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1 Introduction

Modeling molecular properties related to their non-equilibrium dynamics requires var-

ious theoretical approaches depending on the particular microscopic processes related

to the observed molecular features. Since the dawn of quantum mechanics, properties

of molecules and solids have been studied theoretically in ever greater detail. This

has led in recent years to a state in which dynamics of complex systems with multi-

tude of degrees of freedom (DOF) is accessible to quantitative theoretical study [1].

Many properties of molecular systems are directly related to the equilibrium or time

dependent conformations of nuclear DOF for which electronic states play the role of a

background contributing to the nuclear potential energy surfaces. Problems like these

are the realm of molecular dynamics (MD) in its classical, quantum or mixed versions

and quantum chemistry (QC), where impressive qualitative and quantitative results

have been achieved in recent years. For certain types of dynamical problems, however,

less expensive model approaches are the preferred choice due to the scale of studied

system or due to the physical nature of studied processes. A good example of such a

problem is ultrafast photo-induced excited state dynamics of small molecular systems

and their aggregates [2]. Here, most of the relevant experimental information is only

available through ultrafast non-linear spectroscopy, and thus the theory has to span

the whole distance between the microscopic dynamics of the molecular system, and

the macroscopic description of experimental signals [3]. Typical field in which such an

approach has yielded deep understanding of the relevant physico-chemical processes

is the study of primary processes in photosynthesis. The related quantum mechanical

problem is usually formulated in terms of a model describing the relevant DOF of the

system (electronic states of photosynthetic molecules), and a thermodynamics bath

(the protein environment). Parameters for such models can be supplied by experiment

[4], QC studies [5,6], MD modeling [7], or are a result of suitable simplified models [3].

Recent advances in non-linear spectroscopy have opened a wide new experimental

window into the details of ultrafast photo-induced dynamics of molecular systems.

Experimental realization of two-dimensional (2D) coherent spectroscopy in the visible

and near IR regions [8–11] has enabled to overcome some of the frequency- vs. time-

resolution competition problem otherwise faced by ultrafast spectroscopy, and yielded

thus unprecedented experimental details of the time evolution of molecular excitations.

Most importantly, it was predicted that the presence of certain oscillatory features in

2D spectra is a manifestation of coherences between molecular excited states [12,13].

It was also concluded that these oscillations should be present in the 2D spectrum

of photosynthetic Fenna-Matthews-Olson (FMO) chromophore-protein complex [12].

Experimental results not only confirmed this prediction [14], but yielded also surprising

results such as unexpectedly long life time of these coherences, as compared to the

predictions of standard dephasing rate theory. Furthermore, while possible coherence

transfer between the pairs of electronic levels was ignored by the relaxation theory used

in Ref. [12], the experiment provided some evidence for its role in excitation energy

transfer. It was speculated that photosynthetic systems might use the coherent mode of

energy transfer to more efficiently channel excitation energy by scanning their energetic

landscape in a process similar to quantum computing [14]. More experiments have

recently reported coherent dynamics in photosynthetic systems [15] and conjugated

polymers [16], and the field of energy transfer in photosynthesis has seen an increased

interest from theoretical researchers from previously unrelated fields [17–20].
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Theoretical basis for the description of the decoherence phenomena in excitation

energy transfer has been developed long ago in the framework of the reduced density

matrix (RDM) [21,22]. Equations of motion (EM) resulting from this scheme are char-

acterized by the presence of time retarded terms responsible for energy relaxation and

decoherence processes. Equations of this type will be denoted as time non-local in this

paper. Later, an alternative approach to the derivation of the EM for the RDM has

emerged which yields time local equation of motion [23,24]. Both theories express the

relaxation term in form of an infinite series in terms of the system-bath interaction

Hamiltonian, but differ in time ordering prescriptions for the cumulant expansion of

the evolution operator. The time local equations correspond to so-called partial time

ordering prescription of the cummulant expansion, while the time non-local equations

result from so-called chronological time ordering [25,26]. Although the two schemes

yield formally different EM for the RDM, they are in fact equivalent as long as the

complete summation of the corresponding infinite series is performed. When the infinite

series are truncated at a finite order, the two theories yield equations that predict differ-

ent RDM dynamics. This is a result of different statistical assumptions about the bath

that are implicitly made in the two cases [25,26]. In all orders of expansion, so-called

Markov approximation can be used to transform the time non-local equation of motion

into a certain time-local form. This has to be regarded as an additional approximation

which simplifies the numerical treatment of the time non-local equations. Interestingly,

in the second order the time-local equations and the time non-local equations with

Markov approximation have exactly the same form.

Until recently, most experiments were not sensitive to coherence between electronic

levels. This allowed a host of further approximations to simplify EM. Most notably,

the secular approximation, which amounts to decoupling RDM elements oscillating on

different frequencies from each other, has limited the energy transfer phenomena to

separate dynamics of population transfer and coherence dephasing [27]. Even on very

short times scale, experiments aimed at studying population dynamics (pump probe)

are not sensitive enough to coherence between electronic levels to require non-secular

theory for their description. It was however suggested that measured relaxation time

can be distorted by non-secular effects [28]. Consequently, most of the theory developed

for evaluation of experiments has been aimed at improving calculation of the population

relaxation rates [29–31]. With experiments now uncovering new details about the role

of electronic coherence, theoretical methods beyond rate equations for probabilities

which are both accurate and numerically tractable are required. Although schemes

for constructing EM for the RDM beyond second order, based on co-propagation of

the RDM with auxiliary operators, seem feasible and promising [32,33], second order

theories might still be the only option for treatment of extended molecular systems. It

was suggested previously that second order perturbation theory with respect to system-

bath coupling provides a suitable framework for development of such methods [34].

This notion is also supported by the fact that in the special case of so-called spin-boson

model, second order time-local equation of motion already represents an exact equation

of motion for the RDM [35]. Recently, non-secular Lindblad rate equations which are

valid for arbitrarily strong system-bath coupling were parametrized by secular time

local second order (Redfield) rate theory [36]. Such approach seems to reproduce effects

observed in experiment of Ref. [14]. However, due to the time-scale of the experiment,

constant rate equations might not be appropriate for the description of the short time

dynamics. Consequently, we concentrate exclusively on theories with time dependent

relaxation rates, here.
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In this paper we study the following four different second order theories: (a) full

time non-local (full TNL) equation of motion resulting from the Nakajima-Zwanzig

identity or equivalently from the chronological ordering prescription in the cummulant

expansion, (b) the full time local (full TL) equation of motion resulting from the par-

tial ordering prescription in the cummulant expansion, or equivalently from Markov

approximation applied to TNL equation, (c) time non-local equation with secular ap-

proximation (secular TNL), and (d) time local equation with secular approximation

(secular TL). We discuss the applicability of these equations to the description of the

energy relaxation and decoherence dynamics in small systems of molecular excitons

with the emphasis of on recent 2D spectroscopic experiments and the dynamics of co-

herence between electronic excited states. Note that, in this paper, full refers to the

equations where no secular approximation has been applied. These equations are still

of second order perturbation theory in the system-bath coupling.

The paper is organized as follows. The next section introduces Hamiltonian descrip-

tion of an aggregate of small molecules embedded in a protein or solid state environ-

ment. In Section 3 we describe the details of four different EM for the RDM describing

electronic states of a molecular aggregate. Two-dimensional coherent spectroscopy, and

non-linear spectroscopy in general are introduced in Section 4. In Section 5 we present

and discuss numerical results comparing different theories of relaxation on calculations

of coherence life time and 2D spectra.

2 Model Hamiltonian

The investigated molecular system is an aggregate composed of N monomers embedded

in protein environment. Let us first consider a monomeric molecule (a chromophore)

embedded in the environment, but insulated from interaction with its neighboring

monomers. The monomer Hamiltonian has a form

Hm =
(

ε
(m)
g + T (Pm) + V

(m)
g (Qm)

)

|gm〉〈gm|

+
(

ε
(m)
e + T (Pm) + V

(m)
e (Qm)

)

|em〉〈em| , (1)

where |gm〉, |em〉 denote electronic ground and excited states, and ε
(m)
g , ε

(m)
e repre-

sent electronic energies of these states. The kinetic term T (Pm) and the potential terms

V
(m)
g (Qm), V

(m)
e (Qm) represent the intra-molecular DOF and the protein environment

(bath or reservoir) interacting with these states. By Qm (Pm) we denote the (possibly

macroscopic) set of coordinates (impulses) describing both the intramolecular nuclear

DOF of the m-th monomer as well as the DOF of its surroundings. The total Hamil-

tonian of the monomer can be split into the system, reservoir and the system-reservoir

coupling terms

Hm
S ≡ ε

(m)
g |gm〉〈gm|

+(ε
(m)
e + 〈V

(m)
e (Qm)− V

(m)
g (Qm)〉eq)|em〉〈em| , (2)

Hm
R ≡ [T (Pm) + V

(m)
g (Qm)]

× (|gm〉〈gm|+ |em〉〈em|)

= [T (Pm) + V
(m)
g (Qm)]⊗ 1̂, (3)
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Hm
S−R ≡

(

V
(m)
e (Qm)− V

(m)
g (Qm)

−〈V
(m)
e (Qm)− V

(m)
g (Qm)〉eq

)

|em〉〈em|

≡ ∆Φm(Qm)|em〉〈em| . (4)

Here, 〈A(Q)〉eq represents averaging of an arbitrary Q−dependent operator over

equilibrium state of the bath. By this choice of the splitting we have assured that

∆Φ(m)(Qm) = 0 for the system in equilibrium. To simplify the notation, we redefine

electronic energy of the excited state to include the equilibrium average of the potential

energy difference between the electronic excited and ground states, ε̃
(m)
e = ε

(m)
e +

〈V
(m)
e (Qm)− V

(m)
g (Qm)〉eq and we drop the tilde over ε

(m)
e further on in this paper.

An aggregate built out of these monomers can be represented on a Hilbert space

composed of collective aggregate states. We define the aggregate ground state

|g〉 =

N
∏

m=1

⊗|gm〉, (5)

states with a single excitation

|un〉 =

n−1
∏

m=1

⊗|gm〉 ⊗ |en〉

N
∏

m′=n+1

⊗|gm′〉, (6)

and multi-excited states in an analogical manner. We drop the sign ⊗ in further consid-

eration for the sake of brevity. The Hamiltonian of the aggregate is constructed using

the energies of collective states

Hnon−int
S = εg|g〉〈g|

+
∑

n

(∆εn +Ω) |un〉〈un|+ h. e. t., (7)

where εg =
∑

n ε
(n)
g , Ω = N−1∑

n ε
(n)
e , and ∆εn = ε

(n)
e − Ω +

∑

m 6=n ε
(m)
g . The

abreviation h. e. t. denotes higher excitonic terms. Due to the fact that the monomers

are positioned in a tight aggregate, we have to account for the interaction energy

between their excited states. The interaction energy between states |um〉 and |un〉 will

be denoted Jmn, and the corresponding contribution to the total Hamiltonian reads

Hint
S =

∑

n6=m

(Jnm|un〉〈um|+ c.c.) + h. e. t.. (8)

Due to the off-diagonal terms Jmn the collective states defined in Eq. (6) are not

eigenstates of the total Hamiltonian HS = Hnon−int
S

+Hint
S . Although the basis of the

states |g〉, |un〉 and multiple-excitation states of the aggregate provides efficient means

for defining the Hamiltonian, it is more practical to switch into the basis of eigenstates

of the Hamiltonian HS . One of the reasons is that while matter interacts with light,

the differences between eigenenergies of HS define the resonant transition frequencies.

The system–bath coupling part of the aggregate Hamiltonian reads

HS−B =
∑

n

∆Φn|un〉〈un|+ h. e. t., (9)
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and thus no terms in the total Hamiltonian couple the ground state with the first excited

state or higher excited state bands. In fact, the total Hamiltonian splits into blocks

separated approximately by the energy ~Ω (see Fig. 1). This reflects the neglecting

of all adiabatic couplings, which are supposed to be so weak that they do not lead to

transitions on the time scale of interest (femto and picoseconds). This property is well

justified e.g. for chlorophyll systems.

For the subsequent use in this paper, we denote the eigenstates of the total elec-

tronic Hamiltonian HS by |ūa〉, a = 1, . . . , N , for single exciton states formed as linear

combinations of single excitation states |un〉 and |Ūa〉, a = N+1, . . . , N+N(N−1)/2,

for two-exciton states formed from the linear combination of pairs of single excitation

states.

3 Second order relaxation theories

In this section we consider interaction of the electronic system described by the Hamil-

tonian HS with a macroscopic bath composed of the DOF of the molecular surround-

ings. Standard approach to such a problem is to derive EM for reduced density operator

ρ(t) = trBW (t), (10)

where trB is a trace over the bath DOF and W (t) is the total density operator. The

derivation is conveniently achieved via projection operator technique [27,37]. Two

general schemes exist. First, so called Nakajima-Zwanzig identity leads to integro-

differential, i.e. time-non-local master equation for the RDM with a convolution mem-

ory term. Alternatively, a different projector operator identity can be used to derive EM

which is time-local, leading to so-called convolutionless master equation [37]. Interested

reader can refer to Refs. [25,26,37] for details of the derivations and comparison of the

two schemes. Below, we will use specific second order approximation to the general

equations.

3.1 System-Bath Coupling

We will now assume the interaction Hamiltonian in a form of Eq. (9) where index n

now runs through all relevant single-exciton and multi-exciton states

HI =
∑

n

∆ΦnKn. (11)

Correspondingly, Kn = |un〉〈un| for single excitonic states. the system-bath interac-

tion contribution can be conveniently expressed via so-called bath (or energy gap)

correlation functions defined as

Cmn(τ ) = trQ{UB(−τ )∆ΦmUB(τ )∆Φnweq}. (12)

Here, we have chosen a specific form of the bath density matrix w ≡ weq , where weq

is the equilibrium density matrix of the bath DOF. Defining also an operator

Λm(τ ) =
∑

n

Cmn(τ )US(τ )KnU
†
S
(τ ) (13)
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Fig. 1 Illustration of the level structure of an excitonic system. The excited states |en〉 of
N monomers with transition frequency Ω (left part of the figure) split due to the resonance
interaction into N one exciton states |ūn〉 (right). Absorption spectra of ensembles of non-
interacting (left) and interaction (right) monomers. The system also exhibits higher excitons
states (two-exciton states |Ūn〉 are depicted here), with Ω being the mean transition frequency
from the one- to two-exciton bands. A pictorial 2D spectrum with peaks resulting from transi-
tions between the ground- and one-exciton states (red arrows) and one- and two-exciton states
(blue arrows) is presented in the upper left corner of the figure. The transitions between the
ground- and one-excitons states lead to positive contributions to the 2D spectrum (absorption
and ground state bleach), while the transitions between the one- and two-exciton states result
in a negative contribution (excited state absorption).
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and a superoperator M(2)(τ ) such that

M(2)(τ )A =
∑

m

[Km, Λm(τ )US(τ )AUS(−τ )

−US(τ )AUS(−τ )Λ†
m(τ )]−, (14)

the EM for the RDM can be rewritten either is a time local form as

∂

∂t
ρ(t) = −iLSρ(t)

−
∑

m

t−t0
∫

0

dτ [Km, Λm(τ )ρ(t)− ρ(t)Λ†
m(τ )]− (15)

or in a time non-local form as

∂

∂t
ρ(t) = −iLSρ(t)

−
∑

m

t−t0
∫

0

dτ [Km, Λm(τ )US(τ )ρ(t− τ )US(−τ )

−US(τ )ρ(t− τ )US(−τ )Λ†
m(τ )]−. (16)

It is important to note that the two equations and their solutions differ. They are

differnt second order approximations to the exact equation of motion for the RDM

Provided we can supply a model for the correlation function Cmn(τ ) we are in

position to write down the EM for RDM in terms of known quantities. The last step

necessary to implement these equations is to represent them in the basis of the eigen-

states of the aggregate Hamiltonian. We define

ρab(t) = 〈ūa|ρ(t)|ūb〉, a, b = 1, . . . , N, (17)

ρab(t) = 〈Ūa|ρ(t)|Ūb〉,

a, b = N + 1, . . . , N +N(N − 1)/2, (18)

and in a similar manner for matrix elements of other operators and superoperators.

This leads to
∂

∂t
ρab(t) = −iωabρab(t)−

∑

cd

Rabcd(t)ρcd(t), (19)

with Rabcd(t) being the matrix elements of the superoperator defined by the r. h. s. of

Eq. (15), and
∂

∂t
ρab(t) = −iωabρab(t)

−
∑

cd

t−t0
∫

0

Mabcd(τ )ρcd(t− τ ), (20)

with Mabcd(τ ) the matrix elements of the superoperator defined by the r. h. s. of Eq.

(16). All the quantities needed to calculate the matrix elements Rabcd(t) and Mabcd(t)

are known provided the energy gap correlation function is know.
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3.2 Energy gap correlation function

As a suitable model of the energy gap correlation function we choose so-called multi-

mode Brownian oscillator (BO) [3]. In general, Brownian oscillator model can interpo-

late between underdamped intra-molecular DOF and (usually) overdamped bath DOF

representing the immediate surroundings of the molecule. In this paper, we assume the

correlation function of the energy gap of each molecule in the aggregate to be the same,

and independent of neighboring molecules, i.e.

Cab(t) = C(t)δab. (21)

The correlation function C(t) is taken in a form of the overdamped BO model

C(t) = −i~λΛe−Λ|t| sgn t

+λΛ~ coth

(

β~Λ

2

)

e−Λ|t| +
4Λλ

β

∞
∑

n=1

νne
−νn|t|

νn2 − Λ2
, (22)

with

νn ≡
2πn

~β
, β ≡

1

kBT
, Λ ≡

1

τc
. (23)

Here, λ is the reorganization energy, νn are so-called Matsubara frequencies, kB is

the Boltzmann constant, T is the thermodynamic temperature and τc is the so-called

bath correlation time. The BO form of the correlation function satisfies all general

constraints put of a correlation function by thermodynamics [3]. Apart of the tem-

perature which we assume to be T = 300 K in all calculations in this paper, the BO

model is determined by two parameters only; by the reorganization energy λ which is

experimentally related to the Stokes shift S = 2λ and by the bath correlation time τc.

BO is a widely used, well physically motivated, but not the only possible model for

the bath correlation function. Implications of other forms of the correlation function

for the RDM dynamics will be studied elsewhere.

3.3 Secular and constant relaxation rate approximations in the energy eigenstate basis

Eqs. (19) and (20) are systems of coupled (integro-) differential equations for the ele-

ments of the RDM. From the first terms on the r. h. s. we deduce that the element ρab(t)

oscillates with a frequency close to ωab. It is often justified to assume that two terms

oscillating on different frequencies are independent of each other. For their envelopes

ρ̄ab(t) = eiωabtρab(t) we have

∂

∂t
ρ̄ab(t) = −

∑

cd

Rabcd(t)e
i(ωab−ωcd)tρ̄cd(t), (24)

and integration over time has therefore a relatively smaller contribution when ωab −

ωcd 6= 0. Neglecting these contributions, usually termed secular approximation [27],

leads to setting

Rabcd(t) = 0, (25)

for all term except when a = c and b = d , or a = b and c = d. The interpretation of

the remaining non-zero terms is simple. The terms Raabb(t) for a 6= b represent rates
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of transition from level denoted by index b to a level denoted by a. The term Raaaa(t)

corresponds to the total transition rate from the level a to all other levels. The terms

Rabab(t) (a 6= b) are rates of the damping of a coherence element ρab(t). In secular

approximation, the dynamics of populations of electronic levels is thus decoupled from

the dephasing of coherences. The terms other then population tranfer and dephasing

rates will be refered to as non-secular terms, here. The processes related to these terms,

such as coherence to coherence transfers, or coherence to population transfers, will be

refered to as non-secular processes or coherence transfer processes.

The above arguments for the secular approximation apply also to the integro-

differential equation (20), and we can thus define four different second order EM for the

RDM, with different levels of approximation. From the perspective of our derivation,

the most general second order equation is Eq. (20), which we have denoted full TNL.

The convolutionless Eq. (19) denoted full TL can be regarded its approximation, but

it can also be alternatively viewed as derived by different cummulant approximation,

see Refs. [25,26]. The set of four methods investigated here is completed by applying

secular approximation to the full TNL and full TL equations.

All four sets of EM we consider here are extensions to the two well-known constant

relaxation rate theories. To arrive at the well-known Redfield equations [27], one can

assume certain coarse graining of the RDM dynamics so that all significant changes

to the ρ(t) occur on a time scale much longer than the correlation time τc. Then time

t0 in Eq. (15) can be put to −∞ and the integration limits are then from zero to

infinity. The relaxation tensor R thus becomes time independent. If we, on the other

hand, consider the decay of C(t) to be much faster than even the transition frequencies

between electronic levels, we can assume C(t) ≈ C0δ(t) and Eq. (15) has the well-known

Lindblad form [38,27]. Only for the Lindblad form and for the Redfield equations in

secular approximation, it can be shown that the diagonal elements of ρ(t) are always

positive. For all other equations we have derived here, this assertion cannot be proven

in general. This is a consequence of the fact that they are derived in a low order of

perturbation theory.

4 Non-linear Spectroscopic Signals

Non-linear spectroscopic signals are very well described by time-dependent perturba-

tion theory [3]. The EM, Eqs. (15) to (16), can be extended by semiclassical light-matter

interaction term. This yields

∂

∂t
ρ(t) = −iLSρ(t)−D[ρ(t)](t) + iVρ(t)E(t), (26)

where E(t) = n ·E(t) is the projection of the external electric field vector E(t) on the

normal vector n in direction of the molecular transition dipole moment. The symbol

D[ρ(t)](t) represents the relaxation term chosen from the full TNL, full TL, secular

TNL or secular TL equations of motion. The superoperator V is a commutator with

the dipole moment operator µ = nµ, so that for an arbitrary operator A we have

VA =
1

~
[µ, A]−. (27)
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4.1 Third-order non-linear response theory

Non-linear optical signals are related to the RDM via polarization

P (t) = tr{µρ(t)}. (28)

In particular, for the third order non-linear signal E
(3)
s (t) one can write

E
(3)
s (t) ≈ iωP (3)(t) = iω tr{µρ(3)(t)}, (29)

where the upper index (3) denotes that the quantity is of the third order of the pertur-

bation theory with respect to the external electric field E(t). By defining the evolution

superoperator U(t) which fulfills Eq. (26) with E(t) = 0 we can write the third order

perturbation term as

ρ(3)(t) = −i

∞
∫

0

∞
∫

0

∞
∫

0

dτ3dτ2dτ1U(τ3)VU(τ2)VU(τ1)Vρ0

×E(t− τ3)E(t− τ3 − τ2)E(t− τ3 − τ2 − τ1). (30)

In experiment, the laser field is often prepared in a form of three incident pulses

E(t) = A1(t− t1)e
−iΩ1(t−t1)+ik1r

+A2(t− t2)e
−iΩ2(t−t2)+ik2r

+A3(t− t3)e
−iΩ3(t−t3)+ik3r + c.c., (31)

with different k-vectors k1, k2 and k3. In the rest of the paper we assume Ω1 = Ω2 =

Ω3 ≡ Ω, A1(t) = A2(t) = A3(t) ≡ A(t). The expression obtained by inserting Eq.

(30) into Eq. (29) can be significantly simplified in cases where the system consists

of a ground-state and a band of excited states, with the transition frequency close to

resonance with the laser pulse frequency Ω, and by assuming the laser pulses are ultra

short, i.e. A(t) ≈ E0δ(t). For an experiment which detects non-linear signal emitted

in the direction −k1 + k2 + k3, the third order signal has a frequency ≈ Ω and it is

obtained from just a handful of response functions that represent certain contributions

to the triple commutator in Eq. (30). The details of the derivation can be obtained e.g.

in Ref. [11].

If the delays between the pulses are selected such that τ denotes the delay between

the first (k1) and the second (k2) pulses, and T denotes the delay between the second

and third (k3) pulse (e.g. t3 = 0, t2 = −T and t1 = −T − τ ) we can write for the time

and the delay dependent signal field

Es(t, T, τ ) ≈ R2g(t, T, τ )

+R3g(t, T, τ )−R∗
1f (t, T, τ ), τ ≧ 0, (32)

Es(t, T, τ ) ≈ R1g(t, T, |τ |)

+R4g(t, T, |τ |)−R∗
2f (t, T, |τ |), τ < 0. (33)

The absolute value in Eq. (33) originates from the fact that response functions R are

defined for positive time arguments only, and negative τ is achieved by switching the

order of the k1 and k2 pulses. The individual response functions R are listed in the
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Appendix A. Most importantly, they consist of series of propagation of the density

matrix blocks by evolution operators obtained from the solution of EM. We have e.g.

R2g(t, T, τ ) = tr{µgeUegeg(t)V
(R)
eg

×Ueeee(T )V
(L)
eg Ugege(τ )V

(R)
ge ρ0}, (34)

where the evolution superoperators V
(R)
ab

act on an arbitrary operator A as a dipole

operator µab from the right, i.e. V
(R)
ab

A = Aµab. The superoperator V
(L)
ab

is defined

analogically with the action of µab from the left. The indices e and g denote electronic

bands as denoted in Fig. 1. Thus, the above operators and the action of superoperators

on an arbitrary operator A are expressed in the basis of Hamiltonian eigenstates as

ρ0 = |g〉〈g|, (35)

µeg =
∑

n

µ
(eg)
ng |un〉〈g|, (36)

Ugege(t)[A] =
∑

nm

U
(gege)
gngm (t)〈um|A|g〉|g〉〈un|, (37)

Ueeee(t)[A] =
∑

nn′mm′

U
(gege)
nn′mm′(t)

×〈um′ |A|um〉|un〉〈un′ |. (38)

Eqs. (35) to (38) together with the Appendix A enable us to calculate expected non-

linear signal from the knowledge of the matrix elements of the evolution superoperator.

This type of knowledge can be obtained from solutions of the four different EM that

we presented in Section 3.

4.2 Two-dimensional Coherent Spectroscopy

Two-dimensional coherent spectrum, Ξ(ωt, T, ωτ ), is obtained from the non-linear sig-

nal by Fourier transforming the time and pulse delay dependent signal electric field

ES(t, T, τ ) along the t and τ variables [8,11] as

Ξ(ωt, T, ωτ ) =

∞
∫

−∞

dt

∞
∫

−∞

dτEs(t, T, τ )e
iωtt−iωτ τ . (39)

The Fourier transform in τ yields an ωτ dependence that is formally similar to linear

absorption spectrum, while the transform in t yields generalized absorption and stim-

ulated emission from a non-equilibrium state created by the first two laser pulses. 2D

spectrum thus represents a 2D absorption/emission and absorption/absorption corre-

lation plot. During the pulse delay time T the system evolves both in the electronically

excited state and in the ground state, but no optical signal is generated. Relaxation

of populations in the electronically excited band leads to evolution of non-diagonal 2D

spectral features, so-called cross-peaks. Cross-peaks appearing at T = 0 are a signature

of excitonic origin of the observed excited states. The 2D cross-peaks oscillate in T as

long as the corresponding electronic coherence elements of the reduced density matrix

are oscillating. The life time of the electronic coherences can thus be estimated directly

from the T dependent sequence of 2D spectra [12,14].
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Table 1 Parameters of the model trimer. The parameter ǫn represents the transition energy of
n−th monomer, transition dipole moments dn are taken relative to some value d0. Parameters
hn and αn are explained in Fig. 2.

n ǫn
cm−1

dn,x

|dn|

dn,y

|dn|

dn,z

|dn|
|dn|
d0

hn
αn

grad

1 9850 1 0 0 0.65 0 0
2 10000 −0.94 0.34 0 2.15 10 60
3 10150 −0.94 0.34 0 0.9 10 120

5 Numerical Results and Discussion

In this section we study dynamics of model aggregate viewed via population and coher-

ence dynamics and via 2D coherent spectrum. We define a simple model aggregate for

which we calculate excited state dynamics including evolution of coherences between

electronic states, linear absorption and 2D spectra at chosen population times. Calcula-

tions of linear absorption, which require only knowledge of the time evolution of optical

coherences, are performed using the secular time local equation, since it is known to

yield exact result at least for some models [35]. Population dynamics is calculated using

all four methods we discussed in Section 3, and the results are compared.

The simplest model of an aggregate that can exhibit all effects observed in Ref.

[14] is a trimer. The geometry of the studied models, together with the meaning of the

parameters is presented in Fig. 2. In Tab. 1 we summarize the main parameters of the

model. Because we are not interested in the absolute amplitude of the absorption or

2D spectra we assume the transition dipole moments dn to be taken relative to some

value d0. All three resonance couplings J between the molecules are set to J = 200

cm−1 for the calculations presented here.

The values of the transition dipole moments, together with the exciting light in-

tensity, determine the initial condition for the population dynamics. We assume that

the excitation light intensity and the value of the transition dipole moment are such

that the system is only weakly excited. The total population of the excited state band

is normalized to 0.01. The relative values of the transition dipole moments are chosen

so that the linear absorption spectrum (see Fig. 3) shows peaks of roughly the same

height. Two peaks originating from the energetically lowest and the energetically high-

est states dominate the spectrum, the third level contributes as a shoulder to lowest

energy peak.

Two parameters that influence the coupling for the model system to the bath are

reorganization energy λ and correlation time τc. We vary these parameters in the range

that can conceivably represent chlorophylls in photosynthetic complexes (see e. g. Refs.

[39,40]).

5.1 Population relaxation and evolution of coherences

First, we compare relaxation dynamics of populations of excited state of our ag-

gregate after excitation by an ultrashort laser pulse. TL equations of motion where

solved by standard numerical methods for ordinary differential equations provided by

the Mathematica R© software. For the TNL equations we used fast Fourier transform

method. Figure 4 presents the first 1 ps of the population dynamics after a δ−pulse

excitation of the trimer from Tab. 1 at the temperature T = 300 K. Reorganization en-
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Fig. 2 Geometry and parameters of a trimer aggregate. One monomer is chosen to be po-
sitioned at the origin of the coordinate system, with the transition dipole moment pointing
along the x axis. The positions of the transition dipole moments of the other two molecules in
space are characterized by their distance h2 and h3 from the origin of coordinates and by the
angles α2 and α3. Orientations and lengths of the dipoles are given in Tab. 1. In our example
we assume that the aggregate is planar.

ergy λ = 120 cm−1 and correlation time τc = 50 fs are the same at all three monomers.

The dynamics with the same parameters for a selected coherences element ρ13(t) is pre-

sented in Fig. 5. The overall conclusion is that all four methods yield a similar general

behavior for the populations, with some difference at the short time evolution and also

slightly different long time equilibrium. Examination of the Figure 5 leads us to the

conclusion that the methods yield two different results - a short coherence life time for

the time local methods, and a relatively longer life time in case of the time non-local

methods. The behavior of the coherence ρ13(t) represents a general tendency that we

have observed for all electronic coherences over a wide range of parameters.

Let us now concentrate on short time behavior of the populations and coherences

in more retail. In the short time evolution of the coherences the four methods group

into two distinct groups with short (TL methods) and long (TNL methods) coherence

life time. Whether the underlying equation is secular or not seems to have only a little

influence on the coherence dynamics. Fig. 6 shows the short time (0− 400 fs) compar-
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Fig. 3 Linear absorption spectrum of the model trimer for various parameters of the system
bath interaction: (a) λ = 120 cm−1, τc = 50 fs, (b) λ = 30 cm−1 , τc = 100 fs, calculated by
the secular TL theory (full lines) and the secular TNL theory (dashed lines).

ison of the population calculated by the four EM. In addition, short time population

dynamics calculated by constant rate secular and non-secular Redfield equations are

presented. We can clearly see that the results can be naturally grouped according to the

presence of fast oscillatory modulation of the population relaxation dynamics. In the

one group we have the full TL and full TNL methods, where such oscillations clearly

occur, the second group comprises the two secular methods with no oscillations present.

Thus, it can be concluded that the non-secular terms in the EM, which represent the

coherence transfer and transfer between populations and coherences, are the cause of

these oscillations. This is also supported by comparison of the population dynamics

of the full TL and full TNL equations from Fig. 4 (e.g. the population of the state

1). The oscillation on the full TNL curve last longer than those of the full TL one,

which reflects the longer coherence life time we have found for the TNL equations. In

comparison to the four time dependent theories, the calculation with constant rates

yields a completely different dynamics at at short times. This is consistent with the

idea of the slipage of initial conditions [41] during the interval roughly corresponding

to the length of bath correlation time.

Let us now discuss the long time limit of the time evolution. As expected, the two

secular theories yield the same equilibrium at long population times. This equilibrium

corresponds to the canonical distribution of population among the excitonic levels at

T = 300 K. In both secular TNL and secular TL cases, coherences have relaxed to

zero at long times as the inset of the Fig. 5 demonstrates. The non-secular TNL and

TL equations yield non-zero, stationary coherences at long times, and correspondingly,

the long time equilibrium populations do not correspond to the canonical thermal



16

equilibrium. Although both non-secular theories converge to results different from the

canonical equilibrium, the full TNL equation yields populations that are physical at

all times for the studied system parameters, i.e. they are always positive. The full TL

equation on the other hand fails to keep probabilities positive at long times, and the

occupation probability of the highest electronic level becomes negative after 200 fs for

the parameters used on Fig. 4.

In light of recent experiments [14], the conclusion that time non-local theories

lead to a longer coherence life time than the time-local ones (i.e. also longer than the

standard constant rate theories) is probably the most interesting. We have performed

calculations of the RDM dynamics while varying the reorganization energy and the

correlation time. The absolute values of the coherence ρ13(t) elements were fitted by a

single exponential to estimate coherence life-time. The results are summarized in Fig.

7. The Fig. 7A shows the results for secular TL and secular TNL equations. Clearly,

with growing correlation time τc, the full TNL equations lead to a increasing coherence

life time. The full TL equation shows only a very weak dependence of the coherence

life time on correlation time. Another interesting observation is that for correlation

time longer then 50 fs, the dependence of the coherence life time on the reorganization

energy λ is different for full TNL and TL methods. Time local theory, in accordance

with the standard rate theories, predicts decrease of the coherence life time with λ.

The full TNL theory predicts (within the parameter range studied here) an opposite

tendency. The Fig. 7B shows similar conclusion for the non-secular versions of the

theories, with the same difference between TL and TNL theory. The dependence of the

coherence life time on λ in case of TNL equations is not monotonous.

5.2 Two-dimensional spectrum

As discussed in the Introduction, the secular TL equation of motion yields an exact

result for the dephasing of an isolated optical coherence [35]. One can show, by com-

parison of the absorption spectra calculated by secular TL and TNL methods (see Fig.

3), that the TNL theory leads to certain artifacts (second peak) and is therefore not

suitable for the description of the optical coherence evolution. Consequently, by the

TL theories one can hope to obtain valid results only for the evolution superoperators

at the first and the third time interval of the third order response functions by the

TL theories. In Ref. [42] it was shown that non-secular terms in the TL equations for

optical coherences lead to temperature dependence of the positions of excitonic bands

in absorption spectra. This dependence was shown to be strong when the electronic

states involved are characterized by significantly different reorganization energy [42,

34]. Indeed it can be shown for homodimer that the non-secular terms are exactly zero

in second order TL theory if the monomers exhibit the same reorganization energies

[34]. We can therefore expect the non-secular effects in the optical coherences to be

weak in our case, and we choose secular TL to calculate the evolution superoperators

in the first and the third time interval of the response function, Eq. (34).

Concerning the population interval, the situation is somewhat different. As we have

shown above, the non-secular TL theory leads to dynamics that breaks the positivity

condition for the population probabilities at long times. At the same time, short time

dynamics is very similar to the full TNL. Both theories predict population oscillations

during the life time of the electronic coherences. The full TNL equation, however,

preserves positivity, at least for the parameters studied here, and can be therefore used
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Fig. 4 First 1000 fs of the excited state population dynamics of a trimer with parameters
λ = 120 cm−1, τc = 50 fs, calculated by all four methods. For these particular parameters, the
full TL equation breaks positivity of the RDM diagonal elements after 200 fs. Its prediction for
the populations of the lowest and highest levels is significantly different from the other three
methods.

to calculate meaningful 2D spectra. For the same reason, both secular theories can also

be successfully used to calculate 2D spectrum. As the oscillation of the populations

predicted by non-secular theories are too small to be reliably observed in 2D spectrum

(only a small change of the crosspeak amplitude due to the population transfer is

observed after 140 fs of relaxation in 2D spectrum of Fig. 8 ) we expect only a small

difference of the 2D spectrum to appear between the secular and full TNL theories. For

the calculation of the representative 2D spectrum we therefore choose the secular TL

and the full TNL theories. These two differ from each other mainly in the prediction

of the life time of the electronic coherences. The observable difference in the calculated

2D spectra should therefore predominantly result from the different life time of the

electronic coherence.

Fig. 8 presents 2D spectra for λ = 30 cm−1 and τc = 100 fs. These parameters

lead to a rather slow relaxation and consequently to narrow spectral peaks in both

absorption (see Fig. 3) and 2D spectra. This allows us to clearly see characteristic

T−dependent oscillations of the peaks in 2D spectrum. At T = 0 fs, both meth-

ods provide the same 2D spectrum, with four peaks. Two diagonal peaks arise when

all three perturbations of the system by electric field occur on the same level, while

two crosspeaks appear from interactions occurring on different levels. Negative peaks

correspond to excited state absorption (see Fig. 1). For two molecules that are not

excitonically coupled, all contributions to the crosspeaks cancel out exactly, while if

two molecules are excitonically coupled non-zero crosspeaks appear. The shapes of the
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Fig. 5 First 500 fs of the dynamics of the RDM coherence element ρ13(t), with parameters
from Fig. 4, calculated by all four methods. Detail of the long time part of the time evolution
is presented in the inset.

peaks are influenced by the phase evolution of the coherence elements of RDM during

the population time T . On the upper left figure of Fig. 8 we have marked the elongation

of the diagonal and off-diagonal peaks by arrows. The elongation can be best judged by

looking at the zero contour (in black). This particular elongation is characteristic for

the phase of the ρ13(t) element (see upper right figure of Fig. 8) at T = 0. At T = 20

fs the phases of the ρ13(t) calculated by both methods are opposite to the phase at

T = 0. The 2D spectra calculated by the two different methods at T = 20 fs differ

only in the precise positions of the contours. This phase of the coherence element is

characterized in 2D spectrum by a different orientation of the peaks. Interestingly, at

T = 140 fs the two methods predict ρ13(t) that have mutually opposite phases and as

a consequence the 2D spectra at T = 140 fs calculated by different methods differ in

the orientation of their crosspeaks. Since the secular TL theory predicts a simple de-

phasing of the coherence and a regular oscillation with a single frequency proportional

to the energy difference between corresponding energy levels, it is in principle possible

to distinguish, even experimentally, deviations from this prediction. Our conclusion is

that such a deviation should be a consequence of the memory effects in the reduced

system time evolution.
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Fig. 6 First 400 fs of the population dynamics of the trimer with parameters λ = 30 cm−1

and τc = 50 fs. Results of full TL and TNL theories are presented in upper subfigure (A), the
secular results are found the the lower subfigure (B). In both figures, magenta lines represent
population dynamics calculated by constant rate Redfield theory.
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Fig. 7 The life time of coherence ρ13(t) as obtained from fitting the coherence dynamics
calculated by all four methods for various parameters λ and τc. The upper subfigure (A)
shows the life times obtained by the secular methods, while the lower subfigure (B) presents
the same for non-secular methods.
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Fig. 8 Two-dimensional coherent spectra of the trimer model at population times T = 0,
20 and 140 fs calculated by the secular TL method (left column) and the full TNL method
(right column). The system-bath interaction parameters are λ = 30 cm−1 and τc = 100 fs.
The coherence element ρ13(t), which is mainly responsible for the oscillatory behavior of the
crosspeaks, is presented in the upper right corner of the figure. The 2D spectrum at T = 0 fs
is the same for both methods and is therefore presented only once. The population times are
selected so that they represent different phases of the ρ13(t) element (denoted by arrows on
the coherence element figure). Arrows in the 2D spectra denote the orientation of the peaks.
All spectra are normalized to 1 with contour step of 10 %. Positive features are in full red line,
negative features are represented by dashed blue line, and the zero contour is depicted by the
full black line.
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5.3 Validity of secular and Markov approximations

Several conclusions about the applicability of the secular and Markov approximations

can be drawn from the above results. As pointed out in Ref. [35], Markov approxima-

tion, which in the second order in system-bath coupling converts the TNL equations

to the TL ones, leads accidentally to an exact result for an optical coherence element

interacting with the harmonic bath. It has been also pointed out previously [33,43]

that in the same case, the TNL equations lead to artifacts. When studying relaxation

dynamics of the populations and electronic coherences in excitonic systems, full TL

theory leads to a breakdown of the positivity of the RDM, while none of the secular

theories suffer from this problem. In principle, the full TNL theory suffers from this

problem, too [44]. However, it has been found less susceptible to it here. The secular

theories lead to canonical density matrix at long times, while the full TNL results in

a stationary state characterized by non-zero (but constant) coherences. Such result

corresponds to an additional renormalization of the electronic states by the interaction

with bath, and has to be expected even at a weak coupling limit [45]. It is important

to note in this context that the canonical equilibrium is to be expected for the system

consisting of the molecule and the bath as a whole, not for its parts [45].

For the population dynamics we are therefore forced to conclude that the full TNL

theory represents the best candidate for a correct description of relaxation phenom-

ena in the second order of the system bath interaction. It predicts similar population

transfer times as other methods, it is much less sensitive to the breakdown of the posi-

tivity than its TL counterpart, and it leads to a bath renormalization of the canonical

equilibrium. Most interestingly however, it predicts longer coherence life time than the

TL theory. It was recently established by Ishizaki and Fleming [33] that this is to be

expected from a higher order theory.

In the light of the above conclusions about the dynamics of optical coherences and

the populations and coherences of the one exciton band, we suggest a hybrid approach

to calculating 2D spectra, which consists of the application of the TL method on optical

coherences (first and third time interval) and the full TNL method on the calculation

of the RDM dynamics in the one exciton band during the population time T .

6 Conclusions

In this paper we have compared four different theories of excitation energy transfer and

relaxation in molecular aggregate systems, with a special attention paid to lifetime of

electronic coherences. Second order time non-local and time local theories with and

without secular approximation were studied. For our specific model of an aggregate we

have concluded that time non-local theories can account for experimentally observed

electronic coherence life time that is significantly longer than the one predicted by the

standard time-local secular relaxation rate theory. Markov approximation leading to

time local EM was found to be responsible for the reduction of the coherence lifetime,

while the influence of the secular approximation on the life time was found rather weak.

The time local theory without secular approximation is found to break positivity of

the occupation probabilities in the range of parameters studied here. We conclude that

time-local second order theory is not suitable for simulating the coherence transfer

effects. Simulations of two-dimensional spectra show that the time non-local effects
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can be experimentally identified based on the analysis of the oscillations of the cross

peaks.
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A Third Order Response Functions

In this appendix we list the third order response function used in calculating the impulsive 2D
spectra. The first index of the response function follows the standard notation of Ref. [3]. The
second index is g for pathways not involving the two-exciton band, while all pathways denoted
by f include a two-exciton contribution (see e.g. Ref. [11]).

R1g(t, T, τ) = tr{µgeUegeg(t)V
(R)
eg

×Ueeee(T )V
(R)
ge Uegeg(τ)V

(L)
eg ρ0}, (40)

R2g(t, T, τ) = tr{µgeUegeg(t)V
(R)
eg

×Ueeee(T )V
(L)
eg Ugege(τ)V

(R)
ge ρ0}, (41)

R3g(t, T, τ) = tr{µgeUegeg(t)V
(L)
eg

×Ugggg(T )V
(R)
eg Ugege(τ)V

(R)
ge ρ0}, (42)

R4g(t, T, τ) = tr{µgeUegeg(t)V
(L)
eg

×Ugggg(T )V
(L)
ge Uegeg(τ)V

(L)
eg ρ0}, (43)

R1f (t, T, τ) = tr{µfeUefef (t)V
(R)
ef

×Ueeee(T )V
(R)
ge Uegeg(τ)V

(L)
eg ρ0} (44)

R2f (t, T, τ) = tr{µfeUefef (t)V
(R)
ef

×Ueeee(T )V
(L)
eg Ugege(τ)V

(R)
ge ρ0}. (45)

Operators and superoperators used in this appendix are defined in Section 4.1.
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