Functional kernel estimators of large conditional quantiles

Laurent Gardes(1) & Stéphane Girard(2,⋆)

(1) IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France.

(2) INRIA Rhône-Alpes & LJK, team Mistis, Inovallée, 655, av. de l’Europe, Montbonnot, 38334 Saint-Ismier cedex, France.

⋆ Stephane.Girard@inria.fr (corresponding author)

Abstract

We address the estimation of conditional quantiles when the covariate is functional and when the order of the quantiles converges to one as the sample size increases. In a first time, we investigate to what extent these large conditional quantiles can still be estimated through a functional kernel estimator of the conditional survival function. Sufficient conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed estimators. In a second time, basing on these result, a functional Weissman estimator is derived, permitting to estimate large conditional quantiles of arbitrary large order. These results are illustrated on finite sample situations.

Keywords: Conditional quantiles, heavy-tailed distributions, functional kernel estimator, extreme-value theory.

1 Introduction

Let \((X_i,Y_i), i = 1,\ldots,n\) be independent copies of a random pair \((X,Y)\) in \(E \times \mathbb{R}\) where \(E\) is an infinite dimensional space associated to a semi-metric \(d\). We address the problem of estimating \(q(α_n|x) \in \mathbb{R}\) verifying \(\mathbb{P}(Y > q(α_n|x)|X = x) = α_n\) where \(α_n \rightarrow 0\) as \(n \rightarrow \infty\) and \(x \in E\). In such a case, \(q(α_n|x)\) is referred to as a large conditional quantile in contrast to classical conditional quantiles (or regression quantiles) for which \(α_n = α\) is fixed in \((0,1)\). While the nonparametric estimation of ordinary regression quantiles has been extensively studied (see for instance [39, 43] or [20], Chapter 5), less attention has been paid to large conditional quantiles despite their potential interest. In climatology, large conditional quantiles may explain how climate change over years might affect extreme temperatures. In the financial econometrics literature, they illustrate
the link between extreme hedge fund returns and some measures of risk. Parametric models are introduced in [10, 42] and semi-parametric methods are considered in [2, 34]. Fully non-parametric estimators have been first introduced in [9, 6] through local polynomial and spline models. In both cases, the authors focus on univariate covariates and on the finite sample properties of the estimators. Nonparametric methods based on moving windows and nearest neighbors are introduced respectively in [25] and [26]. We also refer to [15], Theorem 3.5.2, for the approximation of the nearest neighbors distribution using the Hellinger distance and to [21] for the study of their asymptotic distribution.

An important literature is devoted to the particular case where the conditional distribution of \(Y \) given \(X = x \) has a finite endpoint \(\varphi(x) \) and when \(X \) is a finite dimensional random variable. The function \(\varphi \) is referred to as the frontier and can be estimated from an estimator of the conditional quantile \(q(\alpha_n|x) \) with \(\alpha_n \to 0 \). As an example, a kernel estimator of \(\varphi \) is proposed in [29], the asymptotic normality being proved only when \(Y \) given \(X = x \) is uniformly distributed on \([0, \varphi(x)]\).

We refer to [36] for a review on this topic.

Estimation of unconditional large quantiles is also widely studied since the introduction of Weissman estimator [45] dedicated to heavy-tailed distributions, Weibull-tail estimators [12, 24] dedicated to light-tailed distributions and Dekkers and de Haan estimator [11] adapted to the general case.

In this paper, we focus on the setting where the conditional distribution of \(Y \) given \(X = x \) has an infinite endpoint and is heavy-tailed, an analytical characterization of this property being given in the next section. In such a case, the frontier function does not exist and \(q(\alpha_n|x) \to \infty \) as \(\alpha_n \to 0 \). Nevertheless, we show, under some conditions, that large regression quantiles \(q(\alpha_n|x) \) can still be estimated through a functional kernel estimator of \(P(Y > .|x) \). We provide sufficient conditions on the rate of convergence of \(\alpha_n \) to 0 so that our estimator is asymptotically Gaussian distributed. Making use of this, some functional estimators of the conditional tail-index are introduced and a functional Weissman estimator [45] is derived, permitting to estimate large conditional quantiles \(q(\beta_n|x) \) where \(\beta_n \to 0 \) arbitrarily fast.

Assumptions are introduced and discussed in Section 2. Main results are provided in Section 3 and illustrated both on simulated and real data in Section 4 and Section 5. Extensions of this work are briefly discussed in Section 6. Proofs are postponed to the appendix.

2 Notations and assumptions

The conditional survival function (csf) of \(Y \) given \(X = x \) is denoted by \(\tilde{F}(y|x) = P(Y > y|X = x) \).

The functional estimator of \(\tilde{F}(y|x) \) is defined for all \((x, y) \in E \times \mathbb{R}\) by

\[
\hat{F}_n(y|x) = \sum_{i=1}^{n} K(d(x, X_i)/h)Q((Y_i - y)/\lambda) \left/ \sum_{i=1}^{n} K(d(x, X_i)/h) \right.,
\]

(1)
with $Q(t) = \int_{-\infty}^{t} Q'(s)ds$ where $K : \mathbb{R}^+ \to \mathbb{R}^+$ and $Q' : \mathbb{R} \to \mathbb{R}^+$ are two kernel functions, and $h = h_n$ and $\lambda = \lambda_n$ are two nonrandom sequences (called window-width) such that $h \to 0$ as $n \to \infty$. Let us emphasize that the condition $\lambda \to 0$ is not required in this context. This estimator was considered for instance in [20], page 56. Its rate of uniform strong consistency is established by [16]. In Theorem 1 hereafter, the asymptotic distribution of (1) is established when estimating small tail probabilities, i.e. when $y = y_n$ goes to infinity with the sample size n. Similarly, the functional estimators of conditional quantiles $q(\alpha|x)$ are defined via the generalized inverse of $\hat{F}_n(.|x)$:

$$\hat{q}_n(\alpha|x) = \hat{F}_n^{-1}(\alpha|x) = \inf \{t, \hat{F}_n(t|x) \leq \alpha \},$$

for all $\alpha \in (0, 1)$. Many authors are interested in this estimator for fixed $\alpha \in (0, 1)$. Weak and strong consistency are proved respectively in [43] and [22]. Asymptotic normality is shown in [3, 40, 44] when E is finite dimensional and by [18] for a general metric space under dependence assumptions. In Theorem 2, the asymptotic distribution of (2) is investigated when estimating large quantiles, i.e. when $\alpha = \alpha_n$ goes to 0 as the sample size n goes to infinity. The asymptotic behavior of such estimators depends on the nature of the conditional distribution tail. In this paper, we focus on heavy tails. More specifically, we assume that the csf satisfies

$$\text{(A.1): } \hat{F}(y|x) = c(x) \exp \left\{ - \int_1^{y} \frac{1}{\gamma(u|x)} - \varepsilon(u|x) \frac{du}{u} \right\},$$

where γ is a positive function of the covariate x, c is a positive function and $|\varepsilon(.|x)|$ is continuous and ultimately decreasing to 0. Examples of such distributions are provided in Table 1. (A.1) implies that the conditional distribution of Y given $X = x$ is in the Fréchet maximum domain of attraction. In this context, $\gamma(x)$ is referred to as the conditional tail-index since it tunes the tail heaviness of the conditional distribution of Y given $X = x$. More details on extreme-value theory can be found for instance in [14]. Assumption (A.1) also yields that $\hat{F}(.|x)$ is regularly varying at infinity with index $-1/\gamma(x)$. i.e for all $\zeta > 0$,

$$\lim_{y \to \infty} \frac{\hat{F}(\zeta y|x)}{\hat{F}(y|x)} = \zeta^{-1/\gamma(x)}.$$

We refer to [4] for a general account on regular variation theory. The auxiliary function $\varepsilon(.|x)$ plays an important role in extreme-value theory since it drives the speed of convergence in (3) and more generally the bias of extreme-value estimators. Therefore, it may be of interest to specify how it converges to 0. In [1, 31], $|\varepsilon(.|x)|$ is supposed to be regularly varying and the estimation of the corresponding regular variation index is addressed.

Some Lipschitz conditions are also required:
(A.2): There exist κ_ϵ, κ_c, $\kappa_\gamma > 0$ and $u_0 > 1$ such that for all $(x, x') \in E \times E$ and $u > u_0$,

$$|\log c(x) - \log c(x')| \leq \kappa_\epsilon d(x, x'),$$

$$|\varepsilon(u|x) - \varepsilon(u|x')| \leq \kappa_c d(x, x'),$$

$$\left| \frac{1}{\gamma(x)} - \frac{1}{\gamma(x')} \right| \leq \kappa_\gamma d(x, x').$$

The last two assumptions are standard in the functional kernel estimation framework.

(A.3): K is a function with support $[0, 1]$ and there exist $0 < C_1 < C_2 < \infty$ such that $C_1 \leq K(t) \leq C_2$ for all $t \in [0, 1]$.

(A.4): Q' is a probability density function (pdf) with support $[-1, 1]$.

One may also assume without loss of generality that K integrates to one. In this case, K is called a type I kernel, see [20], Definition 4.1. Letting $B(x, h)$ be the ball of center x and radius h, we finally introduce $\varphi_x(h) := \mathbb{P}(X \in B(x, h)$ the small ball probability of X. Under (A.3), the τ-th moment $\mu^{(\tau)}_x(h) := \mathbb{E}[K^\tau(d(x, X)/h)]$ can be controlled for all $\tau > 0$ by Lemma 3 in Appendix. It is shown that $\mu^{(\tau)}_x(h)$ is of the same asymptotic order as $\varphi_x(h)$.

3 Main results

The first step towards the estimation of large conditional quantiles is the estimation of small tail probabilities $\hat{F}(y_n|x)$ when $y_n \to \infty$ as $n \to \infty$.

3.1 Estimation of small tail probabilities

Defining

$$\Lambda_n(x) = \left(n \hat{F}(y_n|x) \frac{\mu^{(1)}_x(h)}{\mu^{(2)}_x(h)} \right)^{-1/2},$$

the following result provides sufficient conditions for the asymptotic normality of $\hat{F}_n(y_n|x)$.

Theorem 1 Suppose (A.1) - (A.4) hold. Let $x \in E$ such that $\varphi_x(h) > 0$ and introduce $y_{n,j} = a_j y_n(1 + o(1))$ for $j = 1, \ldots, J$ with $0 < a_1 < a_2 < \cdots < a_J$ and where J is a positive integer. If $y_n \to \infty$ such that $n \varphi_x(h) \hat{F}(y_n|x) \to \infty$ and $n \varphi_x(h) \hat{F}(y_n|x)(\Lambda/y_n \vee h \log y_n)^2 \to 0$ as $n \to \infty$, then

$$\left\{ \Lambda_n^{\tau}(x) \left(\frac{\hat{F}_n(y_{n,j}|x)}{\hat{F}(y_{n,j}|x)} - 1 \right) \right\}_{j=1,\ldots,J}$$

is asymptotically Gaussian, centered, with covariance matrix $C(x)$ where $C_{j,j'}(x) = a_j^{1/\gamma(x)} a_{j'}^{1/\gamma(x)}$ for $(j, j') \in \{(1, \ldots, J)^2$.

Note that $n \varphi_x(h) \hat{F}(y_n|x) \to \infty$ is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region $B(x, h) \times (y_n, \infty)$ of $E \times \mathbb{R}$, see Lemma 4 in Appendix.
Thus, this natural condition states that one cannot estimate small tail probabilities out of the sample using \(\hat{F}_n \). Besides, from Lemma 3, \(\Lambda_n^2(x) \) is of the same asymptotic order as \(n \varphi_x(h) \hat{F}(y_n|x) \) and consequently \(\Lambda_n(x) \to 0 \) as \(n \to \infty \). Theorem 1 thus entails \(\frac{\hat{F}_n(y_{n,j}|x)}{\hat{F}(y_{n,j}|x)} \xrightarrow{p} 1 \) which can be read as a consistency of the estimator. The second condition \(n \varphi_x(h) \hat{F}(y_n|x)(\lambda/y_n \vee h \log y_n)^2 \to 0 \) imposes to the biases \(\lambda/y_n \) and \(h \log y_n \) introduced by the two smoothings to be negligible compared to the standard deviation \(\Lambda_n(x) \) of the estimator. Theorem 1 may be compared to [13] which establishes the asymptotic behavior of the empirical survival function in the unconditional case but without assumption on the distribution.

3.2 Estimation of large conditional quantiles within the sample

In this paragraph, we focus on the estimation of large conditional quantiles of order \(\alpha_n \) such that \(n \varphi_x(h) \alpha_n \to \infty \) as \(n \to \infty \). This is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region \(B(x,h) \times (q(\alpha_n|x), \infty) \) of \(E \times \mathbb{R} \), see Lemma 4 in Appendix. In other words, the large conditional quantile \(q(\alpha_n|x) \) is located within the sample. Letting

\[
\sigma_n(x) = \left(\frac{n \alpha_n \left(\mu_x^{(1)}(h) \right)^2}{\mu_x^{(2)}(h)} \right)^{-1/2},
\]

Lemma 3 shows that \(\sigma_n(x) \) is of the same asymptotic order as \((n \varphi_x(h) \alpha_n)^{-1/2} \) and thus the condition \(n \varphi_x(h) \alpha_n \to \infty \) is equivalent to \(\sigma_n(x) \to 0 \) as \(n \to \infty \).

Theorem 2 Suppose (A.1) – (A.4) hold. Let \(x \in E \) such that \(\varphi_x(h) > 0 \) and consider a sequence \(\tau_1 > \tau_2 > \cdots > \tau_J > 0 \) where \(J \) is a positive integer. If \(\alpha_n \to 0 \) such that \(\sigma_n(x) \to 0 \) and

\[
\sigma_n^{-1}(x)(\lambda/q(\alpha_n|x) \vee h \log \alpha_n) \to 0 \quad \text{as} \quad n \to \infty,
\]

then

\[
\left\{ \sigma_n^{-1}(x) \left(\frac{\hat{q}_n(\tau_j \alpha_n|x)}{q(\tau_j \alpha_n|x)} - 1 \right) \right\}_{j=1,\ldots,J}
\]

is asymptotically Gaussian, centered, with covariance matrix \(\gamma^2(x) \Sigma \) where \(\Sigma_{j,j'} = 1/\tau_j \tau_{j'} \) for \((j, j') \in \{1, \ldots, J\}^2 \).

Remark that (A.1) provides an asymptotic expansion of the density function of \(Y \) given \(X = x \):

\[
f(y|x) = \frac{1}{\gamma(x)} \frac{\hat{F}(y|x)}{y} (1 - e(y|x)) = \frac{1}{\gamma(x)} \frac{\hat{F}(y|x)}{y} (1 + o(1))
\]
as \(y \to \infty \). Consequently, Theorem 2 entails that the random vector

\[
\left\{ \mu_x^{(1)}(h) \right\} \left(\left(\mu_x^{(2)}(h) \right)^{1/2} (\alpha_n(1 - \tau_j \alpha_n))^{-1/2} f(q(\tau_j \alpha_n|x)) \left(\frac{\hat{q}_n(\tau_j \alpha_n|x)}{q(\tau_j \alpha_n|x)} - q(\tau_j \alpha_n|x) \right) \right\}_{j=1,\ldots,J}
\]
is also asymptotically Gaussian and centered. This result coincides with [3]. Theorem 6.4 established in the case where \(\alpha_n = \alpha \) is fixed in \((0, 1)\) and in a finite dimensional setting.
3.3 Estimation of arbitrary large conditional quantiles

This paragraph is dedicated to the estimation of large conditional quantiles of arbitrary small order \(\beta_n \). For instance, if \(n\varphi(x)h/\beta_n \to c \in [1, \infty) \) then \(q(\beta_n|x) \) is located near the boundary of the sample. If \(n\varphi(x)h/\beta_n \to c \in [0,1) \) then \(q(\beta_n|x) \) is located outside the sample. Here, a functional Weissman estimator \([45]\) is proposed to tackle all possible situations:

\[
\hat{q}_n^W(\beta_n|x) = \hat{q}_n(\alpha_n|x)(\alpha_n/\beta_n)^\hat{\gamma}_n(x).
\]

Here, \(\hat{q}_n(\alpha_n|x) \) is the functional estimator (2) of a large conditional quantile \(q(\alpha_n|x) \) within the sample and \(\hat{\gamma}_n(x) \) is an estimator of the conditional tail-index \(\gamma(x) \). As illustrated in the next theorem, the extrapolation factor \((\alpha_n/\beta_n)^\hat{\gamma}_n(x)\) allows to estimate arbitrary large quantiles.

Theorem 3 Suppose (A.1) - (A.4) hold. Let \(x \in E \) and introduce

- \(\alpha_n \to 0 \) such that \(\sigma_n(x) \to 0 \) and \(\sigma^{-1}_n(x)(\lambda/q(\alpha_n|x) \vee h \log \alpha_n / \vee (q(\alpha_n|x)/x) \) \to 0 as \(n \to \infty \),
- \((\beta_n) \) such that \(\beta_n/\alpha_n \to 0 \) as \(n \to \infty \),
- \(\hat{\gamma}_n(x) \) such that \(\sigma^{-1}_n(x)(\hat{\gamma}_n(x) - \gamma(x)) \overset{d}{\to} \mathcal{N}(0, V(x)) \) where \(V(x) > 0 \).

Then,

\[
\frac{\sigma^{-1}_n(x)}{\log(\alpha_n/\beta_n)} \left(\frac{\hat{q}_n^W(\beta_n|x)}{q(\beta_n|x)} - 1 \right) \overset{d}{\to} \mathcal{N}(0, V(x)).
\]

Let us now focus on the estimation of the conditional tail-index. Let \(\alpha_n \to 0 \) and consider a sequence \(1 = \tau_1 > \tau_2 > \cdots > \tau_J > 0 \) where \(J \) is a positive integer. Two additional notations are introduced for the sake of simplicity: \(u = (1, \ldots, 1)^t \in \mathbb{R}^J \) and \(v = (\log(1/\tau_1), \ldots, \log(1/\tau_J))^t \in \mathbb{R}^J \). The following family of estimators is proposed

\[
\hat{\gamma}^\phi_n(x) = \frac{\phi(\log \hat{q}_n(\tau_1\alpha_n|x), \ldots, \log \hat{q}_n(\tau_J\alpha_n|x))}{\phi(1/\tau_1), \ldots, \phi(1/\tau_J))}.
\]

where \(\phi : \mathbb{R}^J \to \mathbb{R} \) denotes a twice differentiable function verifying the shift and location invariance conditions

\[
\begin{align*}
\phi(\theta v) &= \theta \phi(v) \\
\phi(\eta u + x) &= \phi(x)
\end{align*}
\]

for all \(\theta > 0, \eta \in \mathbb{R} \) and \(x \in \mathbb{R}^J \). In the case where \(J = 3, \tau_1 = 1, \tau_2 = 1/2 \) and \(\tau_3 = 1/4 \), the function

\[
\phi_{\tau}\tau(x_1, x_2, x_3) = \log \left(\frac{\exp(4x_2) - \exp(4x_1)}{\exp(4x_3) - \exp(4x_2)} \right)
\]

leads us to a functional version of Pickands estimator \([38]\):

\[
\hat{\gamma}^\phi_{\tau}\tau_n(x) = \frac{1}{\log 2} \log \left(\frac{\hat{q}_n(\alpha_n|x) - \hat{q}_n(2\alpha_n|x)}{\hat{q}_n(2\alpha_n|x) - \hat{q}_n(4\alpha_n|x)} \right).
\]

We refer to \([28]\) for a different variant of Pickands estimator in the context where the distribution of \(Y \) given \(X = x \) has a finite endpoint. Besides, introducing the function \(m_p(x_1, \ldots, x_J) = \]
Generalizations of the functional Hill estimator can then be obtained using homogeneous function of degree 1, then the aggregated function

\[\sum_{j=1}^{J} (x_j - x_1)^p \]

for all \(p > 0 \) and considering \(\phi_p(x) = m_p^{1/p}(x) \) gives rise to a functional version of the estimator considered for instance in \([41]\), example (a):

\[\hat{\gamma}_n^{\phi_p}(x) = \left(\frac{\sum_{j=1}^{J} [\log \hat{q}_n(\tau_j \alpha_n|x) - \log \hat{q}_n(\alpha_n|x)]^p}{\sum_{j=1}^{J} [\log(1/\tau_j)]^p} \right)^{1/p}. \]

As a particular case \(\phi_1(x) = m_1(x) \) corresponds to a functional version of the Hill estimator \([35]\):

\[\hat{\gamma}_n^{\phi_1}(x) = \sum_{j=1}^{J} [\log \hat{q}_n(\tau_j \alpha_n|x) - \log \hat{q}_n(\alpha_n|x)] \left/ \sum_{j=1}^{J} \log(1/\tau_j) \right.. \]

More interestingly, if \(\{\phi^{(1)}, \ldots, \phi^{(H)}\} \) is a set of \(H \) functions satisfying (6) and if \(A : \mathbb{R}^H \to \mathbb{R} \) is a homogeneous function of degree 1, then the aggregated function \(A(\phi^{(1)}, \ldots, \phi^{(H)}) \) also satisfies (6). Generalizations of the functional Hill estimator can then be obtained using \(H = 2 \), \(A_p(x, y) = x^p y^{1-p} \) and defining \(\phi_{p,q,r} = A_p(\phi_q, \phi_r) = m_q^{p/q} m_r^{(1-p)/r} \):

\[\hat{\gamma}_n^{\phi_{p,q,r}}(x) = \left(\frac{\sum_{j=1}^{J} [\log \hat{q}_n(\tau_j \alpha_n|x) - \log \hat{q}_n(\alpha_n|x)]^p}{\sum_{j=1}^{J} [\log(1/\tau_j)]^p} \right)^{1/p} \left(\sum_{j=1}^{J} [\log(1/\tau_j)]^r \right)^{(p-1)/r} \left(\sum_{j=1}^{J} [\log(1/\tau_j)]^r \right)^{(p-1)/r}. \]

For instance, the estimator introduced by \([32]\), equation (2.2) corresponds to the particular function \(\phi_{p,p,1} \) and the estimator of \([5]\) corresponds to \(\phi_{p,p,0-p-1} \).

For an arbitrary function \(\phi \), the asymptotic normality of \(\hat{\gamma}_n^{\phi}(x) \) is a consequence of Theorem 2. The following result permits to establish the asymptotic normality of the above mentioned estimators in an unified way.

Theorem 4 Under the assumptions of Theorem 2 and if, moreover, \(\sigma_n^{-1}(x) \varepsilon(q(\alpha_n|x)|x) \to 0 \) as \(n \to \infty \), then, \(\sigma_n^{-1}(x)(\hat{\gamma}_n^{\phi}(x) - \gamma(x)) \) converges to a centered Gaussian random variable with variance

\[V_{\phi}(x) = \frac{\gamma^2(x)}{\phi^2(\gamma(x))} (\nabla \phi(\gamma(x)v))' \Sigma(\nabla \phi(\gamma(x)v)). \]

Let us note that the additional condition \(\sigma_n^{-1}(x) \varepsilon(q(\alpha_n|x)|x) \to 0 \) is standard in the extreme-value framework: Neglecting the unknown function \(\varepsilon(.|x) \) in the construction of \(\hat{\gamma}_n^{\phi}(x) \) yields a bias that should be negligible with respect to the standard deviation \(\sigma_n(x) \) of the estimator. Finally, combining Theorem 3 and Theorem 4, the asymptotic distribution of the functional large quantile estimator \(\hat{q}_n^{\gamma_{\alpha_n}}(\beta_n|x) \) based on (4) and (5) is readily obtained.

Corollary 1 Suppose \((A.1) - (A.4)\) hold. Let \(x \in E \) such that \(\varphi_x(h) > 0 \) and consider a sequence \(1 = \tau_1 > \tau_2 > \cdots > \tau_J > 0 \) where \(J \) is a positive integer. If

- \(\alpha_n \to 0 \), \(\sigma_n(x) \to 0 \) and \(\sigma_n^{-1}(x)(\lambda/q(\alpha_n|x) \vee h \log \alpha_n \vee \varepsilon(q(\alpha_n|x)|x)) \to 0 \) as \(n \to \infty \),
- \(\beta_n/\alpha_n \to 0 \) as \(n \to \infty \),
Here, two semi-metrics are considered. The first one is defined for all \((d, q)\) with \(\hat{h}_n\) is selected using the cross-validation approach introduced in [46] and \(\tau\) is used to compute \(\hat{\gamma}_n\).

As an example, in the case of the functional Hill and Pickands estimators, we obtain

\[
V_{\phi_1}(x) = \gamma^2(x) \left(\sum_{j=1}^{J} \frac{2(J-j)+1}{\tau_j} - J^2 \right) \left/ \left(\sum_{j=1}^{J} \log(1/\tau_j) \right)^2 \right.
\]

\[
V_{\phi_{\text{Pickands}}}(x) = \frac{\gamma^2(x)(2^{2\gamma(x)}+1)}{4(\log 2)^2(2^{2\gamma(x)}-1)^2}.
\]

Clearly, \(V_{\phi_{\text{Pickands}}}(x)\) is the variance of the classical Pickands estimator, see for instance [33], Theorem 3.3.5.

4 Illustration on simulated data

The finite sample performance is illustrated on \(N = 200\) replications of a sample of size \(n = 500\) from a random pair \((X, Y)\), where the functional covariate \(X \in E = L^2[0, 1]\) is defined by \(X(t) = \cos(2\pi Zt)\) for all \(t \in [0, 1]\) where \(Z\) is uniformly distributed on \([1/4, 1]\). Some examples of simulated random functions \(X\) are depicted on Figure 1. Besides, the conditional distribution of \(Y\) given \(X\) is a Burr distribution (see Table 1) with parameters \(\tau(X) = 2\) and \(\lambda(X) = 2/(8\|X\|_2^2 - 3)\) with

\[
\|X\|_2^2 = \int_0^1 X^2(t)\,dt = \frac{1}{2} \left(1 + \frac{\sin(4\pi Z)}{4\pi Z} \right).
\]

We focus on the estimation of \(q(\beta_n|x)\) with \(\beta_n = 5/n\). To this end, the functional Weissman estimator \(\hat{q}_n^W(\beta_n|x)\) is used with a piecewise linear kernel \(K(t) = (1.9 - 1.8t)\|t \in [0, 1]\) and the triangular kernel \(Q\). The conditional tail index is estimated by the functional Hill estimator \(\hat{\gamma}_n\). The choice of the semi-metric \(d\) is a recurrent issue in functional estimation (see [20], Chapter 3).

Here, two semi-metrics are considered. The first one is defined for all \((s, t) \in E^2\) by \(d_X(s, t) = \|s - t\|_2\) and coincides with the \(L_2\) distance between functions. Remarking that the conditional quantile \(q(\alpha_n|X)\) depends only on \(\|X\|_2\), or equivalently on \(Z\), another interesting semi-metric is \(d_Z(s, t) = \|\|s\|_2^2 - \|t\|_2^2\|\). Finally, in Section 5, an example of the use of a metric based on second derivatives is presented.

With such choices, the functional Weissman estimator \(\hat{q}_n^W(\beta_n|x)\) depends on three parameters \(h, \lambda\) and \(\alpha_n\) and on the \(\tau_j\)'s used to compute \(\hat{\gamma}_n\).

The smoothing parameter \(h\) is selected using the cross-validation approach introduced in [46] and implemented for instance in [8, 23]:

\[
h^{\text{opt}} = \arg \min \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} \left(I[Y_i \geq Y_j] - \hat{F}_{n,i}(Y_j|X_i) \right)^2, \quad h \in \mathcal{H} \right\}
\]

where \(\hat{F}_{n,i}\) is the estimator (depending on \(h\)) given in (1) computed from the sample \(\{(X_\ell, Y_\ell), \ 1 \leq \ell \leq n, \ \ell \neq i\}\). Here, \(\mathcal{H}\) is a regular grid, \(\mathcal{H} = \{h_1 \leq h_2 \leq \cdots \leq h_M\}\) with \(h_1 = 1/100, \ h_M = 1/10\).
and $M = 20$. Let us note that this approach was originally proposed for finite dimensional covariates. Up to our knowledge, its optimality (with respect to the mean integrated squared error for instance) is not established in the functional framework. We refer to [17] for such a work in functional regression.

- In our experiments, the choice of the bandwidth λ appeared to be less crucial than the other smoothing parameter h. It could have been selected with the same criteria as previously, but for simplicity reasons, it has been fixed to $\lambda = 0.1$.

- The choice of α_n is equivalent to the choice of the number of upper order statistics in the non-conditional extreme-value theory. It is still an open question, even though some techniques have been proposed, see for instance [7] for a bootstrap based method.

In order to assess the impact of the choice of α_n and τ_j‘s, the L_2-errors

$$ \Delta_{d}^{(r)} = \sum_{i=1}^{n} \left(\hat{q}^{W}_{n}(\beta_n|X_i)^{(r)} - q(\beta_n|X_i) \right)^2, $$

$r = 1, \ldots, N$ have been computed. Here, $\hat{q}^{W}_{n}(\beta_n|X_i)^{(r)}$ is the estimation computed on the rth replication and d can be either d_X or d_Z. Different values of α_n and τ_j are investigated: $\alpha_n = c \log(n)/n$ with $c \in \{5, 10, 15, 20\}$ and $\tau_j = (1/j)^s$ with $s \in \{1, 2, 3, 10\}$. The median, 10% quantile and 90% quantile of the $\Delta_{d}^{(r)}$ errors are collected in Table 2. For a fixed value of s, the best error obtained with the semi-metric d_Z is always smaller than the best error obtained with d_X (both displayed in bold font). Let us note that the optimal value of c does not seem to depend on the semi-metric. Besides, it will appear in the following that the estimations are not, at least visually, very sensitive with respect to the choice of α_n (or equivalently c) and τ_j (or equivalently s).

In Figure 2–4, the estimator $\hat{q}^{W}_{n}(\beta_n|x)$ is represented as a function of Z. The estimator has been computed for two sets of (α_n, τ_j): $(\alpha_n = 15 \log(n)/n, \tau_j = (1/j)^3)$ and $(\alpha_n = 10 \log(n)/n, \tau_j = (1/j)^2)$ and for the two semi-metrics d_X and d_Z. We limited ourselves to the representation of the estimator computed on the replications giving rise to the median, 10% quantile and 90% quantile of the L_2-errors $\Delta_{d}^{(r)}$, $r = 1, \ldots, N$. It appears that there is no visual significative difference between the two choices of (α_n, τ_j).

5 Illustration on real data

In this section, we propose to illustrate the behaviour of our large conditional quantiles estimators on functional chemometric data. It concerns $n = 215$ samples of finely chopped meat (see for example [19] for more details). For each unit i taken among this sample, we observe one spectro-metric curve χ_i discretized at 100 wavelengths $\lambda_1, \ldots, \lambda_{100}$. The covariate x_i is thus defined by $x_i = (x_{i,1}, \ldots, x_{i,100})^t$ with $x_{i,j} = \chi_i(\lambda_j)$ for all $j = 1, \ldots, 100$. Each variable $x_{i,j}$ is the $-\log_{10}$
of the transmittance recorded by the Tecator Infratec Food and Feed Analyzer spectrometer. The dataset can be found at http://lib.stat.cmu.edu/datasets/tecator.

Clearly, the covariate x_i is in fact a discretized curve but, as mentioned in [37], the fineness of the grid spanning the discretization allows us to consider each subject as a continuous curve. Hence, the covariate can be considered as belonging to an infinite dimensional space E. For each spectrometric curve χ_i, the fat content $\tilde{Y}_i \in [0, 100]$ (in percentage) is given. Since these values are bounded they cannot satisfy model (A.1) and we propose to use as variable of interest the inverse of the fat content defined as: $Y_i = \frac{100}{\tilde{Y}_i} \in [1, \infty), i = 1, \ldots, n$.

In the following, the semi-metric based on the second derivative is adopted, as advised in [20], Chapter 9:

$$d^2(\chi_i, \chi_j) = \int \left(\chi_i^{(2)}(t) - \chi_j^{(2)}(t) \right)^2 dt,$$

where $\chi^{(2)}$ denotes the second derivative of χ. To compute this semi-metric, one can use an approximation of the functions χ_i and χ_j based on B-splines as proposed in [20], Chapter 3. Here, we limit ourselves to a discretized version \tilde{d} of d:

$$\tilde{d}(x_i, x_j) = \sum_{l=2}^{99} \left\{ (x_{i,l+1} - x_{j,l+1}) + (x_{i,l-1} - x_{j,l-1}) - 2(x_{i,l} - x_{j,l}) \right\}^2.$$

Other semi-metrics could be considered: Functional Principal Component Analysis (FPCA) or Multivariate Partial Least-Squares Regression (MPLSR) are useful tools for computing proximities between curves in reduced dimensional spaces, see [20], Section 3.4.

We propose to estimate the large conditional quantile of order $\beta_n = 5/n$ in a given direction of the space E. More precisely, we focus on the segment $[\chi_{i_0}, \chi_{i_1}]$ where χ_{i_0} and χ_{i_1} denote the most different curves in the sample, i.e.

$$(i_0, i_1) = \arg \max_{1 \leq i < j \leq n} \tilde{d}(x_i, x_j).$$

The selected curves χ_{i_0} and χ_{i_1} are plotted in Figure 5. Since these curves appear to be smooth, the chosen semi-metric, which is based on the second derivative, seems to be well adapted. The conditional quantile to estimate is $q(\beta_n, t(\xi))$ where $t(\xi) = \xi \chi_{i_1} + (1 - \xi) \chi_{i_0}$ for $\xi \in [0, 1]$. To this end, the functional Weissman estimator is considered with the same kernels as in the previous section. The selected smoothing parameters are $h = 0.02$ and $\lambda = 0.1$.

The estimated quantile $\hat{q}_n(\beta_n, t(\xi))$ is plotted as a function of ξ in Figure 6 for different values of weights τ_j and probability α_n. Here again, it appears that the estimated quantiles are not too sensitive with respect to these parameters. The globally decreasing shape of the curves indicates that heaviest tails (i.e. largest values of $\gamma(t(\xi))$) are found in the neighbourhood of the curve χ_{i_0} (i.e. for small values of ξ). At the opposite, lightest tails are found in the neighbourhood of the curve χ_{i_1}. These results are confirmed by Figure 7: The estimated conditional tail-index $\hat{\gamma}_n(x)$ is larger for $x = \chi_{i_0}$ than for $x = \chi_{i_1}$. These very different shapes confirm a strong heterogeneity of the sample in terms of tail behaviour.
6 Further work

Our further work will consist in establishing uniform convergence results. The rate of uniform strong consistency of the csf estimator \(\hat{F}_n(y|x) \) defined in (1) is already known since [16] for fixed \(y \). The first step will then to adapt this result for \(y = y_n \to \infty \) as \(n \to \infty \). On this basis, it should be possible to get uniform results for \(\hat{q}(\alpha_n|x) \) (see (2)) in the case of large conditional quantiles withing the sample, i.e. \(\alpha_n \to 0 \) with \(n\varphi_x(x)\alpha_n \to \infty \). The last step would be to extend these results to \(\hat{q}_n^n(\beta_n|x) \) defined in (4) when \(\beta_n \to 0 \) arbitrarily fast. Such results would require the uniform convergence of \(\gamma_n(x) \), the estimator of the conditional tail index.

7 Appendix: Proofs

7.1 Preliminary results

The following two lemmas are of analytical nature. The first one is dedicated to the control of the local variations of the csf when the quantity of interest \(y \) goes to infinity.

Lemma 1 Let \(x \in E \) and suppose (A.1) and (A.2) hold.

(i) If \(y_n \to \infty \) and \(h \log y_n \to 0 \) as \(n \to \infty \), then, for \(n \) large enough,

\[
\sup_{x' \in B(x,h)} \left| \frac{\hat{F}(y_n|x)}{\hat{F}(y_n|x')} - 1 \right| \leq 2(\kappa_c + \kappa_\gamma + \kappa_\varepsilon)h \log y_n.
\]

(ii) If \(y_n \to \infty \) and \(y'_n \to \infty \) as \(n \to \infty \), then, for \(n \) large enough,

\[
\sup_{x' \in B(x,h)} \left| \frac{\hat{F}(y'_n|x')}{\hat{F}(y_n|x')} - 1 \right| \leq \left(\frac{y_n}{y'_n} \right)^{2/\gamma(x)} - 1.
\]

Proof. (i) Assumption (A.1) yields, for all \(x' \in B(x,h) \):

\[
\log \left(\frac{\hat{F}(y_n|x)}{\hat{F}(y_n|x')} \right) \leq \left| \log c(x) - \log c(x') \right| + \int_1^{y_n} \left(\frac{1}{\gamma(x)} - \frac{1}{\gamma(x')} \right) \left| \varepsilon(u|x) - \varepsilon(u|x') \right| du/u
\]

\[
\leq \kappa_c h + \int_1^{y_n} \left(\kappa_\gamma + \kappa_\varepsilon \right) du/u
\]

\[
\leq \left(\kappa_c + \kappa_\gamma + \kappa_\varepsilon \right) h \log y_n,
\]

eventually, from (A.2). Thus,

\[
\sup_{d(x,x') \leq h} \log \left(\frac{\hat{F}(y_n|x)}{\hat{F}(y_n|x')} \right) = O(h \log y_n) \to 0
\]

as \(n \to \infty \) and taking account of \(\log(u + 1) \sim u \) as \(u \to 0 \) gives the result.

(ii) Let us assume for instance \(y'_n > y_n \). From (A.1) we have

\[
\left| \frac{\hat{F}(y'_n|x')}{\hat{F}(y_n|x')} - 1 \right| = 1 - \left(\frac{y'_n}{y_n} \right)^{-1/\gamma(x')} \exp \left(\int_{y_n}^{y'_n} \frac{\varepsilon(u|x')}{u} du \right) \leq 1 - \left(\frac{y'_n}{y_n} \right)^{-1/\gamma(x')}, \quad (7)
\]
Now, \(x' \in B(x, h) \) and (A.2) imply for \(n \) large enough that
\[
\frac{1}{\gamma(x')} + |\varepsilon(y_n|x')| \leq \frac{1}{\gamma(x)} + (\kappa_\varepsilon + \kappa_\gamma)h + |\varepsilon(y_n|x)| \leq \frac{2}{\gamma(x)}.
\]
Replacing in (7), it follows that
\[
\left| \frac{\hat{F}(y'_n|x')}{\hat{F}(y_n|x')} - 1 \right| \leq 1 - \left(\frac{y'_n}{y_n} \right)^{-2/\gamma(x)}.
\]
The case \(y'_n \leq y_n \) is similar. \(\square \)

The second lemma provides a second order asymptotic expansion of the quantile function. It is proved in [8].

Lemma 2 Suppose (A.1) hold.

(i) Let \(0 < \beta_n < \alpha_n \) with \(\alpha_n \to 0 \) as \(n \to \infty \). Then,
\[
|\log q(\beta_n|x) - \log q(\alpha_n|x) + \gamma(x)\log(\beta_n/\alpha_n)| = O(\log(\alpha_n/\beta_n)\varepsilon(q(\alpha_n|x)|x)).
\]

(ii) If, moreover, \(\lim \inf \beta_n/\alpha_n > 0 \), then
\[
\frac{\beta_n^{\gamma(x)}q(\beta_n|x)}{\alpha_n^{\gamma(x)}q(\alpha_n|x)} = 1 + O(\varepsilon(q(\alpha_n|x)|x)).
\]

The following lemma provides a control on the moments \(\mu_2^{(\tau)}(h) \) for all \(\tau > 0 \), the case \(\tau = 1 \) being studied in [20], Lemma 4.3. The proof is straightforward.

Lemma 3 Suppose (A.3) holds. For all \(\tau > 0 \) and \(x \in E \), \(0 < C_1^\tau \varphi_x(h) \leq \mu_2^{(\tau)}(h) \leq C_2^\tau \varphi_x(h) \).

The following lemma provides a geometrical interpretation of the condition \(\mu_2^{(\tau)}(h) \hat{F}(y_n|x) \to \infty \).

Lemma 4 Suppose (A.1), (A.2) hold and let \(y_n \to \infty \) such that \(h \log y_n \to 0 \) as \(n \to \infty \). Consider the subset of \(E \times \mathbb{R} \) defined as \(R_n(x) = B(x, h) \times (y_n, \infty) \) where \(x \in E \) is such that \(\varphi_x(h) > 0 \). Then, \(\mathbb{P}(\exists i \in \{1, \ldots, n\}, (X_i, Y_i) \in R_n(x)) \to 1 \) as \(n \to \infty \) if, and only if, \(n\varphi_x(h)\hat{F}(y_n|x) \to \infty \).

Proof. Since \((X_i, Y_i), i = 1, \ldots, n \) are independent and identically distributed random variables,
\[
\mathbb{P}(\exists i \in \{1, \ldots, n\}, (X_i, Y_i) \in R_n(x)) = 1 - (1 - \mathbb{P}((X, Y) \in R_n(x)))^n \quad (8)
\]
where
\[
\mathbb{P}((X, Y) \in R_n(x)) = \mathbb{E}(\mathbb{I}\{X \in B(x, h) \cap Y \geq y_n\})
= \mathbb{E}(\mathbb{I}\{X \in B(x, h)\} \hat{F}(y_n|x))
= \hat{F}(y_n|x)\varphi_x(h) + \hat{F}(y_n|x)\mathbb{E}\left(\left(\frac{\hat{F}(y_n|X)}{\hat{F}(y_n|x)} - 1\right)\mathbb{I}\{X \in B(x, h)\}\right).
\]
In view of Lemma 1(i), we have
\[
\mathbb{E}\left(\left|\frac{\hat{F}(y_n|X)}{\hat{F}(y_n|x)} - 1\right|\mathbb{I}\{X \in B(x, h)\}\right) \leq 2(\kappa_\varepsilon + \kappa_\gamma + \kappa_\varepsilon)\varphi_x(h)h \log y_n
\]
and therefore
\[P((X,Y) \in R_n(x)) = \bar{F}(y_n|x)\varphi_x(h)(1 + O(h \log y_n)). \]

Clearly, this probability converges to 0 as \(n \to \infty \) and thus (8) can be rewritten as
\[P(\exists i \in \{1, \ldots, n\}, (X_i, Y_i) \in R_n(x)) = 1 - \exp \left(-n\varphi_x(h)\bar{F}(y_n|x)(1 + o(1))\right), \]
which converges to 1 if and only if \(n\varphi_x(h)\bar{F}(y_n|x) \to \infty \).

Let us remark that the kernel estimator (1) can be rewritten as \(\hat{\psi}_n(y, x) = \frac{1}{n\mu_x^{(1)}(h)} \sum_{i=1}^{n} K(d(x, X_i)/h)Q((Y_i - y)/\lambda), \)
\[\hat{g}_n(x) = \frac{1}{n\mu_x^{(1)}(h)} \sum_{i=1}^{n} K(d(x, X_i)/h). \]

Lemma 5 and Lemma 6 are respectively dedicated to the asymptotic properties of \(\hat{g}_n(x) \) and \(\hat{\psi}_n(y, x) \).

Lemma 5 Suppose (A.3) holds and let \(x \in E \) such that \(\varphi_x(h) > 0 \). We have:

(i) \(E(\hat{g}_n(x)) = 1. \)

(ii) If, moreover, \(\varphi_x(h) \to 0 \) as \(h \to 0 \) then
\[0 < \lim inf n\varphi_x(h) \var(\hat{g}_n(x)) \leq \lim sup n\varphi_x(h) \var(\hat{g}_n(x)) < \infty. \]

Therefore, under (A.3), if \(\varphi_x(h) \to 0 \) and \(n\varphi_x(h) \to \infty \) then \(\hat{g}_n(x) \) converges to 1 in probability.

Proof. (i) is straightforward.

(ii) Standard calculations yields
\[n\varphi_x(h) \var(\hat{g}_n(x)) = \varphi_x(h) \left(\frac{\mu_x^{(2)}(h)}{(\mu_x^{(1)}(h))^2} - 1 \right) \]
and Lemma 3 entails
\[(C_1/C_2)^2 \leq \varphi_x(h) \frac{\mu_x^{(2)}(h)}{(\mu_x^{(1)}(h))^2} \leq (C_2/C_1)^2. \]

The condition \(\varphi_x(h) \to 0 \) concludes the proof. \(\blacksquare \)
Lemma 6 Suppose (A.1) – (A.4) hold. Let $x \in E$ such that $\varphi_x(h) > 0$ and introduce $y_{n,j} = a_j y_n(1 + o(1))$ for $j = 1, \ldots, J$ with $0 < a_1 < a_2 < \cdots < a_J$ and where J is a positive integer. If $y_n \to \infty$ such that $h \log y_n \to 0$, $\lambda / y_n \to 0$ and $n \varphi_x(h) \bar{F}(y_n | x) \to \infty$ as $n \to \infty$, then

(i) $\mathbb{E}(\hat{\psi}_n(y_{n,j}, x)) = \bar{F}(y_n | x)(1 + O(h \log y_n \vee \lambda / y_n))$, for $j = 1, \ldots, J$.

(ii) The random vector

$$
\left\{ \Lambda_n^{-1}(x) \left(\hat{\psi}_n(y_{n,j}, x) - \mathbb{E}(\hat{\psi}_n(y_{n,j}, x)) \right) \right\}_{j = 1, \ldots, J}
$$

is asymptotically Gaussian, centered, with covariance matrix $C(x)$ where $C_{j,j'}(x) = a_j^{1/\gamma(x)}$ for $(j, j') \in \{1, \ldots, J\}^2$.

Proof. (i) The (X_i, Y_i), $i = 1, \ldots, n$ being identically distributed, we have

$$
\mathbb{E}(\hat{\psi}_n(y_{n,j}, x)) = \frac{1}{\mu_x^{(1)}(h)} \mathbb{E} \{ K(d(x, X)/h) Q((Y - y_n,j)/\lambda) \} = \frac{1}{\mu_x^{(1)}(h)} \mathbb{E} \{ K(d(x, X)/h) \mathbb{E}(Q((Y - y_n,j)/\lambda)|X) \}
$$

Taking account of (A.4), it follows that

$$
\mathbb{E}(Q((Y - y_n,j)/\lambda)|X) = \bar{F}(y_n | x) + \int_{-1}^1 Q'(u)(\bar{F}(y_n,j + \lambda u | X) - \bar{F}(y_n,j | X)) du
$$

and thus the bias can be expanded as

$$
\mathbb{E}(\hat{\psi}_n(y_{n,j}, x)) - \bar{F}(y_n,j | x) = : T_{1,n} + T_{2,n},
$$

where we have defined

$$
T_{1,n} = \frac{1}{\mu_x^{(1)}(h)} \mathbb{E}(K(d(x, X)/h)(\bar{F}(y_n,j | X) - \bar{F}(y_n,j | x))),
$$

$$
T_{2,n} = \frac{1}{\mu_x^{(1)}(h)} \mathbb{E} \left\{ K(d(x, X)/h) \bar{F}(y_n,j | X) \int_{-1}^1 Q'(u) \left(\frac{\bar{F}(y_n,j + \lambda u | X)}{\bar{F}(y_n,j | X)} - 1 \right) du \right\}.
$$

Focusing on $T_{1,n}$ and taking account of (A.3), it follows that

$$
T_{1,n} = \frac{1}{\mu_x^{(1)}(h)} \mathbb{E}(K(d(x, X)/h)(\bar{F}(y_n,j | X) - \bar{F}(y_n,j | x))1\{d(x, X) \leq h\})
$$

$$
= \frac{\bar{F}(y_n,j | x)}{\mu_x^{(1)}(h)} \mathbb{E} \left(K(d(x, X)/h) \left(\frac{\bar{F}(y_n,j | X)}{\bar{F}(y_n,j | x)} - 1 \right) 1\{d(x, X) \leq h\} \right).
$$

Lemma 1(i) implies that

$$
\left| \frac{\bar{F}(y_n,j | X)}{\bar{F}(y_n,j | x)} - 1 \right| 1\{d(x, X) \leq h\} \leq 2(\kappa_c + \kappa_\gamma + \kappa_\varepsilon) h \log y_n,j \leq 3(\kappa_c + \kappa_\gamma + \kappa_\varepsilon) h \log y_n,
$$

eventually and therefore

$$
|T_{1,n}| = \bar{F}(y_n,j | x) O(h \log y_n).
$$

14
Let us first focus on $T_{2,n}$. From Lemma 1(ii), for all $u \in [-1,1]$, we eventually have

$$
\left| F(y_{n,j} + \lambda u|X) - F(y_{n,j}|X) \right| 1\{d(x, X) \leq h\} \leq \left(1 + \frac{\lambda u}{y_{n,j}} \right)^{2/\gamma(x)} - 1 \leq C_{\gamma(x)} \frac{\lambda}{y_{n,j}}
$$

since $\lambda/y_n \to 0$ as $n \to \infty$ and where $C_{\gamma(x)}$ is a positive constant. As a consequence,

$$
|T_{2,n}| \leq C_{\gamma(x)} \frac{\lambda}{y_{n,j}} \frac{1}{\mu_x^{(1)}(h)} \mathbb{E}(K(d(x, X)/h)\tilde{F}(y_{n,j}|X))
$$

$$
= C_{\gamma(x)} \frac{\lambda}{y_{n,j}} (\tilde{F}(y_{n,j}|x) + T_{1,n}) = \tilde{F}(y_{n,j}|x)O(\lambda/y_n)
$$

(11)

in view of (10). Collecting (9), (10) and (11) concludes the first part of the proof.

(ii) Let $\beta \neq 0$ in \mathbb{R}^J and consider the random variable

$$
\Psi_n = \sum_{j=1}^J \beta_j \left(\frac{\hat{\psi}_n(y_{n,j}, x) - \mathbb{E}(\hat{\psi}_n(y_{n,j}, x))}{\Lambda_n(x)\tilde{F}(y_{n,j}|x)} \right) =: \sum_{i=1}^n Z_{i,n},
$$

where, for all $i = 1, \ldots, n$, the random variable $Z_{i,n}$ is defined by

$$
n\Lambda_n(x)\mu_x^{(1)}(h)Z_{i,n} = \left\{ \sum_{j=1}^J \beta_j K(d(x, X_i)/h)Q((Y_i - y_{n,j})/\lambda) \right\}
$$

$$
- \mathbb{E} \left(\sum_{j=1}^J \beta_j K(d(x, X_i)/h)Q((Y_i - y_{n,j})/\lambda) \right) \}
$$

Clearly, $\{Z_{i,n}, i = 1, \ldots, n\}$ is a set of centered, independent and identically distributed random variables. Let us determine an asymptotic expansion of their variance:

$$
\text{var}(Z_{i,n}) = \frac{1}{n^2(\mu_x^{(1)}(h))^2\Lambda_n^2(x)} \text{var} \left(\sum_{j=1}^J \beta_j K(d(x, X_i)/h)Q((Y_i - y_{n,j})/\lambda) \right)
$$

$$
= \frac{1}{n^2(\mu_x^{(1)}(h))^2\Lambda_n^2(x)} \beta^4 B(x)\beta
$$

$$
= \frac{\tilde{F}(y_{n,j}|x)}{n\mu_x^{(2)}(h)} \beta^4 B(x)\beta,
$$

(12)

where $B(x)$ is the $J \times J$ covariance matrix with coefficients defined for $(j, j') \in \{1, \ldots, J\}^2$ by

$$
B_{j,j'}(x) = \frac{A_{j,j'}(x)}{\tilde{F}(y_{n,j}|x)\tilde{F}(y_{n,j'}|x)}
$$

$$
A_{j,j'}(x) = \text{cov} \{K(d(x, X)/h)Q((Y - y_{n,j})/\lambda), K(d(x, X)/h)Q((Y - y_{n,j'})/\lambda)\}
$$

$$
= \mathbb{E} \{K^2(d(x, X)/h)Q((Y - y_{n,j})/\lambda)Q((Y - y_{n,j'})/\lambda)\}
$$

$$
- \mathbb{E}[K(d(x, X)/h)Q((Y - y_{n,j})/\lambda)]\mathbb{E}[K(d(x, X)/h)Q((Y - y_{n,j'})/\lambda)]
$$

$$
=: T_{3,n} - T_{4,n}.
$$

Let us first focus on $T_{3,n}:

$$
T_{3,n} = \mathbb{E}\{K^2(d(x, X)/h)\mathbb{E}(Q((Y - y_{n,j})/\lambda)Q((Y - y_{n,j'})/\lambda)|X)\}
$$

(13)
and remark that

$$\mathbb{E}(Q((Y - y_{n,j})/\lambda)Q((Y - y_{n,j'})/\lambda)|X) =: \Omega(y_{n,j}, y_{n,j'}) + \Omega(y_{n,j'}, y_{n,j})$$

where we have defined

$$\Omega(y, z) = \frac{1}{\lambda} \int_{\mathbb{R}} Q'(t - y)/\lambda Q((t - z)/\lambda) \tilde{F}(t|X) dt$$

$$= \int_{-1}^{1} Q'(u)Q(u + (y - z)/\lambda) \tilde{F}(y + u\lambda|X) du.$$

Let us consider the case $j < j'$. We thus have $a_j < a_{j'}$ and consequently $(y_{n,j} - y_{n,j'})/\lambda \to -\infty$ as $n \to \infty$. Therefore, for n large enough $u + (y_{n,j} - y_{n,j'})/\lambda < -1$ and $Q(u + (y_{n,j} - y_{n,j'})/\lambda) = 0$. It follows that, eventually $\Omega(y_{n,j}, y_{n,j'}) = 0$. Similarly, for n large enough $Q(u + (y_{n,j} - y_{n,j'})/\lambda) = 1$ and

$$\Omega(y_{n,j'}, y_{n,j}) = \int_{-1}^{1} Q'(u) \tilde{F}(y_{n,j'} + u\lambda|X) du.$$

For symmetry reasons, it follows that, for all $j \neq j'$,

$$\mathbb{E}(Q((Y - y_{n,j})/\lambda)Q((Y - y_{n,j'})/\lambda)|X) = \int_{-1}^{1} Q'(u) \tilde{F}(y_{n,j'} + u\lambda|X) du = \mathbb{E}(Q((Y - y_{n,j\vee j'})/\lambda)|X),$$

and replacing in (13) yields

$$T_{3,n} = \mathbb{E}\{K^2(d(x, X)/h)\mathbb{E}(Q((Y - y_{n,j\vee j'})/\lambda)|X)\} = \mathbb{E}\{K^2(d(x, X)/h)Q((Y - y_{n,j\vee j'})/\lambda)\}.$$

Now, since K^2 is a kernel also satisfying assumption (A.3), part (1) of the proof implies

$$T_{3,n} = \mu_x^{(2)}(h) \tilde{F}(y_{n,j\vee j'}|x)(1 + O(h \log y_n \vee \lambda/y_n)),$$ \hspace{1cm} (14)

for all $j \neq j'$. In the case where $j = j'$, by definition,

$$T_{3,n} = \mathbb{E}\{K^2(d(x, X)/h)\mathbb{E}(Q^2((Y - y_{n,j})/\lambda)|X)\}$$

where K^2 is a kernel also satisfying assumption (A.3) and where the pdf associated to Q^2 satisfies assumption (A.4). Consequently, (14) also holds for $j = j'$. Second, part (i) of the proof implies

$$T_{4,n} = (\mu_x^{(1)}(h))^2 \tilde{F}(y_{n,j}|x) \tilde{F}(y_{n,j'}|x)(1 + O(h \log y_n \vee \lambda/y_n)).$$

As a consequence,

$$A_{j,j'}(x) = \mu_x^{(2)}(h) \tilde{F}(y_{n,j\vee j'}|x)(1 + O(h \log y_n \vee \lambda/y_n))$$

$$- (\mu_x^{(1)}(h))^2 \tilde{F}(y_{n,j}|x) \tilde{F}(y_{n,j'}|x)(1 + O(h \log y_n \vee \lambda/y_n))$$

leading to

$$B_{j,j'}(x) = \frac{\mu_x^{(2)}(h)}{\tilde{F}(y_{n,j\vee j'}|x)} \left(1 + O(h \log y_n \vee \lambda/y_n) - \frac{(\mu_x^{(1)}(h))^2}{\mu_x^{(2)}(h)} \tilde{F}(y_{n,j\vee j'}|x)(1 + O(h \log y_n \vee \lambda/y_n)) \right).$$
In view of Lemma 3, \((\mu_1^2(h))/\mu_2^2(h)\) is bounded and taking account of \(\hat{F}(y_{n,j}\wedge j'|x) \to 0\) as \(n \to \infty\) yields

\[
B_{j,j'}(x) = \frac{\mu_2^2(h)}{F(y_{n,j}\wedge j'|x)}(1 + o(1)).
\]

Now, from the regular variation property (3), it is easily seen that

\[
\hat{F}(y_{n,j}\wedge j'|x) = a_{j,j'}^{-1/\gamma(x)}\hat{F}(y_n|x)(1 + o(1))
\]

entailing \(B_{j,j'}(x) = C_{j,j'}(x)\mu_2^2(h)/\hat{F}(y_n|x)(1 + o(1))\). Replacing in (12), it follows that

\[
\var(Z_{i,n}) = \frac{\beta^t C(x) \beta}{n} (1 + o(1)),
\]

for all \(i = 1, \ldots, n\). As a preliminary conclusion, \(\var(\Psi_n) \to \beta^t C(x) \beta\) as \(n \to \infty\). Consequently, Lyapunov criteria for the asymptotic normality of sums of triangular arrays reduces to

\[
\sum_{i=1}^n \mathbb{E}|Z_{i,n}|^3 = n \mathbb{E}|Z_{1,n}|^3 \to 0 \quad \text{as} \quad n \to \infty.
\]

Next, remark that \(Z_{1,n}\) is a bounded random variable:

\[
|Z_{1,n}| \leq \frac{2C_2 \sum_j |\beta_j|}{n \Lambda_n(x) \mu_1^2(h) \hat{F}(y_{n,j}|x)}
\]

\[
= 2C_2 a_j^{1/\gamma(x)} \frac{\mu_1^2(h)}{\mu_2^2(h)} \sum_j |\beta_j| \Lambda_n(x)(1 + o(1))
\]

\[
\leq 2(C_2/C_1)^2 a_j^{1/\gamma(x)} \sum_j |\beta_j| \Lambda_n(x)(1 + o(1));
\]

in view of Lemma 3 and thus,

\[
n \mathbb{E}|Z_{1,n}|^3 \leq 2(C_2/C_1)^2 a_j^{1/\gamma(x)} \sum_j |\beta_j| \Lambda_n(x) n \var(Z_{1,n})(1 + o(1))
\]

\[
= 2(C_2/C_1)^2 a_j^{1/\gamma(x)} \sum_j |\beta_j| \beta^t C(x) \beta \Lambda_n(x)(1 + o(1)) \to 0
\]

as \(n \to \infty\) in view of Lemma 3. As a conclusion, \(\Psi_n\) converges in distribution to a centered Gaussian random variable with variance \(\beta^t C(x) \beta\) for all \(\beta \neq 0\) in \(\mathbb{R}^J\). The result is proved.

7.2 Proofs of main results

Proof of Theorem 1. Keeping in mind the notations of Lemma 6, the following expansion holds

\[
\Lambda_n^{-1}(x) \sum_{j=1}^J \beta_j \left(\frac{\hat{F}(y_{n,j}|x)}{\hat{F}(y_{n,j}|x)} - 1 \right) =: \frac{\Delta_{1,n} + \Delta_{2,n} - \Delta_{3,n}}{g_n(x)},
\]

(15)
where
\[
\Delta_{1,n} = \Lambda^{-1}_n(x) \sum_{j=1}^{J} \beta_j \left(\frac{\hat{F}_n(y_{n,j}|x) - \mathbb{E}(\hat{F}_n(y_{n,j}|x))}{F(y_{n,j}|x)} \right)
\]
\[
\Delta_{2,n} = \Lambda^{-1}_n(x) \sum_{j=1}^{J} \beta_j \left(\frac{\mathbb{E}(\hat{F}_n(y_{n,j}|x)) - \hat{F}(y_{n,j}|x)}{F(y_{n,j}|x)} \right)
\]
\[
\Delta_{3,n} = \left(\sum_{j=1}^{J} \beta_j \right) \Lambda^{-1}_n(x) (\hat{g}_n(x) - 1).
\]
Let us highlight that assumptions \(nh^2 \varphi_x (h) \log^2(y_n) \hat{F}(y_n|x) \to 0 \) and \(n \varphi_x (h) \hat{F}(y_n|x) \to \infty \) imply that \(h \log y_n \to 0 \) as \(n \to \infty \). Thus, from Lemma 6(ii), the random term \(\Delta_{1,n} \) can be rewritten as
\[
\Delta_{1,n} = \sqrt{\beta^T C(x) \beta \xi_n},
\]
where \(\xi_n \) converges to a standard Gaussian random variable. The nonrandom term \(\Delta_{2,n} \) is controlled with Lemma 6(i):
\[
\Delta_{2,n} = O(\Lambda^{-1}_n(x) (h \log y_n \vee \lambda/y_n)) = o(1).
\]
Finally, \(\Delta_{3,n} \) can be bounded by Lemma 5 and Lemma 3:
\[
\Delta_{3,n} = O_P(\Lambda^{-1}_n(x) (n \varphi_x (h))^{-1/2}) = O_P(\hat{F}(y_n|x))^{1/2} = o_P(1).
\]
Collecting (15)–(18), it follows that
\[
\hat{g}_n(x) = O_P \left(\frac{\hat{F}_n(y_{n,j}|x)}{F(y_{n,j}|x)} \right) - 1 = \sqrt{\beta^T C(x) \beta \xi_n} + o_P(1).
\]
Finally, \(\hat{g}_n(x) \overset{P}{\to} 1 \) concludes the proof.

Proof of Theorem 2. Introduce for \(j = 1, \ldots, J \),
\[
\alpha_{n,j} = r_j \alpha_n,
\]
\[
\sigma_{n,j}(x) = q(\alpha_{n,j}|x) \sigma_n(x),
\]
\[
v_{n,j}(x) = \alpha_n^{-1} \gamma(x) \sigma_n^{-1}(x),
\]
\[
W_{n,j}(x) = v_{n,j}(x) \left(\hat{F}_n(q(\alpha_{n,j}|x) + \sigma_{n,j}(x)z_j|x) - \hat{F}(q(\alpha_{n,j}|x) + \sigma_{n,j}(x)z_j|x) \right),
\]
\[
a_{n,j}(x) = v_{n,j}(x) \left(\alpha_{n,j} - \hat{F}(q(\alpha_{n,j}|x) + \sigma_{n,j}(x)z_j|x) \right),
\]
and \(z_j \in \mathbb{R} \). Let us study the asymptotic behavior of \(J \)-variate function defined by
\[
\Phi_n(z_1, \ldots, z_J) = \mathbb{P} \left(\bigcap_{j=1}^{J} \left\{ \sigma_{n,j}^{-1}(x)(\hat{q}_n(\alpha_{n,j}|x) - q(\alpha_{n,j}|x)) \leq z_j \right\} \right) = \mathbb{P} \left(\bigcap_{j=1}^{J} \{ W_{n,j}(x) \leq a_{n,j}(x) \} \right).
\]
We first focus on the nonrandom term $a_{n,j}(x)$. Under (A.1), $F(.|x)$ is differentiable. Thus, for all $j \in \{1, \ldots, J\}$ there exists $\theta_{n,j} \in (0, 1)$ such that

$$F(q(\alpha_{n,j}|x)|x) - F(q(\alpha_{n,j}|x) + \sigma_{n,j}(x)z_j|x) = -\sigma_{n,j}(x)z_j F'(q_{n,j}|x),$$

where $q_{n,j} = q(\alpha_{n,j}|x) + \theta_{n,j}(n_{n,j})z_j$. It is clear that $q(\alpha_{n,j}|x) \to \infty$ and $\sigma_{n,j}(x)/q(\alpha_{n,j}|x) \to 0$ as $n \to \infty$. As a consequence, $q_{n,j} \to \infty$ and thus (A.1) entails

$$\lim_{n \to \infty} \frac{q_{n,j} F'(q_{n,j}|x)}{F(q_{n,j}|x)} = -1/\gamma(x).$$

Moreover, since $q_{n,j} = q(\alpha_{n,j}|x)(1 + o(1))$ and $F(.|x)$ is regularly varying at infinity, it follows that $F(q_{n,j}|x) = F(q(\alpha_{n,j}|x)|x)(1 + o(1)) = \alpha_{n,j}(1 + o(1))$. In view of (19) and (20), we end up with

$$a_{n,j}(x) = \frac{v_{n,j}(x)\sigma_{n,j}(x)\alpha_{n,j}z_j}{\gamma(x)q(\alpha_{n,j}|x)}(1 + o(1)) = z_j(1 + o(1)).$$

Let us now turn to the random term $W_{n,j}(x)$. Defining $a_j = T_{-\gamma(x)}$, $y_{n,j} = q(\alpha_{n,j}|x) + \sigma_{n,j}(x)z_j$ for $j = 1, \ldots, J$ and $y_n = q(\alpha_n|x)$, we have $y_{n,j} = q(\alpha_{n,j}|x)(1 + o(1)) = a_j y_n(1 + o(1))$ since $q(.|x)$ is regularly varying at 0 with index $-\gamma(x)$. Using the same argument, it is easily shown that

$$\log y_n = -\gamma(x)\log(\alpha_n)(1 + o(1)),$$

As a consequence, Theorem 1 applies and the random vector

$$\left\{ \frac{\sigma_{n,-1}^{-1}(x)}{v_{n,j}(x)F(y_{n,j}|x)} W_{n,j} \right\}_{j=1,\ldots,J} = (1 + o(1)) \left\{ \frac{W_{n,j}}{\gamma(x)} \right\}_{j=1,\ldots,J}$$

converges to a centered Gaussian random variable with covariance matrix $\gamma^2(x)C(x)$ evaluated at (z_1, \ldots, z_J), which is the desired result.

Proof of Theorem 3. The proof is based on the following expansion:

$$\frac{\sigma_{n,-1}^{-1}(x)}{\log(\alpha_n/\beta_n)}(\log(q_n^w(\beta_n|x)) - \log(q(\beta_n|x))) = \frac{\sigma_{n,-1}^{-1}(x)}{\log(\alpha_n/\beta_n)}(Q_{n,1} + Q_{n,2} + Q_{n,3}),$$

where we have introduced

$$Q_{n,1} = \sigma_{n,-1}^{-1}(x)(\gamma_n(x) - \gamma(x)),$$

$$Q_{n,2} = \frac{\sigma_{n,-1}^{-1}(x)}{\log(\alpha_n/\beta_n)} \log(q_n(\alpha_n|x)/q(\alpha_n|x)),$$

$$Q_{n,3} = \frac{\sigma_{n,-1}^{-1}(x)}{\log(\alpha_n/\beta_n)}(\log q(\alpha_n|x) - \log q(\beta_n|x) + \gamma(x)\log(\alpha_n/\beta_n)).$$

First, $Q_{n,1} \xrightarrow{d} N(0, V(x))$ as a straightforward consequence of the assumptions. Second, Theorem 2 implies that $q_n(\alpha_n|x)/q(\alpha_n|x) \xrightarrow{P} 1$ and

$$Q_{n,2} = \frac{\sigma_{n,-1}^{-1}(x)}{\log(\alpha_n/\beta_n)} \left(\frac{q_n(\alpha_n|x)}{q(\alpha_n|x)} - 1 \right) (1 + o_P(1)) = \frac{O_P(1)}{\log(\alpha_n/\beta_n)}.$$

Consequently, $Q_{n,2} \xrightarrow{P} 0$ as $n \to \infty$. Finally, from Lemma 2(i), $Q_{n,3} = O(\sigma_{n,-1}(\alpha_n|x)/q(\alpha_n|x))$, which converges to 0 in view of the assumptions.
Proof of Theorem 4. The following expansion holds for all $j = 1, \ldots, J$:

$$\log \tilde{q}_n (\tau_j \alpha_n | x) = \log q(\alpha_n | x) + \log \left(\frac{q(\tau_j \alpha_n | x)}{q(\alpha_n | x)} \right) + \log \left(\frac{\tilde{q}_n (\tau_j \alpha_n | x)}{q(\tau_j \alpha_n | x)} \right).$$ \tag{22}$$

First, Lemma 2(ii) entails that

$$\log \left(\frac{q(\tau_j \alpha_n | x)}{q(\alpha_n | x)} \right) = \gamma(x) \log (1/\tau_j) + O(\varepsilon(q(\alpha_n | x)|x)),$$ \tag{23}$$

where the $O(\varepsilon(q(\alpha_n | x)|x))$ is not necessarily uniform in $j = 1, \ldots, J$. Second, it follows from Theorem 2 that

$$\log \left(\frac{\tilde{q}_n (\tau_j \alpha_n | x)}{q(\tau_j \alpha_n | x)} \right) = \sigma_n(x)\xi_{n,j}$$ \tag{24}$$

where $(\xi_{n,1}, \ldots, \xi_{n,J})^t$ converges to a centered Gaussian random vector with covariance matrix $\gamma^2(x) \Sigma$. Replacing (23) and (24) in (22) yields

$$\log \tilde{q}_n (\tau_j \alpha_n | x) = \log q(\alpha_n | x) + \gamma(x) \log (1/\tau_j) + \sigma_n(x)\xi_{n,j} + O(\varepsilon(q(\alpha_n | x)|x)),$$

for all $j = 1, \ldots, J$ and therefore, in view of the shift invariance property of ϕ, we have

$$\phi (\{\log \tilde{q}_n (\tau_j \alpha_n | x)\}_{j=1, \ldots, J}) = \phi (\{\gamma(x) \log (1/\tau_j) + \sigma_n(x)\xi_{n,j} + O(\varepsilon(q(\alpha_n | x)|x))\}_{j=1, \ldots, J}).$$

A first order Taylor expansion yields:

$$\phi (\{\log \tilde{q}_n (\tau_j \alpha_n | x)\}_{j=1, \ldots, J}) = \phi (\gamma(x)v) + \sum_{j=1}^J (\sigma_n(x)\xi_{n,j} + O(\varepsilon(q(\alpha_n | x)|x))) \frac{\partial \phi}{\partial \tau_j}(\gamma(x)v)$$

$$+ O_P \left(\sum_{j=1}^J (\sigma_n(x)\xi_{n,j} + O(\varepsilon(q(\alpha_n | x)|x)))^2 \right).$$

Thus, under the condition $\sigma_n^{-1}(x)\varepsilon(q(\alpha_n | x)|x) \to 0$ as $n \to \infty$, it follows that

$$\sigma_n^{-1}(x)\phi (\{\log \tilde{q}_n (\tau_j \alpha_n | x)\}_{j=1, \ldots, J}) - \phi (\gamma(x)v) = \sum_{j=1}^J \xi_{n,j} \frac{\partial \phi}{\partial \tau_j}(\gamma(x)v) + o_P(1).$$

Taking into account of the scale invariance property of ϕ, we finally obtain

$$\sigma_n^{-1}(x)(\tilde{\gamma}_n - \gamma) = \frac{1}{\phi(v)} \sum_{j=1}^J \xi_{n,j} \frac{\partial \phi}{\partial \tau_j}(\gamma(x)v) + o_P(1)$$

and the conclusion follows.
References

\[
\bar{F}(y|x) = y^{-\theta(x)} \\
Cauchy: \frac{1}{\pi} \tan^{-1}(1/y) + \frac{1}{2}(1 - \text{sign}(y)) \\
Fréchet: 1 - \exp(-y^{-\theta(x)}) \\
Burr: (1 + y^{\tau(x)})^{-\lambda(x)}
\]

Table 1: Examples of distributions satisfying (A.1). Their parameters $\theta(x)$, $\tau(x)$ and $\lambda(x)$ are positive.

| | $\bar{F}(y|x)$ | $\gamma(x)$ | $c(x)$ | $\varepsilon(y|x)$ |
|----|----------------|-------------|--------|------------------|
| Pareto | $y^{-\theta(x)}$ | $\frac{1}{\theta(x)}$ | 1 | 0 |
| Cauchy | $\frac{1}{\pi} \tan^{-1}(1/y) + \frac{1}{2}(1 - \text{sign}(y))$ | 1 | $\frac{1}{4}$ | $\frac{2}{3} y^2 (1 + o(1))$ |
| Fréchet | $1 - \exp(-y^{-\theta(x)})$ | $\frac{1}{\theta(x)}$ | $1 - e^{-1}$ | $\frac{\theta(x)}{2} y^{-\theta(x)} (1 + o(1))$ |
| Burr | $(1 + y^{\tau(x)})^{-\lambda(x)}$ | $\frac{1}{\lambda(x)\tau(x)}$ | $2^{-\lambda(x)}$ | $\lambda(x)\tau(x)y^{-\tau(x)} (1 + o(1))$ |

Table 2: Median [10% quantile, 90% quantile] of the L_2-errors $\Delta_d^{(r)}$ for $\alpha = c \log(n)/n$, $c \in \{5, 10, 15, 20\}$ and $\tau_j = (1/j)^s$, $s \in \{1, 2, 3, 10\}$ for the two semi-metrics d_X and d_Z.

<table>
<thead>
<tr>
<th></th>
<th>$c = 5$</th>
<th>$c = 10$</th>
<th>$c = 15$</th>
<th>$c = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 1$</td>
<td>$d = d_X$</td>
<td>$10^5 [2787, 10^5]$</td>
<td>$863 [363, 3103]$</td>
<td>$\textbf{793} [311, 2402]$</td>
</tr>
<tr>
<td></td>
<td>$d = d_Z$</td>
<td>$10^7 [7208, 10^{12}]$</td>
<td>$860 [323, 3137]$</td>
<td>$\textbf{688} [287, 2242]$</td>
</tr>
<tr>
<td>$s = 2$</td>
<td>$d = d_X$</td>
<td>$6391 [871, 10^5]$</td>
<td>$429 [176, 1347]$</td>
<td>$349 [144, 1056]$</td>
</tr>
<tr>
<td>$s = 3$</td>
<td>$d = d_X$</td>
<td>$2300 [570, 10^5]$</td>
<td>$318 [126, 1083]$</td>
<td>$272 [111, 792]$</td>
</tr>
<tr>
<td></td>
<td>$d = d_Z$</td>
<td>$13651 [1436, 10^6]$</td>
<td>$309 [141, 1301]$</td>
<td>$277 [115, 863]$</td>
</tr>
</tbody>
</table>
Figure 1: Four realizations of the random function $X(.)$.
Figure 2: Comparison of the estimated quantile $\hat{q}_W^{\alpha}(\beta_n|x)$ corresponding to the 10% quantile of the L_2-errors $\Delta_d^{(\tau)}$ with the true quantile function (continuous line). Horizontally: Z, vertically: quantiles. Two sets of (α_n, τ_j) are considered: $(\alpha_n = 15 \log(n)/n, \tau_j = (1/j)^3$, dashed line) and $(\alpha_n = 10 \log(n)/n, \tau_j = (1/j)^2$, dotted line). Top: semi-metric d_Z, bottom: semi-metric d_X.
Figure 3: Comparison of the estimated quantile $\hat{q}_n^w(\beta_n|x)$ corresponding to the median of the L_2-errors Δ^W_{ij} with the true quantile function (continuous line). Horizontally: Z, vertically: quantiles. Two sets of (α_n, τ_j) are considered: $(\alpha_n = 15 \log(n)/n, \tau_j = (1/j)^3$, dashed line) and $(\alpha_n = 10 \log(n)/n, \tau_j = (1/j)^2$, dotted line). Top: semi-metric d_Z, bottom: semi-metric d_X.

27
Figure 4: Comparison of the estimated quantile $\hat{q}_W^W(\beta_n|x)$ corresponding to the 90% quantile of the L_2-errors $\Delta_d^{(r)}$ with the true quantile function (continuous line). Horizontally: Z, vertically: quantiles. Two sets of (α_n, τ_j) are considered: $(\alpha_n = 15 \log(n)/n, \tau_j = (1/j)^3$, dashed line) and $(\alpha_n = 10 \log(n)/n, \tau_j = (1/j)^2$, dotted line). Top: semi-metric d_Z, bottom: semi-metric d_X.
Figure 5: Selected spectrometric curves χ_{i0} and χ_{i1}.
Figure 6: Quantile estimate of order $\beta_n = 5/n$ as a function of $t(\xi) = \xi \chi_{i_1} + (1 - \xi) \chi_{i_0}$, $\xi \in [0, 1]$.
Continuous line: $\tau_j = (1/j)^3$ and $\alpha_n = 15 \log(n)/n$, dashed line: $\tau_j = (1/j)^2$ and $\alpha_n = 10 \log(n)/n$.

Figure 7: Estimation of the conditional tail-index $\hat{\gamma}^\phi_n(x)$ as a function of α_n with $\tau_j = (1/j)^2$.
Continuous line: $x = \chi_{i_0}$, dashed line: $x = \chi_{i_1}$.

30