SUBJECTIVE QUALITY OF SVC-CODED VIDEOS WITH DIFFERENT ERROR-PATTERNS CONCEALED USING SPATIAL SCALABILITY

Yohann Pitrey, Ulrich Engelke, Patrick Le Callet, Marcus Barkowsky, Romuald Pépion

To cite this version:

HAL Id: hal-00608300
https://hal.archives-ouvertes.fr/hal-00608300
Submitted on 12 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Subjective quality of SVC-coded videos with different error-patterns concealed using spatial scalability

Y. Pitrey, U. Engelke, M. Barkowsky, R. Pepion, P. Le Callet

Polytech'Nantes - IRCCyN UMR CNRS 6597
LUNAM - Universite de Nantes

EUVIP 2011, Paris
Network impairments and video transmission

How to minimize visual distortions?

- Stream protection
- Error-concealment

Network impairment → Packet loss → Reordering → Corruption → Delay → Missing or corrupted data during decoding → Error Propagation → Visual distortions
SVC-based error-concealment

• 2 SVC spatial layers
 – BL : 320x240
 – EL : 640x480

• Loss only in EL

• Hypothesis
 – No loss in base layer (base layer protection)
Snapshot examples

upscaled base layer enhancement layer
Factors having an impact on perceived quality

Length of impairment

Number of impairments

Interval between impairments

Base Layer Quality
Experimental setup

• Content generation:
 • 9 video contents
 12 sec, 30 fps
 • 26 impairment patterns
 + 1 reference
 • SVC reference encoder
 JSVM v9.18
 • Lanczos upscaler
 QVGA → VGA
 • Impairment simulated on
 the decoded videos (YUV)
 • first and last second not
 impaired

• Test conditions:
 • ACR 5-levels scale
 (ITU-T P.910)
 • Standard viewing conditions
 (ITU-R BT.500)
 • 42” reference screen
 • 28 naïve viewers
 • 2 sessions of 45min with
 5 min break after 20 min
Impairment patterns

• Systematic approach:
 Several conditions for each influence factor

• Considered values for each influence factor:
 • Length: \{2,8,16,32,64,128\}
 • Number: \{1,2,3,4\}
 • Interval: \{8,16,32,64,128\}
 • BL Quality: QP = \{38,44\}
Experimental results

- Wide and balanced range of qualities
- Statistical significance analysis:
 - Student-t test
 - 95% intervals of confidence (displayed on next slides)
Impact of base layer quality

- Significant impact of base layer QP
- Stronger impact for long impairments

95% intervals of confidence displayed as error bars
Impact of length of impairments

- Significant impact
- Linear decrease of quality / exp. increase of duration
- Slope of the decrease depends on base layer QP
Impact of number of impairments

- Significant but limited impact
- Depends on base layer QP
Impact of interval between impairments

- No significant impact!
Conclusion

• Ordering the influence on quality of the 4 factors:
 1. quality of the base layer > 2. length of impairments
 3. number of impairments > 4. interval between impairments

• Modeling the influence of the parameters
 – Linear decrease with the length of impairments
 – Significant dependence on the base layer coding quality
 – Joint impact of factors

• To be investigated:
 – Influence of the source content
 – Bit-rate constraints

• Publication of video database
Thank you for your attention

Questions?
Impact of impairments on perceived quality

Our goal: *Study the factors that influence visual quality in this context*

4 factors:

- Impairments distribution:
 - *Length* of impairments (cumulated)
 - *Number* of impairments
 - *Interval* between impairments

- SVC error concealment:
 - *Quality of the base layer* (QP)