Overlaps and Pathwise Localization in the Anderson Polymer Model - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2012

Overlaps and Pathwise Localization in the Anderson Polymer Model

Résumé

We consider large time behavior of typical paths under the Anderson polymer measure. If $P$ is the measure induced by rate $\kappa,$ simple, symmetric random walk on $Z^d$ started at $x,$ this measure is defined as $$ d\mu(X)={Z^{-1} \exp\{\beta\int_0^T dW_{X(s)}(s)\}dP(X) $$ where $\{W_x:x\in Z^d\}$ is a field of $iid$ standard, one-dimensional Brownian motions, $\beta>0, \kappa>0$ and $Z$ the normalizing constant. We establish that the polymer measure gives a macroscopic mass to a small neighborhood of a typical path as $T \to \infty$, for parameter values outside the perturbative regime of the random walk, giving a pathwise approach to polymer localization, in contrast with existing results. The localization becomes complete as $\frac{\beta^2}{\kappa}\to\infty$ in the sense that the mass grows to 1. The proof makes use of the overlap between two independent samples drawn under the Gibbs measure $\mu$, which can be estimated by the integration by parts formula for the Gaussian environment. Conditioning this measure on the number of jumps, we obtain a canonical measure which already shows scaling properties, thermodynamic limits, and decoupling of the parameters.
Fichier principal
Vignette du fichier
overlaps-revise.pdf (237.35 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00607809 , version 1 (11-07-2011)
hal-00607809 , version 2 (07-03-2012)
hal-00607809 , version 3 (20-12-2012)

Identifiants

Citer

Francis Comets, Michael Cranston. Overlaps and Pathwise Localization in the Anderson Polymer Model. 2012. ⟨hal-00607809v3⟩
127 Consultations
296 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More