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Abstract

Fisher discriminant analysis (FDA) is a popular and powerful method for

dimensionality reduction and classification. Unfortunately, the optimality of

the dimension reduction provided by FDA is only proved in the homoscedas-

tic case. In addition, FDA is known to have poor performances in the cases of

label noise and sparse labeled data. To overcome these limitations, this work

proposes a probabilistic framework for FDA which relaxes the homoscedastic

assumption on the class covariance matrices and adds a term to explicitly

model the non-discriminative information. This allows the proposed method

to be robust to label noise and to be used in the semi-supervised context.

Experiments on real-world datasets show that the proposed approach works

at least as well as FDA in standard situations and outperforms it in the label

noise and sparse label cases.

1. Introduction

Fisher discriminant analysis (FDA) [10, 13], also known as LDA by mis-

nomer, is a commonly used method for linear dimensionality reduction in

supervised classification. FDA aims to find a linear subspace that well sep-

arates the classes in which a linear classifier can be learned. In this paper,

FDA will refer to the strategy which first finds a discriminative subspace

and then classify the data in this subspace using linear discriminant analysis
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(LDA) [29, Chap. 3]. FDA is a popular method, appreciated for its simplic-

ity, which works very well in numerous cases. However, FDA does have some

well-known limitations. In particular, FDA has not been originally defined

in a probabilistic framework and its theoretical justification can be obtained

only under the homoscedastic assumption on the distribution of the classes,

i.e. each class has the same covariance matrix. Moreover, FDA produces

correlated axes and its prediction performances are sensitive to label noise

and sparse labeled data (semi-supervised context).

Unfortunately, label noise and sparse labeled data are nowadays frequent

situations in application fields where the human supervision is either impre-

cise, difficult or expensive. For instance, in bio-medical applications, domain

experts are asked to manually label a sample of learning data (MRI images,

DNA micro-array, ...) which are then used for building a supervised clas-

sifier. In such cases, the cost of the supervision phase is usually high due

to the difficulty of labeling complex data. Furthermore, an human error is

always possible in such a difficult task and an error in the supervision phase

could have big effects on the decision phase, particularly if the size of the

learning sample is small. It is therefore very important to provide supervised

classifiers robust enough to deal with data with uncertain labels and able to

exploit the unlabeled observations of the data.

In this paper, we propose a supervised classification method, called proba-

bilistic Fisher discriminant analysis (PFDA), based on a Gaussian parametriza-

tion of the data in a latent orthonormal discriminative subspace with a low

intrinsic dimension. This probabilistic framework relaxes the homoscedastic

assumption on the class covariance matrices and adds a term to explicitly

model the non-discriminative information. This allows PFDA to be robust

to label noise and to be used in the semi-supervised context. Numerical

experiments show that PFDA improves predictive effectiveness in the label

noise and semi-supervised contexts compared to FDA. As we know that the

scientific literature is full of extensions of FDA, we do not claim that the pro-

posed discriminant analysis method outperforms all existing works related to

FDA in all situations. Nevertheless, the present work proposes a probabilis-

tic, robust and flexible alternative to FDA which compares positively with
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reference methods such as heteroscedasctic discriminant analysis (HDA) [26],

regularized discriminant analysis (RDA) [12] and mixture discriminant anal-

ysis (MDA) [19]. PFDA may be therefore used by practitioners for their

daily uses in place of FDA with the same advantages but without the label

noise and sparse labeled data issues.

The paper is organized as follows. Section 2 first reviews the original

discriminant analysis of Fisher and then presents its major probabilistic, ro-

bust and semi-supervised extensions. Section 3 introduces the discriminative

latent mixture model and Section 4 discusses its inference in both the super-

vised and semi-supervised contexts. Experiments on real datasets presented

in Section 5 illustrate the qualities of PFDA and compare it to state-of-the-

art methods in various contexts. Finally, Section 6 gives some concluding

remarks and directions for further work.

2. Related works

This section first recalls the nominal Fisher’s discriminant analysis method

and then briefly presents its major probabilistic, robust and semi-supervised

extensions.

2.1. Fisher’s discriminant analysis

In his precursor work [10], Fisher poses the problem of the discrimination

of three species of iris described by four measurements. The main goal of

Fisher was to find a linear subspace that best separates the classes according

to a criterion (see [9] for more details). For this, Fisher assumes that the di-

mensionality p of the original space is greater than the number K of classes.

Fisher’s discriminant analysis looks for a linear transformation matrix U

which allows to project the observations {y1, ..., yn} in a discriminative and

low dimensional subspace of dimension d. To this end, the p × d transforma-

tion matrix U maximizes a criterion which is large when the between-class

covariance matrix (SB) is large and when the within-covariance matrix (SW )

is small. Since the rank of SB is at most equal to K − 1, the dimension d of

the discriminative subspace is therefore at most equal to K − 1 as well. Four

different criteria can be found in the literature which satisfy such a constraint
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(see [13] for a review). The criterion which is traditionally used is:

J(U) = trace((U tSW U)−1U tSBU), (2.1)

where SW = 1
n

∑K
k=1

∑

yi∈Ck
(yi − mk)(yi − mk)t and SB = 1

n

∑K
k=1 nk(mk −

ȳ)(mk − ȳ)t are respectively the within and the between covariance matri-

ces, nk is the number of observations in the kth class, mk = 1
nk

∑

i∈Ck
yi

is the empirical mean of the observed column vector yi in the class k and

ȳ = 1
n

∑K
k=1 nkmk is the mean column vector of the observations. The max-

imization of criterion (2.1) is equivalent to the generalized eigenvalue prob-

lem [25]
(

S−1
W SB − λIp

)

U = 0 and the classical solution of this problem is

the eigenvectors associated to the d largest eigenvalues of the matrix S−1
W SB.

Once the discriminative axes determined, linear discriminant analysis (LDA)

is usually applied to classify the data into this subspace. The optimization

of the Fisher criterion supposes the non-singularity of the matrix SW but it

appears that the singularity of SW occurs frequently, particularly in the case

of very high-dimensional space or in the case of under-sampled problems. In

the literature, different solutions [12, 13, 18, 21, 23] are proposed to deal with

such a problem in the supervised classification framework.

2.2. Probabilistic extensions of FDA

Many authors have proposed ways to overcome the theoretical limitations

of the original method. A first probabilistic framework has been proposed by

Hastie et al. [19] by considering the different classes as a mixture of Gaussians

with common covariance matrices. In 1998, Kumar et al. [26] have rewritten

the Fisher’s problem through a probabilistic framework which relaxes the

homoscedastic constraint of FDA. More recently, Ioffe [22] has proposed a

probabilistic approach for LDA. The same year, Yu et al. [40] have adapted

the framework of probabilistic principal component analysis (PPCA), devel-

oped by Tipping et al. [37], in a supervised context and have found that the

maximum likelihood of their approach is equivalent to the one of FDA in the

homoscedastic context. Besides, Zhang et al. [42] have presented an exten-

sion of the Yu’s work by considering the heteroscedastic case in a supervised

and semi-supervised context which implies that the linear transformation is
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different for each class.

2.3. Dealing with the label noise problem

Learning a supervised classifier from data with uncertain labels can be

achieved using three main strategies: cleaning the data, using robust esti-

mations of model parameters and finally modeling the label noise. Early

approaches tried to clean the data by removing the misclassified instances

using some kind of nearest neighbor algorithm [8, 15, 38]. Other works han-

dle the noisy data using the C4.5 algorithm [24, 43], neural networks [41]

or a saturation filter [14]. Hawkins et al. [20] identified as outliers the data

subset whose deletion leads to the smallest value of the determinant of the

within-class covariance matrix. Other researchers proposed not to remove

any learning instance but to build instead supervised classifiers robust to la-

bel noise. Bashir et al. [2] and Croux et al. [7] focused on robust estimation

of the model parameters in the mixture model context. Maximum likelihood

estimators of the mixture model parameters are replaced by the correspond-

ing S-estimators (see Rousseeuw and Leroy [34] for a general account on

robust estimation) but the authors only observed a slight reduction of the

average probability of misclassification. Boosting [33, 35] can also be used to

limit the sensitivity of the built classifier to the label noise. Among all these

solutions, the model proposed in [27] by Lawrence et al. has the advantage

of explicitly including the label noise in the model with a sound theoreti-

cal foundation in the binary classification case. Denoting by z and z̃ the

actual and the observed class labels of an observation y, it is assumed that

their joint distribution can be factorized as p(y, z, z̃) = p(y|z)P (z|z̃)P (z̃).

The class conditional densities p(y|z) are modeled by Gaussian distributions

while the probabilistic relationship P (z|z̃) between noisy and observed class

labels is specified by a 2 × 2 probability table. An EM-like algorithm is in-

troduced for building a kernel Fisher discriminant classifier on the basis of

the above model. Finally, Bouveyron and Girard [5] proposed to relax the

distribution assumption of Lawrence et al. by allowing each class density

p(y|z) to be modeled by a mixture of several Gaussians and confront the

class information with an unsupervised modeling of the data for detecting
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label errors.

2.4. FDA in the semi-supervised context

The supervision cost of modern data often limits the number of labeled

observations and, unfortunately, an error in the supervision phase could have

particularly big effects on the classification phase when the size of the learning

sample is small. In particular, supervised dimension reduction methods, such

as FDA, tend to over-fit and therefore perform poorly in such situations.

To avoid such a drawback, semi-supervised techniques propose to exploit

additional unlabeled observations to improve the robustness of the classifier.

For this, semi-supervised techniques [3, 31, 32] often rely on the mixture

model and use the EM algorithm to infer the model from the partially labeled

dataset. In the dimension reduction context, Sugiyama et al. [36] proposed

to combine FDA with PCA for finding a subspace which preserves the global

structure of unlabeled samples while discriminating as much as possible the

known classes. Unfortunately, the effect of label noise on semi-supervised

discriminant analysis has not been studied to our knowledge and one can

think that label noise will have a significant effect in such a situation.

3. A probabilistic model for Fisher discriminant analysis

This section first introduces a probabilistic model, named the discrimi-

native latent model (DLM), which fits the data in a latent orthonormal dis-

criminative subspace with an intrinsic dimension lower than the dimension

of the original space.

3.1. The probabilistic model

Let us consider a complete training dataset {(y1, z1), ..., (yn, zn)} where

zi ∈ {1, . . . , K} indicates the class label of the observation yi ∈ R
p. On the

one hand, let us assume that {y1, . . . , yn} are independent observed realiza-

tions of a random vector Y ∈ R
p and that {z1, . . . , zn} are also independent

realizations of a random variable Z ∈ {1, . . . , K}. With these notations,

we can define the prior probability of the kth class by πk = P (Z = k), for

k = 1, ..., K. On the other hand, let E ⊂ R
p denote a linear latent space
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assumed to be the most discriminative subspace of dimension d ≤ K − 1

such that 0 ∈ E and where d is strictly lower than the dimension p of the

observed space. Moreover, let {x1, . . . , xn} ∈ E denote the latent data which

are in addition presumed to be independent unobserved realizations of a ran-

dom vector X ∈ E. Finally, for each class, the observed variable Y ∈ R
p

and the latent variable X ∈ E are assumed to be linked through a linear

transformation:

Y = UX + ε, (3.1)

where d < p, U is the p×d orthonormal matrix common to the K class, such

as U tU = Id, and ε ∈ R
p, conditionally to Z, is a centered Gaussian noise

term with covariance matrix Ψk, for k = 1, ..., K:

ε|Z = k ∼ N (0, Ψk). (3.2)

Following the classical framework of model-based clustering, each class is in

addition assumed to be distributed according to a Gaussian density function

within the latent space E. Hence, the random vector X ∈ E has the following

conditional density function:

X|Z = k ∼ N (µk, Σk), (3.3)

where µk ∈ R
d and Σk ∈ R

d×d are respectively the mean and the covariance

matrix of the kth class. Conditionally to X and Z, the random vector Y ∈ R
d

has therefore the following conditional distribution:

Y |X, Z = k ∼ N (UX, Ψk), (3.4)

and its marginal class-conditional distribution is:

Y |Z = k ∼ N (mk, Sk), (3.5)

where:

mk = Uµk,

Sk = UΣkU t + Ψk,
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are respectively the mean and the covariance matrix of the kth class in the

observation space. Let us also define W = [U, V ] a p×p matrix which satisfies

W tW = WW t = Ip and for which the p×(p−d) matrix V , is the orthonormal

complement of U defined above. We finally assume that the noise covariance

matrix Ψk satisfies the conditions V ΨkV t = βkId−p and UΨkU t = 0d, such

that ∆k = W tSkW has the following form:

∆k =





























Σk 0

0

βk 0
. . .

. . .

0 βk







































d ≤ K − 1



















(p − d)

This model, called the discriminative latent model (DLM) and referred to by

DLM[Σkβk] in the sequel, is summarized by Figure 1. The DLM[Σkβk] model

is therefore parametrized by πk, µk, U , Σk and βk, for k = 1, ..., K and

j = 1, ..., d. On the one hand, πk and µk parametrize in a classical way

the prior probability and the average latent position of the kth class respec-

tively. On the other hand, U defines the latent subspace E by parametriz-

ing its orientation according to the basis of the original space. Finally, Σk

parametrize the variance of the kth class within the latent subspace E whereas

βk parametrizes the variance of the class outside E. With these notations

and from a practical point of view, one can say that the discriminative infor-

mation for the kth class is therefore modeled by Σk and non discriminative

information for this class is modeled by βk.

3.2. Sub-models of the DLM[Σkβk] model

Starting with the DLM[Σkβk] model presented in the previous paragraph,

several sub-models can be generated by applying constraints on parameters

of the matrix ∆k. For instance, the covariance matrices Σ1, . . . , ΣK in the

latent space can be assumed to be common across the classes and this sub-

model will be referred to by DLM[Σβk]. Similarly, in each class, Σk can be

assumed to be diagonal, i.e. Σk = diag(αk1, . . . , αkd). This sub-model will

be referred to by DLM[αkjβk]. In the same manner, the p−d last values of ∆k
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X

Y

Z

π = {π1, ..., πK} µk ∈ E

Σk

W = [U, V ]
ε

Ψk

Figure 1: Graphical summary of the DLM[Σkβk] model

can be assumed to be common for the K classes, i.e. βk = β, ∀k = 1, ..., K,

meaning that the variance outside the discriminant subspace is common to all

classes. This assumption can be viewed as modeling the non discriminative

information with a unique parameter which seems natural for data obtained

in a common acquisition process. Following the notation system introduces

above, this sub-model will be referred to by DLM[αkjβ]. The variance within

the latent subspace E can also be assumed to be isotropic for each class and

the associated sub-model is DLM[αkβk]. In this case, the variance of the data is

assumed to be isotropic both within E and outside E. Similarly, it is possible

to constrain the previous model to have the parameters βk common between

classes and this gives rise to the model DLM[αkβ]. Finally, the variance within

the subspace E can be assumed to be independent from the mixture compo-

nent and this corresponds to the models DLM[αjβk], DLM[αjβ], DLM[αβk] and

DLM[αβ]. We therefore enumerate 12 different DLM models and an overview

of them is proposed in Table 1. The table also gives the maximum number of

free parameters to estimate (case of d = K −1) according to K and p for the

12 DLM models and for some classical models. The Full-GMM model refers

to the classical Gaussian model with full covariance matrices which yields

the quadratic discriminant analysis (QDA) method. The Com-GMM model

refers to the Gaussian model for which the covariance matrices are assumed

to be equal to a common covariance matrix (Sk = S, ∀k) and this model
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Model Nb. of parameters K = 4 and p = 100

DLM[Σkβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2(K − 1)/2 + K 337

DLM[Σkβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2(K − 1)/2 + 1 334

DLM[Σβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1)/2 + K 319

DLM[Σβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1)/2 + 1 316

DLM[αkj βk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K2 325

DLM[αkj β] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K(K − 1) + 1 322

DLM[αkβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + 2K 317

DLM[αkβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K + 1 314

DLM[αj βk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + (K − 1) + K 316

DLM[αj β] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + (K − 1) + 1 313

DLM[αβk] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + K + 1 314

DLM[αβ] (K − 1) + K(K − 1) + (K − 1)(p − K/2) + 2 311

Full-GMM (K − 1) + Kp + Kp(p + 1)/2 20603

Com-GMM (K − 1) + Kp + p(p + 1)/2 5453

Diag-GMM (K − 1) + Kp + Kp 803

Sphe-GMM (K − 1) + Kp + K 407

Table 1: Number of free parameters to estimate when d = K − 1 for the DLM models
and some classical models. In particular, the Full-GMM model is the model of QDA and
Com-GMM is the model of LDA (see text for details).
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is the model of LDA. Diag-GMM refers to the Gaussian model for which

Sk = diag(s2
k1, ..., s2

kp) with s2
k ∈ R

p and Sphe-GMM refers to the Gaussian

model for which Sk = s2
kIp with s2

k ∈ R. In addition to the number of free

parameters to estimate, Table 1 gives this number for specific values of K

and p in the right column. The number of free parameters to estimate given

in the central column can be decomposed in the number of parameters to

estimate for the proportions (K − 1), for the means (Kp) and for the co-

variance matrices (last terms). Among the classical models, the Full-GMM

model is a highly parametrized model and requires the estimation of 20603

parameters when K = 4 and p = 100. Conversely, the Diag-GMM and Sphe-

GMM model are very parsimonious models since they respectively require

the estimation of only 803 and 407 parameters when K = 4 and p = 100.

The Com-GMM model appears to have an intermediate complexity. Finally,

the DLM models turn out to have low complexities whereas their modeling

capacities are comparable to the one of the Full-GMM model.

3.3. Comparison with related models

At this point, it is possible to highlight the main differences between the

probabilistic model proposed in this work and the related models. Firstly,

the DLM model differs from the FDA model on the fact that FDA only links

the observed variable Y with the latent variable X through U whereas the

DLM model takes into account and model in addition the non discriminative

information through the term ε. This specific feature of the proposed model

implies that all the original variables (with different balancing terms however)

are used for modeling the classes and classifying future observations. The

DLM model also differs from the heteroscedasctic model of HDA, proposed

by Kumar & Andreou [26], on two key points. Firstly, their model only

relaxes the homoscedastic assumption on the covariances matrices within

the latent space and not outside this subspace. Secondly, as in FDA, their

approach does not keep all variables for the classification of new observations

and retains only the K −1 dimensions assumed to carry all the discriminative

information. Finally, although the parsimonious Gaussian model (HD-GMM)

proposed by Bouveyron et al. [6] uses all variables to model and classify
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high-dimensional data as the DLM model, this model however differs from

our model in the fact that the HD-GMM model fits each class in a different

latent subspace. Furthermore, the class-specific subspaces associated with

the HD-GMM model are chosen such that the variance of the projected data

is maximum whereas the DLM model chooses the latent subspace orientation

such that it best discriminates the classes.

4. Parameter estimation and classification

This section presents parameter estimation for DLM parameters in both

the supervised and semi-supervised cases. Classification of new observations

through the MAP rule is discussed as well.

4.1. Parameter estimation in the supervised context

Conversely to the probabilistic approaches reviewed in Section 2, the

probabilistic model presented above is very general and there is no explicit

solution for the likelihood maximization with respect to U . Therefore, we

propose to estimate the linear transformation U and the model parameters

in two different steps.

Estimation of the discriminative subspace. Firstly, the estimate Û of the

latent subspace orientation U is obtained through the optimization of the

Fisher criterion with respect to the orthogonality of its column vectors,

max
U

tr
(

(U tSW U)−1U tSBU
)

w.r.t. U tU = Id, (4.1)

where SW = 1
n

∑K
k=1

∑

yi∈Ck
(yi − mk)(yi − mk)t and SB = 1

n

∑K
k=1 nk(mk −

ȳ)(mk − ȳ)t are respectively the within and the between covariance matrices,

mk = 1
nk

∑n
i=1 1{zi=k}yi, nk =

∑n
i=1 1{zi=k} and ȳ = 1

n

∑n
i=1 yi. This optimiza-

tion problem can be solved using different ways (see [13, 21] for details) and

the Gram-Schmidt procedure will be used in the experiments of Section 5.

Estimation of model parameters. Secondly, conditionally to the orientation

matrix Û estimated in the previous step, the estimation of model parame-

ters is done by maximization of the likelihood. With the assumptions and
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notations of the model [Σkβk], the log-likelihood for the learning data is:

L(θ) = −
1

2

K
∑

k=1

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|)

+ (p − d) log(βk) +
1

βk

(

trace(Ck) −
d

∑

j=1

ut
jCkuj

)

+ γ

]

.

(4.2)

where Ck is the empirical covariance matrix of the kth class, uj is the jth

column vector of U and γ = p log(2π) is a constant term. Given U = Û and in

conjunction with equation (4.1), the maximization of the log-likelihood (4.2)

conduces to the following estimates in the case of the DLM[Σkβk] model:

• prior probabilities πk are estimated by π̂k =
∑n

i=1 1{zi=k},

• means µk are estimated by µ̂k = 1
nk

∑n
i=1 1{zi=k}Û

tyi,

• covariance matrices Σk are estimated by Σ̂k = Û tCkÛ ,

• and variances βk are estimated by β̂k =
tr(Ck)−

∑d

j=1
ût

jCkûj

p−d
.

Proofs of these results can be deduced from the ones given in [4]. Finally,

the intrinsic dimension d of the discriminative latent subspace E is set to the

rank of S
(q)
B (see [13]).

4.2. Parameter estimation in the semi-supervised context

Let us consider now that {(yi, zi)}
nℓ

i=1 where nℓ ≤ n are the labeled data

and there are n−nℓ unlabeled data referred to by {yi}n
i=nℓ+1. The nℓ labeled

observations are modeled by the probabilistic framework developed in Sec-

tion 3 and the unlabeled data are modeled by a mixture model parametrized

by πk, the mixture proportion of the class k, and θk = (mk, Sk), respectively

its mean vector and its covariance matrix. Thus, the log-likelihood can be

written as:

L(θ) =
nℓ
∑

i=1

K
∑

k=1

1{zi=k} log (πkφ(yi; θk)) +
n

∑

i=nℓ+1

log(
K

∑

k=1

πkφ(yi; θk)) (4.3)

In such a case, the direct maximization of L(θ) is intractable and an iterative

procedure has to be used. The Fisher-EM algorithm has been recently pro-
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posed by [4] for iteratively maximizing L(θ) in the case of the DLM models.

For this, the Fisher-EM algorithm alternates 3 steps at iteration q:

E-step. This step computes the expectation of the complete log-likelihood

conditionally to the current value of the parameter θ(q−1). In practice,

this step reduces to the computation for the unlabeled points of t
(q)
ik =

E[zik|yi, θ(q−1)] where zi = k if yi comes from the kth component, i =

nℓ, ..., n,. Let us also recall that t
(q)
ik is as well the posterior probability

P (Z = k|Y = yi) that the observation yi belongs to the kth component

of the mixture. For the labeled points, the value of t
(q)
ik is set to 1{zi=k} for

i = 1, ..., nℓ and k = 1, ..., K.

F-step. This step aims to determinate, at iteration q, the discriminative la-

tent subspace of dimension d ≤ K − 1 in which the K classes are best

separated. Naturally, the estimation of this latent subspace has to be done

conditionally to the current values of posterior probabilities t
(q)
ik which in-

dicates the current soft partition of the data. Estimating the discrimina-

tive latent subspace reduces to maximize the traditional criterion J(U) =

tr((U tSW U)−1U tSBU). However, the traditional criterion J(U) assumes that

the data are complete (supervised classification framework). Unfortunately,

in the present case, the matrices SB and SW have to be defined conditionally

to the current soft partition for the unlabeled data. It is therefore necessary

to introduce the soft between-covariance matrix S
(q)
B and the soft within-

covariance matrix S
(q)
W . The soft between-covariance matrix S

(q)
B is defined

conditionally to the posterior probabilities t
(q)
ik , obtained in the E step, as

follows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m̂

(q)
k − ȳ)(m̂

(q)
k − ȳ)t, (4.4)

where n
(q)
k =

∑n
i=1 t

(q)
ik , m̂

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi is the soft mean of the kth

class at iteration q and ȳ = 1
n

∑n
i=1 yi is the empirical mean of the whole

dataset. Since the relation S = S
(q)
W + S

(q)
B holds in this context as well, it is

preferable from a computational point of view to use the covariance matrix

S = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)t of the whole dataset in the maximization problem

instead of S
(q)
W since S remains fixed over the iterations. The F step of the
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Fisher-EM therefore aims to solve the following optimization problem:











max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,

w.r.t. ut
jul = 0, ∀j 6= l ∈ {1, . . . , d},

(4.5)

where uj is the jth column vector of U . The procedure then follows the

concept of the orthonormal discriminant vector (ODV) method introduced

by [11] in the supervised case and then extended by [16, 17, 28, 39], which

sequentially selects the most discriminative features in maximizing the Fisher

criterion subject to the orthogonality of features.

M-step. This third step estimates the model parameters by maximizing the

conditional expectation of the complete likelihood and this conduces, at it-

eration q, to an estimation of the mixture proportions πk and the means µk

for the K components by their empirical counterparts:

π̂
(q)
k =

n
(q)
k

n
, µ̂

(q)
k =

1

nk

n
∑

i=1

t
(q)
ik Û (q)tyi, (4.6)

with n
(q)
k =

∑n
i=1 t

(q)
ik . In the case of the DLM[Σkβk] model, the remaining

parameters are estimated by:

Σ̂
(q)
k = Û (q)tC

(q)
k Û (q), (4.7)

and

β̂
(q)
k =

trace(C
(q)
k ) −

∑d
j=1 û

(q)t
j C

(q)
k û

(q)
j

p − d
, (4.8)

where C
(q)
k = 1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m̂

(q)
k )(yi − m̂

(q)
k )t and m̂

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi.

Parameter estimation for the other DLM models and proofs of these results

can be found in [4].

4.3. Classification of new observations

In the discriminant analysis framework, new observations are usually as-

signed to a class using the maximum a posteriori (MAP) rule which assigns

a new observation y ∈ R
p to the class for which y has the highest posterior

probability P (Z = k|Y = y). Therefore, the classification step mainly con-
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Figure 2: Two classes and their 1-dimensional discriminative subspace.

sists in calculating the posterior probability P (Z = k|Y = y) for each class

k = 1, ..., K. Maximizing the posterior probability over k is equivalent to

minimizing the classification function Γk(y) = −2 log(πkφ(y; mk, Sk) which

is for our model equal to:

Γk(y) =
∥

∥

∥UU t(y − mk)
∥

∥

∥

2
ϑk

+
1

βk

∥

∥

∥(y − mk) − UU t(y − mk)
∥

∥

∥

2

+ log(|Σk|) + (p − d) log(βk) − 2 log(πk) + p log(2π),

(4.9)

where ϑk = [U, 0p−d] ∆−1
k [U, 0p−d]t and ‖.‖ϑk

is a norm on the latent space

spanned by [U, 0p−d] such that ||y||2ϑk
= ytϑky.

Besides its computational interest, the above formula provides as well a

comprehensive interpretation of the classification function Γk which mainly

governs the computation of P (Z = k|Y = y). Indeed, it appears that Γk

mainly depends on two distances: the distance between the projections on

the discriminant subspace E of the observation yi and the mean mk on the

one hand, and, the distance between the projections on the complementary

subspace E
⊥ of yi and mk on the other hand. Remark that the latter dis-
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tance can be reformulated in order to avoid the use of the projection on E
⊥.

Indeed, as Figure 2 illustrates, this distance can be re-expressed according

projections on E. Therefore, the posterior probability P (Z = k|Y = y)

will be close to 1 if both the distances are small which seems quite natural.

Obviously, these distances are also balanced by the variances in E and E
⊥

and by the mixture proportions. Furthermore, the fact that the E step does

not require the use of the projection on the complementary subspace E
⊥ is,

from a computational point of view, very important because it provides the

stability of the algorithm and allows its use when n < p (see [4] for details).

5. Experimental results

This section presents experiments on real-world datasets which aim to

highlight the main features of the proposed probabilistic version of FDA and

to show that PFDA can be considered as a robust and flexible alternative

to FDA.

5.1. An introductory example: the Iris dataset

It seemed to us natural to first apply PFDA to the Iris dataset that Sir

R.A. Fisher used in [10] as an illustration for his discriminant analysis. This

dataset, in fact collected by E. Anderson [1] in the Gaspé peninsula (Canada),

is made of three classes corresponding to different species of iris (setosa,

versicolor and virginica) among which the classes versicolor and virginica

are difficult to discriminate (they are at least not linearly separable). The

dataset consists of 50 samples from each of three species and four features

were measured from each sample. The four measurements are the length

and the width of the sepal and the petal. This dataset is used here as an

introductory example because of the link with Fisher’s work but also for its

popularity in the classification community. For this introductory example,

the DLM[αkβ] model was used for PFDA and it is compared to FDA and

orthonormalized FDA (OFDA) [17].

Figure 3 presents the projection of the Iris data into the latent discrim-

inative subspaces respectively estimated by FDA, OFDA and PFDA. Un-

surprisingly, all projections discriminate almost perfectly the data. One can
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Figure 3: Projection of the Iris data into the latent discriminative subspace estimated by
FDA, OFDA and PFDA.
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FDA OFDA PFDA
axis axis axis

variable 1 2 1 2 1 2

sepal length 0.208 -0.006 0.208 0.152 -0.203 -0.062
sepal width 0.386 -0.586 0.386 -0.036 -0.324 -0.697
petal length -0.554 0.252 -0.554 -0.765 0.519 0.404
petal width -0.707 -0.769 -0.707 0.624 0.763 -0.588

Table 2: Loadings associated with the discriminative axes estimated by FDA, OFDA and
PFDA for the Iris data.

remark that OFDA provides however a slightly different projection compared

to the one of FDA, due to its orthogonality constraint, and PFDA provides

an intermediate projection between FDA and OFDA. Table 2 confirms this

intuition. The first discriminative axis is overall estimated in the same man-

ner by the three methods, but PFDA provides a closer estimation to the FDA

estimation of the second axis than OFDA. Indeed, the cosine between the

second discriminative axis estimated by PFDA and the one of FDA is 0.96

whereas it is -0.65 between OFDA and FDA. It is recalled that PFDA pro-

vides, as well as OFDA, discriminative axes which are orthogonal. Figure 3

presents the correct classification rates obtained by FDA, OFDA and PFDA

for 25 bootstrap replications on the Iris data. It turns out that the three

methods perform on average similarly even though PFDA provides some-

times better results than FDA and OFDA. As a partial conclusion, PFDA

can be considered as a good alternative to FDA which produces in addition

orthogonal discriminative axes.

5.2. Comparison of PFDA and its sub-models with reference methods

As described in Section 2, the family of probabilistic models of PFDA

contains 12 models and this second experiment aims to compare their dif-

ferent performances. To do so, we chose 4 real-world datasets (Iris, Wine,

Chiro and Ecoli) on the UCI Machine Learning repository (http://archive.

ics.uci.edu/ml/) and we compared the prediction performances of PFDA

for the 12 DLM models with the reference performances of FDA, OFDA,

HDA [26] and RDA [12]. The Wine dataset is made of 178 Italian wines

described by 13 variables and split up into 3 classes. The Chiro dataset con-
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Figure 4: Correct classification rates obtained by FDA, OFDA and PFDA for 25 bootstrap
replications on the Iris data.

tains 148 Chironomus larvae which are split up into 3 species and described

by 17 morphometric attributes. This dataset is described in detailed in [30].

Finally, the Ecoli dataset is made of 272 observations of the E-coli bacteria

which has recently received a lot of attention in the news due to the major

epidemic in Germany. The 272 observations are described by 6 measures and

are split up into 3 classes which correspond to different localization sites of

the bacteria.

Table 3 provides the correct classification rates obtained by FDA, OFDA,

HDA, RDA and PFDA for 25 bootstrap replications on the four considered

datasets. For each bootstrap replication, the whole dataset was split into

a learning set of 50% of the data and a test set with the remaining data.

Correct classification rates are of course evaluated on a test dataset. On the

one hand and from a global point of view, we can remark that the prediction

performances of all methods are on average comparable. Nevertheless, OFDA

seems penalized by its orthogonal constrain and performs less than the other

studied methods. On the other hand, PFDA turns out to be once again a

good alternative to FDA since it performs slightly better than FDA, HDA and

RDA on these four datasets. The good performance of PFDA is certainly

due to its flexibility. Indeed, the different probabilistic models of PFDA

allows it to fit onto different situations. Beside, we can notice that the
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Method Iris Wine Chiro Ecoli
FDA 97.5±1.4 97.5±1.4 98.1±1.1 94.1±2.0
OFDA 97.5±1.2 95.4±3.4 96.3±1.5 89.7±5.4
HDA 97.5±1.4 97.5±1.5 96.8±4.0 92.5±2.3
RDA 96.8±2.4 97.2±1.5 96.0±3.3 94.1±1.9
PFDA [Σkβk] 96.5±1.8 98.1±1.5 97.5±1.2 94.4±1.7
PFDA [Σkβ] 97.4±1.1 97.3±1.6 98.2±1.0 94.3±1.7
PFDA [αkjβk] 96.5±2.0 98.1±1.4 96.7±2.2 94.4±1.7
PFDA [αkjβ] 97.7±1.3 97.0±1.3 98.2±0.9 94.3±2.0
PFDA [αkβk] 96.7±2.2 98.5±1.4 96.2±2.6 94.5±1.7
PFDA [αkβ] 97.5±1.3 98.2±1.4 98.1±1.1 93.6±1.7
PFDA [Σβk] 83.6±3.1 95.1±2.4 88.2±3.9 91.0±2.3
PFDA [Σβ] 86.7±4.0 93.0±3.0 94.4±4.0 93.7±2.3
PFDA [αjβk] 86.0±3.1 95.0±2.3 87.9±4.2 91.2±2.2
PFDA [αjβ] 88.1±2.4 93.2±3.0 92.7±4.3 93.8±2.1
PFDA [αβk] 86.9±3.7 95.0±2.5 85.8±3.9 91.3±2.2
PFDA [αβk] 91.2±3.0 93.4±3.1 88.3±3.6 93.7±2.0

Table 3: Correct classification rates (in percentage) and standard deviations obtained by
FDA, OFDA, HDA, RDA and PFDA for 25 bootstrap replications on real-world datasets
(see text for details).

most efficient models for PFDA are models with intermediate complexities

([αkjβ] and [αkβk]). Furthermore, the fact that the homoscedastic models of

PFDA (bottom part of Table 3) perform less justify the necessity to propose

heteroscedastic models in the context of discriminant analysis.

5.3. Robustness to label noise: influence of the noise type

This third experiment aims to study the robustness of PFDA to different

types of label noise. The FDA and OFDA methods are used as reference

methods. The model used for PFDA was the model [Σkβk], which is the most

general model of the DLM family. We have also tried other DLM models but

we do not present their results here since their behaviors are similar to the

presented one. The datasets used for this experimentation are the Iris and the

USPS358 dataset. The USPS358 is a subset of the original USPS dataset

(available at the UCI repository) which contains only observations of the

digits 3, 5 and 8. It contains 1756 observations described by 256 measured

variables which correspond to 16 × 16 gray scale images observed as vectors.
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Since the aim of this experiment is to evaluate the robustness to label

noise, let τ denote the percentage of false labels in the learning set. At each

trial, the datasets are randomly divided in 2 balanced samples: a learning set

of half the data in which a percentage τ of the data is mislabeled and a test

set on which the prediction performances of the 3 methods are evaluated.

This process was repeated 25 times for each value of τ in order to monitor

both the average performances and their variances. Two kinds of label noise

are considered. The first one corresponds to a scenario in which one class is

overlapping the others. The second scenario corresponds to a random and

equiprobable label noise.

Figure 5 and 6 presents the evolution of correct classification rate com-

puted on the test set for the studied methods according to τ , respectively

for the Iris and USPS358 datasets. First of all, it can be observed that

the FDA and OFDA methods are sensitive to all types of label noise since

their classification rates lower linearly with respect to τ in all considered

cases. Conversely, PFDA turns out to be clearly more robust than FDA

and OFDA in all the studied situations. On the Iris dataset, PFDA ap-

pears to be particularly robust in the overlapping situations whereas it is

only slightly better than FDA in the other case. However, when dealing with

high-dimensional data, PFDA outperforms clearly its challengers and shows

a high robustness to all kinds of label noise. This robustness can be explained

by the probabilistic model of PFDA which incorporates a term to model the

a priori non discriminative information (which in fact carries discriminative

information in the label noise case). This avoids to over-fit the embedding

space on the labeled data and remains general enough to be robust to label

noise conversely to FDA and OFDA.

5.4. Robustness to label noise: comparison with state-of-the-art methods

This experiment focuses now on the comparison of PFDA with other

robust discriminant analysis methods. The methods used as reference meth-

ods are mixture discriminant analysis (MDA) [19], robust linear discriminant

analysis (RLDA) [27] and robust mixture discriminant analysis (RMDA) [5].

In particular, RLDA and RMDA are very efficient and robust methods. Both
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Figure 5: Effect of label noise in the learning dataset on the prediction effectiveness for
FDA, OFDA and PFDA for the Iris dataset (3 classes, 4 dimensions). The prediction
effectiveness is evaluated by the correct classification rate on the test set. Results are
averaged on 25 bootstrap replications and vertical bars indicate the standard deviations.

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of label noise

C
C

R

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_

_

_ _
_

_
_

_
_

_

_
_

_
_

_
_

_
_

_
_

_

_
_

_ _
_

_
_ _

_
_

_
_

_
_

_
_

_
_

_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _

_

_
_

_
_

_
_

_
_

_

_
_

_

_
_

_
_

_
_

_

_ _
_

_
_

_
_

_

_
_

_
_

_
_

_
_

_ _
_

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of label noise

C
C

R

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_

_
_

_
_

_
_

_
_

_
_

_

_

_

_
_

_

_
_

_

_

_
_

_
_

_
_

_
_

_

_
_

_
_

_
_

_ _
_

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _

_
_

_

_
_

_
_

_
_

_
_

_

_

_

_
_

_
_

_
_

_
_

_

_

_ _ _ _

_
_

_

_
_

_
_

_
_

_
_ _ _

(a) Class 1 overlaps the others (a) Class 2 overlaps the others

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of label noise

C
C

R

_ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _

_ _
_

_ _
_

_
_

_

_
_

_

_

_

_

_

_
_

_

_
_

_

_

_
_ _

_
_

_
_

_ _
_

_

_
_

_
_

_
_ _

_ _ _ _ _ _ _ _ _ _ _ _ _
_ _

_
_

_

_

_
_

_
_

_
_

_
_

_
_

_

_
_

_
_

_
_

_
_

_

_
_ _ _

_
_

_

_
_

_

_

_
_

_ _
_

_ _

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of label noise

C
C

R

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_

_

_

_ _
_ _

_
_

_
_

_
_

_

_
_

_ _

_
_

_

_

_
_ _

_ _
_

_ _
_

_

_ _

_
_

_

_
_

_

_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_

_

_
_

_
_

_
_

_
_

_

_
_

_
_

_
_

_
_

_

_

_

_
_ _

_
_

_
_ _

_ _
_

_
_ _

_

_
_

_

PFDA

FDA

OFDA

(c) Class 3 overlaps the others (d) equiprobable label noise

Figure 6: Effect of label noise in the learning dataset on the prediction effectiveness
for FDA, OFDA and PFDA on the test set for the USPS-358 dataset (3 classes, 256
dimensions). The prediction effectiveness is evaluated by the correct classification rate on
the test set. Results are averaged on 25 bootstrap replications and vertical bars indicate
the standard deviations.
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Figure 7: Samples from the USPS24 dataset.

were applied with success to object recognition in natural images. However,

since RLDA is only able to consider binary classification cases, we restrict

ourselves here to the classification of a datasets with only 2 classes. We

chose to use the USPS24 dataset, considered in [5], which contains only ob-

servations of the digits 2 and 4. It contains 1383 observations described in a

256-dimensional space. Figure 7 presents a sample from the USPS24 dataset.

For this comparison, we used the noise scenario which corresponds to a ran-

dom and equiprobable label noise. This process was repeated 25 times for

each value of τ in order to monitor both the average performances and their

variances of the studied methods.

Figure 8 presents the evolution of correct classification rate computed on

the test set for the studied methods according to τ . As observed by [5], FDA,

OFDA and MDA are very sensitive to label noise since their performances

decrease linearly when τ increases. The RLDA method turns out to be

significantly more robust than FDA, OFDA and MDA but its performance

decreases quickly for contamination rate larger than 0.2. Finally, RMDA and

PFDA appear to be very robust since they both provide very high correct

classification rates for contamination rates up to 0.4. However, RMDA seems

to be slightly less stable and reliable than PFDA due to its embedded EM

algorithm. To summarize, PFDA can be considered as gathering the stability

of RLDA and the robustness of RMDA while avoiding the drawbacks of these

methods.

5.5. Robustness to label noise in the semi-supervised context

This last experiment will focus on comparing on real-world datasets the

efficiency of semi-supervised approaches with traditional supervised ones.
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Figure 8: Comparison of PFDA with other robust discriminant analysis methods on the
USPS24 dataset (2 classes, 256 dimensions). The prediction effectiveness is evaluated by
the correct classification rate on the test set. Results are averaged on 25 Monte-Carlo
replications and vertical bars indicate the standard deviations.

The used datasets are the same as in the previous sections and PFDA is

compared here with FDA, OFDA and with a recent semi-supervised local

approach, called SELF and proposed by [36]. This latter approach aims

to find a discriminative subspace by considering both global and class struc-

tures. For this experiment, each dataset was randomly divided into a learning

set and a test set containing 50% of the data each. In the learning set, a

percentage γ of data were randomly selected to constitute the known labeled

data. Moreover, within these learning observations which are labeled, a per-

centage τ of the data is mislabeled according to the equiprobable label noise

scenario. Therefore, the rate of correctly labeled observations in the learning

set is γ(1−τ). Tables 4, 5 and 6 respectively present the correct classification

rates, computed on the test sets, for a label noise rate equals to 0 (no label

noise), 0.2 and 0.4 (strong label noise). In each case, three semi-supervised

situations are considered: γ = 0.2 (almost unsupervised), 0.4 and 0.8 (almost

supervised). This process was repeated 25 times for each value of γ and τ in

order to monitor both the average performances and variances of the studied
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Without label noise (τ = 0)
Sup. rate Methods Iris Wine Chiro Ecoli
γ = 0.2 PFDA [Σkβk] 91.4±4.9 91.1±11.4 93.7±6.8 97.0± 1.9

PFDA [Σkβ] 95.9±3.5 90.6±11.4 93.7±7.4 97.0±1.8

PFDA [αkjβk] 91.4±4.3 94.6±7.6 97.0±1.9 97.8±2.8

PFDA [αkjβ] 95.9±2.4 93.9±7.5 96.5±2.9 93.9±5.7

SELF 97.1±3.9 95.9±3.3 95.2±12.8 97.7±1.1

FDA 95.6±3.1 80.4±10.1 87.5±5.4 87.3±7.4

OFDA 95.6±2.1 77.8±10.2 86.8±5.6 92.1±4.8

γ = 0.4 PFDA [Σkβk] 93.9±3.8 97.7±1.8 96.8±3.2 97.9±1.1

PFDA [Σkβ] 96.2±2.7 96.8±2.2 96.7±4.4 98.1±1.2

PFDA [αkjβk] 93.8±3.7 97.8±1.2 97.8±1.4 98.3±1.4

PFDA [αkjβ] 96.5±2.7 97.0±1.6 97.1±4.1 97.9±1.9

SELF 98.1±0.7 97.6±1.5 100.0±0.0 98.0±1.3

FDA 96.6±1.9 95.2±2.6 92.9±5.2 90.7±5.3

OFDA 96.5±2.1 90.6±6.5 91.0±6.6 94.1±1.6

γ = 0.8 PFDA [Σkβk] 95.5±1.8 97.9±1.3 98.0±1.7 98.4±0.7

PFDA [Σkβ] 97.1±1.7 97.7±1.7 98.3±1.2 98.5±0.9

PFDA [αkjβk] 95.5±2.4 97.8±1.1 98.2±1.3 99.0±1.0

PFDA [αkjβ] 97.1±1.4 97.5±1.8 98.3±1.2 98.4±2.2

SELF 99.8±0.5 98.2±1.72 100.0±0.0 97.8±1.4

FDA 97.3±1.6 97.1±1.5 97.6±1.4 93.7±2.2

OFDA 97.2±1.1 95.9±3.7 95.6±2.1 94.7±1.5

Table 4: Prediction accuracies (in percentage) and standard deviations for different rates
of labeled observations in the learning set (sup. rate) and without label noise.

methods.

On the one hand, one can notice that, as expected, the semi-supervised

methods always outperform FDA and OFDA. This is due to the fact that

the fully supervised methods estimate the embedding space only on the la-

beled data and thus over-fit it. Conversely, the semi-supervised methods take

advantage of the unlabeled data in the discriminative subspace estimation,

which enables them to be more effective. On the other hand, it appears that

PFDA and SELF perform on average similarly when there is no label noise

(Table 4). However, PFDA turns out to be more reliable than SELF when

the labels of the learning observations are corrupted (Tables 5 and 6).
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20% of label noise (τ = 0.2)
Sup. rate Methods Iris Wine Chiro Ecoli
γ = 0.2 PFDA [Σkβk] 87.2±3.4 92.7±3.9 84.9±14.3 83.3±22.8

PFDA [Σkβ] 77.0±14.6 90.1±2.1 84.4±11.5 93.2±4.0

PFDA [αkjβk] 96.2±3.3 76.1±3.2 89.0±7.3 97.6±1.4

PFDA [αkjβ] 96.2±2.5 72.8±6.4 88.2±7.3 96.4±1.5

SELF 95.2±9.7 92.7±5.3 94.9±13.5 97.5±1.8

FDA 86.9±10.4 89.8±2.7 85.6±8.8 76.1±27.1

OFDA 82.9±8.8 88.7±3.1 89.8±4.4 93.2±1.8

γ = 0.4 PFDA [Σkβk] 85.8±3.4 94.0±2.8 88.0±9.3 84.8±8.5

PFDA [Σkβ] 84.8±3.8 92.7±3.8 85.1±10.6 91.9±2.7

PFDA [αkjβk] 96.2±2.7 94.9±2.9 92.7±5.8 98.4±1.3

PFDA [αkjβ] 96.5±2.2 92.7±4.8 90.0±6.5 98.2±1.5

SELF 95.1±6.5 96.6±2.6 96.6±2.5 97.2±2.2

FDA 81.8±4.2 87.6±6.5 88.0±3.8 82.9±7.4

OFDA 84.5±5.1 89.2±1.8 88.5±4.3 94.5±0.4

γ = 0.8 PFDA [Σkβk] 89.8±3.9 91.9±4.0 86.8±4.7 91.3±2.6

PFDA [Σkβ] 86.1±4.3 90.7±3.1 87.4±6.0 91.0±3.2

PFDA [αkjβk] 98.1±1.1 97.1±2.1 97.9±1.4 99.0±0.4

PFDA [αkjβ] 97.3±1.6 95.4±4.0 97.2±1.8 98.6±0.9

SELF 91.9±5.9 97.0±1.7 97.1±1.8 96.8±1.1

FDA 91.4±5.0 92.1±3.4 82.1±4.9 91.9±3.2

OFDA 85.8±4.9 92.5±2.5 83.4±11.0 92.7±3.3

Table 5: Prediction accuracies (in percentage) and standard deviations for different rates
of labeled observations in the learning set (sup. rate) and with 20% of label noise.
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40% of label noise (τ = 0.4)
Sup. rate Methods Iris Wine Chiro Ecoli
γ = 0.2 PFDA [Σkβk] 59.8±27.4 75.3±30.6 72.4±11.0 78.3±10.0

PFDA [Σkβ] 58.6±27.6 77.9±24.3 71.0±12.2 85.2±10.3

PFDA [αkjβk] 94.4±4.7 78.8±9.0 77.8±15.9 97.7±2.1

PFDA [αkjβ] 94.5±4.6 76.3±10.3 77.1±12.5 97.3±2.9

SELF 91.0±10.3 91.7±9.1 97.2±6.9 96.9±1.9

FDA 51.7±24.4 80.6±27.4 72.2±12.6 75.1±32.1

OFDA 52.5±20.8 77.1±26.7 60.4±17.3 87.2±14.8

γ = 0.4 PFDA [Σkβk] 56.0±20.8 86.2±10.9 68.4±12.7 78.0±2.7

PFDA [Σkβ] 59.5±20.9 82.7±13.0 63.2±11.8 80.4±6.9

PFDA [αkjβk] 96.2±1.9 95.6±2.2 93.3±4.6 99.2±1.2

PFDA [αkjβ] 96.1±2.0 90.7±6.1 91.2±5.5 99.1±1.5

SELF 88.8±8.9 95.2±3.6 98.4±1.8 96.9±1.7

FDA 56.0±22.9 89.1±5.8 66.7±11.0 86.4±8.6

OFDA 56.0±22.1 89.1±3.6 56.2±12.2 86.0±9.5

γ = 0.8 PFDA [Σkβk] 50.9±14.0 74.4±8.4 72.8±4.5 79.3±4.8

PFDA [Σkβ] 54.1±12.6 74.2±8.0 68.1±5.5 75.0±5.0

PFDA [αkjβk] 97.0±1.6 97.0±1.5 97.8±1.5 99.4±0.6

PFDA [αkjβ] 97.5±1.1 94.2±3.4 96.4±2.6 99.2±0.5

SELF 75.2±9.6 92.5±4.4 96.2±4.4 91.1±5.8

FDA 54.4±16.8 78.7±10.6 70.8±4.8 81.6±3.5

OFDA 54.4±18.8 78.4±11.0 64.2±5.3 79.4±1.0

Table 6: Prediction accuracies (in percentage) and standard deviations for different rates
of labeled observations in the learning set (sup. rate) and with 40% of label noise.
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6. Conclusion

This paper has presented a new probabilistic framework for FDA which re-

laxes the homoscedastic assumption on the class covariance matrices and adds

a term to explicitly model the non-discriminative information. This allows

PFDA to be robust to label noise and to be used in the semi-supervised con-

text. Experiments on real-world datasets showed that the proposed PFDA

method works at least as well as the traditional FDA method (even better in

most cases) in standard situations and it clearly improves the modeling and

the prediction when the dataset is subject to label noise and/or sparse labels.

The practitioner may therefore replace without prejudice FDA by PFDA for

its daily use.

Among the possible extensions of this work, it could be interesting to pro-

pose a unified estimation procedure for both the orientation matrix U and

the other model parameters. This should be at least possible in the isotropic

case for which maximizing the Fisher’s criterion is equivalent to maximizing

the likelihood. Another interesting extension would be to introduce spar-

sity in the orientation matrix U through a ℓ1 penalty in order to ease the

interpretation of the discriminative axes.
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