Probabilistic Fisher discriminant analysis: A robust and flexible alternative to Fisher discriminant analysis

Abstract : Fisher discriminant analysis (FDA) is a popular and powerful method for dimensionality reduction and classification. Unfortunately, the optimality of the dimension reduction provided by FDA is only proved in the homoscedastic case. In addition, FDA is known to have poor performances in the cases of label noise and sparse labeled data. To overcome these limitations, this work proposes a probabilistic framework for FDA which relaxes the homoscedastic assumption on the class covariance matrices and adds a term to explicitly model the non-discriminative information. This allows the proposed method to be robust to label noise and to be used in the semi-supervised context. Experiments on real-world datasets show that the proposed approach works at least as well as FDA in standard situations and outperforms it in the label noise and sparse label cases.
Type de document :
Article dans une revue
Neurocomputing, Elsevier, 2012, 90, pp.12-22
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00609007
Contributeur : Charles Bouveyron <>
Soumis le : lundi 17 octobre 2011 - 09:58:33
Dernière modification le : jeudi 16 mars 2017 - 01:07:47
Document(s) archivé(s) le : mercredi 18 janvier 2012 - 02:21:14

Fichier

revision_PFDA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00609007, version 2

Collections

Citation

Charles Bouveyron, Camille Brunet. Probabilistic Fisher discriminant analysis: A robust and flexible alternative to Fisher discriminant analysis. Neurocomputing, Elsevier, 2012, 90, pp.12-22. 〈hal-00609007v2〉

Partager

Métriques

Consultations de la notice

477

Téléchargements de fichiers

191