn + αC(2)(N2, N̄2)
(36)

Ψ̌i =


|σ(2)| i = n− 1

Ψ̃n−1 + Θn i = n

ψ̌i =


ασ(2)(N̄,N2) i = n− 1

αk(3)(k(1), N̄) i = n

Notice that from §2.1 (compare the observation at the beginning of the section),
one has that the map φ̂(2) verifies

n−1∑
i=n−2

Ψ̃idψ̃i + Γndgn + Θndθn =
n∑

i=n−2

Ψ̌idψ̌i + Γ̌ndγ̌n + dχ̂(2) , (37)

for some χ̂(2). Define then φ̌ by

φ̌ :
(
(Γ̃,Γn), (Ψ̃,Θn), (γ̃, gn), (ψ̃, θn)

)
→ (38)(

(Γ̃, Γ̌n), (Ψ̃1, · · · , Ψ̃n−3, Ψ̌n−2, Ψ̌n−1, Ψ̌n), (γ̃, γ̌n), (ψ̃1, · · · , ψ̃n−3, ψ̌n−2, ψ̌n−1, ψ̌n)
)
.

Since φ̌ leaves the variables Γ̃, γ̃, Ψ̃1, · · · , Ψ̃n−3, ψ̃1, · · · , ψ̃n−3 unvaried, from (38),
one has this map verifies

Ψ̃·dψ̃+Γ̃·dγ̃+Γndgn+Θndθn =
n−3∑
i=1

Ψ̃idψ̃i+
n∑

i=n−2

Ψ̌idψ̌i+Γ̃·dγ̃+Γ̌ndγ̌n+dχ̂(2) , (39)

Consider now the composition φ̌ ◦ φ̃, which sends a point
(
(Γ,Θ), (g, θ)

)
∈ D4n

∗ to
the point defined by the right hand side of (38). From Eq.s (33) and (39) there
follows that φ̌ ◦ φ̃ verifies

Γ · dg + Θ · dθ =
n−3∑
i=1

Ψ̃idψ̃i +
n∑

i=n−2

Ψ̌idψ̌i + Γ̃ · dγ̃ + Γ̌ndγ̌n + dχ(n)

with χ(n) := χ(n−1) + χ̂(2). The proof will be finished as soon as one recognizes
that14 φ̌ ◦ φ̃ coincides with the map φ̂(n) in (28) .

13Compare (6) and (15) with ψ̌n−2, γ̌n, Ψ̌n−1, Ψ̌n, ψ̌n−1, ψ̌n replacing, respectively, γ1, γ2, G,
C3, g, ζ.

14Again, since φ̂(n)
∗ is regular on D̂4n and D̂4n

∗ is dense in D̂4n, being φ̂(n)
∗ symplectic on D̂4n

∗
we get the thesis on the larger set D4n.
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We limit ourselves to check that the angle ψ̌n−2 in (38) coincides with the angle
ψn−2 in (28) (the other checks being trivial).

Let us first notice that the angle ψ̃n−2 in (32) is given by

ψ̃n−2 = αS(n−1)(Ñ, Ñn−1) = αS(n−1)(Ñ, νn−1) , (40)

where Ñ := k(3) × S(n−1) and Ñn−1 := S(n−1) × C(n−1) = νn−1. Now, in (35), one
has the following identifications C(1) := S(n−1), C(2) := C(n), σ(2) = S(n), N1 =
σ(2) × C(2) = S(n) × C(n) = νn, N̄1 = k(3) × C(1) = k(3) × S(n−1) = Ñ . Therefore,
from (36) and (40),

ψ̌n−2 = ψ̃n−2 + αC(1)(N1, N̄1)

= αS(n−1)(Ñ, νn−1) + αS(n−1)(νn, Ñ)

= αS(n−1)(νn, νn−1) = ψn−2 . (41)

Remark Let (R, Φ, Ψ, r, ϕ, ψ) the variables defined in (7) ÷ (8) and let (R, Φ,
Θ, r, f, θ) be defined as follows. The variables (R, r,Φ) are in common between
the two sets; (Θ, θ) are just the Delaunay’s (13); while the anomalies fi are referred
with respect to the Delaunay nodes ν̄i in (12):

fi = αC(i)(ν̄i, x
(i)) .

It is very easy to realize that such set of variables is symplectic and that the
analytical dependence of the (Φ,Ψ, ϕ, ψ)’s with respect to the (Φ,Θ, f, θ)’s is just
the same as that of the (Γ, Ψ, γ, ψ)’s with respect to the (Γ, Θ, g, θ)’s (described
at the beginning of § 2.1). Thus, the previous inductive construction can be equally
applied to construct the (R, Φ, Ψ, r, ϕ, ψ)’s, starting from the (R, Φ, Θ, r, f, θ)’s.

A Deprit’s energy–time variables

Some of the variables in (4) loose their meaning out of the domain P6n
∗ , i.e. , when

some eccentricity ei vanishes or ei ≥ 1: in the former case, the variables (`, γ) are
not defined, in the latter case (Λ, `) are not.

Even though Deprit mentioned that an important application of his variables would
have been to use them in connection with the planetary model, he underlined quite
clearly that his node reduction could apply more generally to any rotation invariant
system. Indeed, the map (y, x) → (R,Φ,Ψ, r, ϕ, ψ) is actually well defined (i.e. ,
injective) on the larger subset P̄6n ⊃ P6n

∗ of the phase space P6n = R6n × R3n
∗

simply defined by inequalities

P̄6n : νi 6= 0

where νi are the nodes (3).
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The purpose of this appendix is to show that also the approach presented in this
paper can be extended to an open set of full measure of the global phase space,
namely, to the set

P̄6n
∗ : y(i) · x(i) 6= 0 , νi 6= 0 .

Indeed, we will show how to construct “energy–time” variables (E, Γ̄, Ψ̄, τ, γ̄, ψ̄),
which can be defined on the set P̄6n

∗ so that the symplectic proof of §2 goes over
essentially unchanged.

Consider the Two–Body Hamiltonian (1). Inequalities νi = S(i) × C(i) 6= 0 in
particular imply that C(i) = x(i) × y(i) 6= 0. Then, the motion generated by hi

starting from an initial datum (y, x) ∈ P̄6n
∗ evolves on a Keplerian conics Ei whose

parameter pi and eccentricity ei are respectively given by

pi =
|C(i)|2

M2
i m̄i

ei =

√
2

Mi

|C(i)|
Mim̄i

√
hi − Ēi (42)

where

Ēi = −Mi(Mim̄i)
2

2|C(i)|2
. (43)

Such conics turn out to have positive eccentricity provided y(i) · x(i) 6= 0. Indeeed,
splitting the linear momenta y(i) as

y(i) = Ri
x(i)

ri

− C(i) × x(i)

r2
i

where ri := |x(i)| and Ri := y(i)·x(i)

|x(i)| , one easily rewrites hi as

hi =
R2

i

2Mi

+
( |C(i)|√

2Miri

−
√

2Mi(Mim̄i)

2|C(i)|
)2

+ Ēi (44)

which, combined with (42), shows that ei > 0 when Ri = y(i)·x(i)

|x(i)| 6= 0.

Let then Pi the perihelion of Ei, Ai the area spanned from Pi to the point x(i).
Define Γ̄, Ψ̄, γ̄, ψ̄ simply generalizing the respective definitions of Γ, Ψ, γ, ψ in (4)
and put

Ei := hi τi :=
2MiAi

|C(i)|
.

On P6n
∗ , i.e. , in correspondence of eccentricities verifying 0 < ei < 1, the variables

Γ̄, Ψ̄, γ̄, ψ̄ trivially coincide with the variables Γ, Ψ, γ, ψ in (4); the variables (E, τ)
are symplectically related to (Λ, `) through

Ei = −m̄
2
iM

3
i

2Λ2
i

τi =
Λ3

i

m̄2
iM

3
i

¯̀
i

where ¯̀
i is the lifting of `i over R.
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Notice that E and τ have the physical dimension of energy and time (whence the
name of this appendix).

The map φ̄
(n)
∗ which assigns to a point (y, x) ∈ P̄6n

∗ the variables (E, Γ̄, Ψ̄, τ, γ̄, ψ̄)
is well defined (i.e. , real–analytic and injective) onto its image, i.e. , the subset of
(E, Γ̄, Ψ̄, τ, γ̄, ψ̄) ∈ R3n × (Rn × T2n) where Γ̄i > 0 and

Ei > −Mi(Mim̄i)
2

2Γ̄2
i

, 1 ≤ i ≤ n ,

−Ψ̄n−1 < Ψ̄n < Ψ̄n−1 ,

|Ψ̄i−1 − Γ̄i+1| < Ψ̄i < Ψ̄i−1 + Γ̄i+1 , 1 ≤ i ≤ n− 1 .

At this point the inductive proof of §2 adapts immediately to the present variables
(as, in fact, the (Λ, λ) or the (E, τ) variables do not play any rôle in such a proof).

B Unfolding of Jacobi’s reduction of the nodes

The variables (4) “unfold” Jacobi’s reduction of the nodes [6] for the three–body
problem. This can be seen by considering the expressions of the Delaunay’s variables
(13) in terms of the Deprit variables (4).

The expression of the angular momenta (22) in terms of Γi, G, C3, ζ and g allows
to define the nodes ν̄, ν̄i and νi, which gives the inversion formulae for the angles
gi:

gi = γi + αC(i)(ν̄i, νi) , (i = 1, 2) .

Next, recalling the definition of ψ2 = ζ in (4) one finds

θi = αk(3)(k(1), ν̄i) = αk(3)(k(1), ν̄) + αk(3) (ν̄, ν̄i) = ζ + αk(3) (ν̄, ν̄i) , (45)

giving the inversion formulae for the θi’s. Finally, identifying Θ1, Θ2 with the third
components of C(1), C(2) in (22), one finds Θ1 = C3

2
+ C3

2G2 (Γ
2
1 − Γ2

2)−
√

(G2−C2
3)(Γ2

1−(Γ2−G)2)((Γ2+G)2−Γ2
1)

2G2 cos g

Θ2 = C3

2
− C3

2G2 (Γ
2
1 − Γ2

2) +

√
(G2−C2

3)(Γ2
1−(Γ2−G)2)((Γ2+G)2−Γ2

1)

2G2 cos g
(46)

completing the inversion formulae.

Jacobi’s reduction of the nodes is obtained in the vertical angular momentum sub-
manifold, i.e., in {C1 = C2 = 0} = {C ‖ k(3)}. On such (symplectic) submanifold
the node ν̄ = k(3) × C vanishes and the angles g = αC(ν̄, ν2) and ζ = αk(3)(k(1), ν̄)
loose their meaning. However, in the limit C3 → C or, equivalently, C → Gk(3) one
has

ζ + g := αk(3)(k(1), ν̄) + αC(ν̄, ν2) → αk(3)(k(1), ν̄) + αk(3)(ν̄, ν2) = αk(3)(k(1), ν2) .
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This, suggest to define the angle

ḡ := αk(3)(k(1), ν2)

in the vertical submanifold {C1 = C2 = 0}. Then, since, in the n = 2 case, it is

ν1 = ν2 = C(1)×C(2) = (C(1)+C(2))×C(2) = C×C(2) = Gk(3)×C(2) = Gν̄2 = −Gν̄1

from (45) there follows

θ2 = αk(3)(k(1), ν̄2) = αk(3)(k(1), ν2) = ḡ
θ1 = αk(3)(k(1), ν̄1) = αk(3)(k(1),−ν2) = ḡ + π

(“opposition of the nodes”)

Furthermore, since, in such limit, αC(i)(ν̄i, νi) = 0, then, gi = γi and (46) becomes
Θ1 =

G

2
+

1

2G
(Γ2

1 − Γ2
2)

Θ2 =
G

2
− 1

2G
(Γ2

1 − Γ2
2)

(47)

which, together with the relations already discussed, i.e., gi = γi and{
θ1 = ḡ + π
θ2 = ḡ

i = 1, 2 ,

are recognized as the classical formulae for Jacobi’s reduction of the nodes, apart
from an inessential shift by ḡ in the definition of θi (ḡ is cyclic and in Jacobi’s
reduction is usually taken to be zero).
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