Almost sure convergence for stochastically biased random walks on trees

Abstract : We are interested in the biased random walk on a supercritical Galton- Watson tree in the sense of Lyons (Ann. Probab. 18:931-958, 1990) and Lyons, Pemantle and Peres (Probab. Theory Relat. Fields 106:249-264, 1996), and study a phenomenon of slow movement. In order to observe such a slow movement, the bias needs to be random; the resulting random walk is then a tree-valued random walk in random environment. We investigate the recurrent case, and prove, under suitable general integrability assumptions, that upon the system's non-extinction, the maximal displacement of the walk in the first n steps, divided by (log n)3, converges almost surely to a known positive constant.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2011, published online. <10.1007/s00440-011-0379-y>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00608163
Contributeur : Gabriel Faraud <>
Soumis le : mardi 12 juillet 2011 - 12:28:58
Dernière modification le : jeudi 27 avril 2017 - 09:45:49
Document(s) archivé(s) le : jeudi 13 octobre 2011 - 02:30:17

Fichier

gyzbiased.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gabriel Faraud, Yueyun Hu, Zhan Shi. Almost sure convergence for stochastically biased random walks on trees. Probability Theory and Related Fields, Springer Verlag, 2011, published online. <10.1007/s00440-011-0379-y>. <hal-00608163>

Partager

Métriques

Consultations de
la notice

357

Téléchargements du document

114