A Bayesian Model for RTS Units Control applied to StarCraft

Abstract : In real-time strategy games (RTS), the player must reason about high-level strategy and planning while having effective tactics and even individual units micro-management. Enabling an artificial agent to deal with such a task entails breaking down the complexity of this environment. For that, we propose to control units locally in the Bayesian sensory motor robot fashion, with higher level orders integrated as perceptions. As complete inference encompassing global strategy down to individual unit needs is intractable, we embrace incompleteness through a hierarchical model able to deal with uncertainty. We developed and applied our approach on a StarCraft AI.
Type de document :
Communication dans un congrès
Computational Intelligence and Games, Aug 2011, Seoul, South Korea. pp.000, 2011
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00607281
Contributeur : Gabriel Synnaeve <>
Soumis le : vendredi 8 juillet 2011 - 14:03:24
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : lundi 12 novembre 2012 - 10:30:57

Fichier

BayesianUnit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00607281, version 1

Collections

Citation

Gabriel Synnaeve, Pierre Bessiere. A Bayesian Model for RTS Units Control applied to StarCraft. Computational Intelligence and Games, Aug 2011, Seoul, South Korea. pp.000, 2011. 〈hal-00607281〉

Partager

Métriques

Consultations de la notice

596

Téléchargements de fichiers

720