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A Bayesian Model for Opening Prediction in RTS Games

with Application to StarCraft

Gabriel Synnaeve (gabriel.synnaeve@gmail.com) Pierre Bessière (pierre.bessiere@imag.fr)

Abstract—This paper presents a Bayesian model to predict
the opening (first strategy) of opponents in real-time strategy
(RTS) games. Our model is general enough to be applied to any
RTS game with the canonical gameplay of gathering resources
to extend a technology tree and produce military units and
we applied it to StarCraft1. This model can also predict the
possible technology trees of the opponent, but we will focus on
openings here. The parameters of this model are learned from
replays (game logs), labeled with openings. We present a semi-
supervised method of labeling replays with the expectation-
maximization algorithm and key features, then we use these
labels to learn our parameters and benchmark our method with
cross-validation. Uses of such a model range from a commentary
assistant (for competitive games) to a core component of a
dynamic RTS bot/AI, as it will be part of our StarCraft AI
competition entry bot.

I. INTRODUCTION

A. RTS gameplay and AI

We first introduce the basic components of a real-time

strategy (RTS) game. In a RTS, players need to gather

resources to build military units and defeat their opponents.

To that end, they often have worker units (or extraction

structures) than can gather resources needed to build workers,

buildings, military units and research upgrades. Workers are

often also builders (as in StarCraft) and are weak in fights

compared to military units. Resources may have different

uses, for instance in StarCraft: minerals are used for every-

thing, whereas gas is only required for advanced buildings

or military units, and technology upgrades. Buildings and

research upgrades define technology trees (directed acyclic

graphs) and each state of a “tech tree” allow for different unit

type production abilities and unit spells/abilities. The military

can be of different types, any combinations of ranged, casters,

contact attack, zone attacks, big, small, slow, fast, invisible,

flying... Units can have attacks and defenses that counter each

others as in rock-paper-scissors.

Each unit and building has a sight range that provides

the player with a view of the map. Parts of the map not

in the sight range of the player’s units are under fog of

war and the player ignores what is and happens there. In

RTS games jargon, an opening denotes the same thing than

in Chess: an early game plan for which the player has to

make choices. In Chess because one can not move many

pieces at once (each turn), in RTS games because during

the development phase, one is economically limited and

has to choose between economic and military priorities and

can only open so many tech paths at once. The opening

1StarCraft and its expansion StarCraft: Brood War are trademarks of
Blizzard EntertainmentTM

corresponds to the first military (tactical) moves that will

be performed and, in StarCraft, it corresponds to the 5

(early rushes) to 15 minutes (advanced technology / late

push) timespan. Players have to find out what opening their

opponents are doing to be able to effectively deal with the

strategy (army composition) and tactics (military moves:

where and when) thrown at them. For that, players scout

each other and reason about the incomplete information they

can bring together about army and buildings composition.

This paper presents a probabilistic model able to predict

the opening of the enemy that is used in a StarCraft AI

competition entry bot (see Figure 1).

Most real-time strategy (RTS) games AI are either not

challenging or not fun to play against. They are not challeng-

ing because they do not adapt well dynamically to different

strategies (long term goals and army composition) and tactics

(army moves) that a human can perform. They are not fun

to play againt because they cheat economically, gathering

resources faster, and/or in the intelligence war, bypassing

the fog of war. We believe that creating AI that adapt to the

strategies of the human player would make RTS games AI

much more interesting to play against and increase greatly

the “re-playability” of RTS games.

B. StarCraft

We worked on StarCraft: Brood War, which is a canonical

RTS game, as Chess is to board games. It had been around

since 1998, it has sold 10 millions licenses and was the best

competitive RTS for more than a decade. There are numerous

international competitions (World Cyber Games, Electronic

Sports World Cup, BlizzCon, OSL, MSL). In South Korea,

4.5 millions of licenses have been sold and the average salary

of a pro-gamer was up to 4 times the average salary. StarCraft

helped define a particular genre of RTS gameplay, based as

much on the strategy than the tactics. Nowadays, StarCraft

2 seems to overtake the original StarCraft, but the gameplay

is exactly the same and many buildings and units are shared

between the two games. There are 3 factions (Protoss, Terran

and Zerg) that are totally different in terms of units, tech trees

and thus gameplay styles.

StarCraft and most RTS provide a tool to record game

logs into replays that can be re-simulated by the game

engine and watched to improve strategies and tactics. All

high level players use this feature heavily either to improve

their play or study opponents style. Observing replays allows

players to see what happened under the fog of war, so that

they can understand timing of technologies and attacks and

find clues/evidences leading to infer the strategy as well as



weak points (either strategic or tactical). We used this replay

feature to extract players actions and learn the probabilities

of tech trees to happen at a given time and, in this paper,

also given a labeled opening.

C. Our Approach

The main idea of this paper comes from expert play of

StarCraft: human players can have a mental model of the

probabilities of their opponents current openings and/or tech

trees. They try to update this mental model by scouting the

opponent base and looking at the time at which opponents

build their (tech or producing) structures, number of units

at given times and so on. For instance in StarCraft, the

players need to have buildings to gather resources (command

center, refinery...), the time at which players build them is

a first indication. A player wanting to do advanced units

very fast will need gas and this resource type needs a

refinery/extractor/assimilator to be gathered. The time at

which it is built is typical of tech opening versus economical

or rush openings.

We made the buildings part of tech trees the central part of

our model because buildings can be more easily scouted than

units and our main focus was our bot implementation (see

Figure 1), but nothing hinders us to use units and upgrades as

well in a setting without fog of war (commentary assistant,

game AI that cheat). There is not a direct mapping between

the build time of structures and openings or strategies:

different timings of buildings can lead to the same tech tree

but different openings or strategies, whereas the same timings

of buildings can later lead to different tech trees. Finally, note

that if one does not want to predict specific openings but the

probabilities of tech trees, one does not need to have labeled

game logs but only game logs.

In the next section, we discuss related works on strategy

prediction and game logs exploitation. We also introduce

the probabilistic framework used to describe our model. In

section III, we describe our methodology to put openings

labels on replays and the Bayesian model for the recognition.

We then evaluate our recognition model, proving it leads to

significant information for the bot to adapt dynamically to

its opponent and that it is possible to perform the predictions

in real time.

II. BACKGROUND

A. Related Works

This work was encouraged by the reading of Weber and

Mateas’ Data Mining Approach to Strategy Prediction [1]

and the fact that they provided their dataset, that we used.

They tried and evaluated several machine learning algorithms

on replays that were labeled with strategies (openings) with

rules.

There are related works in the domains of opponent mod-

eling [2], [3], [4]. The main methods used to these ends are

case-based reasoning (CBR) and planning or plan recognition

[5], [6], [7], [8], [9]. There are precedent works of Bayesian

plan recognition [10], even in games with Albrecht et al.
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Fig. 1. Data flow of the full StarCraft robotic player BROODWARBOTQ.
In this paper, we only deal with the upper left part (in a dotted line).

[11] using dynamic Bayesian networks to recognize a user’s

plan in a multi-player dungeon adventure.

Aha et al. [5] used CBR to perform dynamic plan retrieval

extracted from domain knowledge in Wargus (Warcraft II

clone). Ontañón et al. [6] base their real-time case-based

planning (CBP) system on a plan dependency graph which

is learned from human demonstration. In [7], [12], they use

CBR and expert demonstrations on Wargus. They improve

the speed of CPB by using a decision tree to select relevant

features. Hsieh and Sun [2] based their work on Aha et

al.’s CBR [5] and used StarCraft replays to construct states

and building sequences. Strategies are choices of building

construction order in their model.

Schadd et al. [3] describe opponent modeling through

hierarchically structured models of the opponent behaviour

and they applied their work to the Spring RTS (Total Annihi-

lation clone). Hoang et al. [8] use hierarchical task networks

(HTN) to model strategies in a first person shooter with

the goal to use HTN planners. Kabanza et al. [4] improve

the probabilistic hostile agent task tracker (PHATT [13], a

simulated HMM for plan recognition) by encoding strategies

as HTN.

The work described in this paper can be classified as

probabilistic plan recognition. Strictly speaking, we present

model-based machine learning used for prediction of plans,

while our model is not limited to prediction. It performs two

levels of plan recognition, both are learned from the replays:

tech tree prediction (unsupervised) and opening prediction

(semi-supervised or supervised depending on the labeling

method).

B. Bayesian Programming

Probability is used as an alternative to classical logic

and we transform incompleteness (in the experiences, the

perceptions or the model) into uncertainty [14]. We introduce

Bayesian programs (BP), a formalism that can be used to

describe entirely any kind of Bayesian model, subsuming

Bayesian networks and Bayesian maps, equivalent to prob-

abilistic factor graphs [15]. There are mainly two parts in a



BP, the description of how to compute the joint distribution,

and the question(s) that it will be asked.

The description consists in explaining the relevant vari-

ables {X1, . . . , Xn} and explain their dependencies by

decomposing the joint distribution P (X1 . . . Xn|δ, π) with

existing preliminary knowledge π and data δ. The forms

of each term of the product specify how to compute their

distributions: either parametric forms (laws or probability

tables, with free parameters that can be learned from data

δ) or recursive questions to other Bayesian programs.

Answering a question is computing the distribution

P (Searched|Known), with Searched and Known two

disjoint subsets of the variables. P (Searched|Known)

=

∑
Free P (Searched, Free, Known)

P (Known)

=
1

Z
×

∑

Free

P (Searched, Free, Known)

General Bayesian inference is practically intractable, but

conditional independence hypotheses and constraints (stated

in the description) often simplify the model. Also, there are

different well-known approximation techniques, for instance

Monte Carlo methods [?] and variational Bayes [16]. In this

paper, we will use only simple enough models that allow

complete inference to be computed in real-time.
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For the use of Bayesian programming in sensory-motor

systems, see [17]. For its use in cognitive modeling, see

[18]. For its first use in video games (first person shooter

gameplay, Unreal Tournament), see [19].

III. METHODOLOGY

A. Replays Labeling

We used Weber and Mateas [1] dataset of labeled replays.

It is composed of 9316 StarCraft: Broodwar game logs,

between ≈ 500 and 1300 per match-up. A match-up is a

set of the two opponents races, Protoss versus Terran (PvT)

is a match-up, PvZ is another one. They are distinguished be-

cause strategies distribution are very different across match-

ups (see Table II). Weber and Mateas used logic rules on

building sequences to put their labels, concerning only tier

2 strategies (no tier 1 rushes).

Openings are closely related to build orders (BO) but

different BO can lead to the same opening and some BO

are shared by different openings. Particularly, if we do not

take the time at which the buildings are constructed, we may

be wrong too often. For that reason, we tried to label replays

with the statistical appearance of key features with a semi-

supervised method (see Figure 2). Indeed, the purpose of our

opening prediction model is to help our StarCraft playing bot

to deal with rushes and special tactics. This was not the main

focus of Weber and Mateas’ labels, which follow more the

development of the tech tree. We used the key components

of openings that we want to be aware of as features for our

labeling algorithm as show in Table I.

replaysreplaysreplays
replay replaysjoint

replays + 

multiple 

labels

replays + 

1 label / 

replay

score filteringEM 2 clusters

positive labeling 1 cluster vs others
different features for different labels

as many EM as labels

Fig. 2. Data centric view of our semi-supervised labeling of replays

The selection of the features along with the opening labels

is the supervised part of our labeling method. The knowledge

of the features and openings comes from expert play and the

StarCraft liquipedia2. They are all presented in Table I. For

instance, if we want to find out which replays correspond to

the “fast Dark Templar” (DT, Protoss invisible unit) opening,

we put the time at which the first Dark Templar is constructed

as a feature and perform clustering on replays with it. This

is what is needed for our playing bot: to be able to know

when he has to fear “fast DT” opening and build a detector

unit quickly to be able to deal with invisibility.

For the clustering part, we tried k-means, expectation-

maximization (EM) with equal shape (bivariate normal dis-

tribution with proportional covariances matrices) and EM

with the normal distribution shapes and volumes chosen with

a Bayesian information criterion (BIC). Best BIC models

were almost always the most agreeing with expert knowledge

(15/17 labels). We used the R package Mclust [20], [21] to

perform full EM clustering. We produce “2 bins clustering”

for each set of features (corresponding to each opening), and

label the replays belonging to the cluster with the lower norm

of features’ appearances (that is exactly the purpose of our

features). Figures 4 and 5 show the clusters out of EM with

the features of the corresponding openings. We thought of

clustering because there are two cases in which you build a

specific military unit of research a specific upgrade: either it

is part of your opening, or it is part of your longer term game

plan or even in reaction to the opponent. So the distribution

over the time at which a feature appears is bimodal, with

one (sharp) mode corresponding to “opening with it” and the

other for the rest of the games, as can be seen in Figure 3.

TABLE II
OPENINGS DISTRIBUTIONS FOR TERRAN IN ALL THE MATCH-UPS

vs Protoss vs Terran vs Zerg
Opening Nb Percentage Nb Percentage Nb Percentage

bio 62 6.2 25 4.4 197 22.6
fast exp 438 43.5 377 65.4 392 44.9

two facto 240 23.8 127 22.0 116 13.3
vultures 122 12.1 3 0.6 3 0.3

drop 52 5.2 10 1.7 121 13.9
unknown 93 9.3 34 5.9 43 5.0

2http://wiki.teamliquid.net/starcraft/



TABLE I
OPENING/STRATEGIES LABELS OF THE REPLAYS (WEBER’S AND OURS ARE NOT ALWAYS CORRESPONDING)

Race Weber and Mateas’ labels Our labels Features Note (what we fear)

Protoss FastLegs speedzeal Legs, GroundWeapons+1 quick speed+upgrade attack
FastDT fast dt DarkTemplar invisible units
FastObs nony Goon, Range quick long ranged attack

ReaverDrop reaver drop Reaver, Shuttle tactical attack zone damages
Carrier corsair Corsair flying units

FastExpand templar Storm, Templar powerful zone attack
two gates SecondGateway, Gateway, Zealot aggressive rush

Unknown unknown (no label or > 2 labels with ≈ probabilities)

Terran Bio bio ThirdBarracks, SecondBarracks, Barracks aggressive rush
TwoFactory two facto SecondFactory strong push (long range)

VultureHarass vultures Mines, Vulture aggressive harass, invisible
SiegeExpand fast exp Expansion, Barracks economical advantage

Standard
FastDropship drop DropShip tactical attack

Unknown unknown (no label or > 2 labels with ≈ probabilities)

Zerg TwoHatchMuta fast mutas Mutalisk, Gas early air raid
ThreeHatchMuta mutas ThirdHatch, Mutalisk massive air raid

HydraRush hydras Hydra, HydraSpeed, HydraRange quick ranged attack
Standard (speedlings) (ZerglingSpeed, Zergling) (removed, quick attacks/mobility)

HydraMass
Lurker lurkers Lurker invisible and zone damages

Unknown unknown (no label or > 2 labels with ≈ probabilities)

Fig. 3. Protoss vs Terran distribution of first appearance of Dark Templars
(Protoss invisible unit).

Fig. 4. Protoss vs Protoss Ground Attack +1 and Zealot Legs upgrades
timings. The bottom left cluster (squares) is the one labeled as speedzeal.

Fig. 5. Zerg vs Protoss time of the third Hatch and first appearance of
Mutalisks. The bottom left cluster (squares) is the one labeled as mutas.

Finally, some replays are labeled two or three times with

different labels (due to the different time of effect of different

openings), so we apply a filtering to transform multiple label

replays into unique label ones (see Figure 2). For that we

choose the openings labels that were happening the earliest

(as they are a closer threat to the bot in a game setup) if

and only if they were also the most probable or at 10% of

probability of the most probable label (to exclude transition

boundaries of clusters) for this replay. We find the earliest by

comparing the norms of the clusters means in competition.

All replays without a label or with multiple labels (i.e. which

did not had a unique solution in filtering) after the filtering

were labeled as unknown. We then used this labeled dataset

as well as Weber and Mateas’ labels in the testing of our

Bayesian model for opening prediction.



B. Opening Prediction Model

Our predictive model is a Bayesian program, it can be

seen as the “Bayesian network” represented in Figure 6. It is

a generative model and this is of great help to deal with the

parts of the observations’ space where we do not have too

much data (RTS games tend to diverge from one another as

the number of possible actions grow exponentially). Indeed,

we can model our uncertainty by putting a large standard

deviation on too rare observations and generative models tend

to converge with fewer observations than discriminative ones

[22]. Here is the description of our Bayesian program:

Building

s

Building

s

Building

s

Building

s
Observations

λ Time

Opening

BuildTree

LastOpening

Fig. 6. Graph representation of the opening (and tech tree) prediction
model

1) Variables:

• BuildTree ∈ [∅, building1, building2, building1 ∧
building2, techtrees, . . . ]: all the possible building

trees for the given race. For instance {pylon, gate} and

{pylon, gate, core} are two different BuildTrees.

• N Observations: Oi∈J1...NK ∈ {0, 1}, Ok is 1 (true)
if we have seen (observed) the kth building (it can have

been destroyed, it will stay “seen”).

• Opening: Opt ∈ [opening1 . . . openingM ] take the

various opening values (depending on the race).

• LastOpening: Opt−1 ∈ [opening1 . . . openingM ],
Opening value of the previous time step (allows filter-

ing, taking previous inference into account).

• λ ∈ {0, 1}: coherence variable (restraining BuildTree

to possible values with regard to OJ1 . . . NK)

• T ime: T ∈ J1 . . . P K, time in the game (1 second

resolution).

At first, we generated all the possible (according to the

game rules) BuildTree values (between ≈ 500 and 1600
depending on the race). We observed that a lot of possible

BuildTree values are too absurd to be performed in a

competitive match and were never seen during the learning.

So, we restricted BuildTree to have its value in all the build

trees encountered in our replays dataset. There are 810 build

trees for Terran, 346 for Protoss and 261 for Zerg (≈ 3000
replays/race), all learned from the (unlabeled) replays.

2) Decomposition: The joint distribution of our model is

the following:

P (T,BuildTree,O1 . . . ON , Opt, Opt−1, λ)

= P (Opt|Opt−1)

P (Opt−1)

P (BuildTree|Opt)

P (OJ1...NK)

P (λ|BuildTree,OJ1...NK)

P (T |BuildTree,Opt)

This can also be see as Figure 6.

3) Forms:

• P (Opt|Opt−1) is optional, we use it as a filter so that

the previous inference impacts the current one. We use

a functional Dirac:

P (Opt|Opt−1) (Dirac)

= 1 if Opt = Opt−1

= 0 else

This does not prevent our model to switch predictions,

it just uses previous inference posterior P (Opt−1 to

average P (Opt).
• P (Opt−1) copied from one inference to another (mu-

tated from P (Opt)). The first P (Opt−1) is bootstrapped

with the uniform distribution, we could also use a prior

on openings in the given match-up.

• P (BuildTree|Opt) is learned from the labeled re-

plays. P (BuildTree|Opt) are card({openings}) dif-

ferent histogram over the values of BuildTree.

• P (OJ1...NK) is unspecified, we put the uniform distri-

bution (we could use a prior over the most frequent

observations).

• P (λ|BuildTree,OJ1...NK) is a functional Dirac that

restricts BuildTree values to the ones than can co-exist

with the observations.

P (λ = 1|buildTree, oJ1...NK)

= 1 if buildTree can exist with oJ1...NK

= 0 else

A BuildTree value (buildTree) is compatible with

the observations if it covers them fully. For instance,

BuildTree = {pylon, gate, core} is compatible with

o#core = 1 but it is not compatible with o#forge = 1.

In other words, buildTree is incompatible with oJ1...NK

iff {oJ1...NK\{oJ1...NK ∧ buildTree}} 6= ∅.

• P (T |BuildTree,Opt) are “bell shape” distributions

(discretized normal distributions). There is one bell

shape per couple (opening, buildTree). The parame-

ters of these discrete Gaussian distributions are learned

from the labeled replays.

4) Identification (learning): The learning of the

P (BuildTree|Opt) histogram is straight forward counting

of occurrences from the labeled replays. The learning of



the P (T |BuildTree,Opt) bell shapes parameters takes into

account the uncertainty of the couples (buildTree, opening)
for which we have few observations. Indeed, the normal

distribution P (T |buildTree, opening) begins with a high

σ2, and not a Dirac with µ on the seen T value and

sigma = 0. This accounts for the fact that the first

observation may have been an outlier. This learning process

is independent on the order of the stream of examples,

seeing point A and then B or B and then A in the learning

phase produces the same result.

5) Questions: The question that we will ask in all the

benchmarks is:

P (Op|T = t, OJ1...NK = oJ1...NK, λ = 1)

∝ P (Op).P (oJ1...NK)

×
∑

BuildTree P (λ|BuildTree, oJ1...NK)

.P (BuildTree|Op).P (t|BuildTree,Op)

Note that if we see P (BuildTree, T ime) as a plan, asking

P (BuildTree|Opening, T ime) boils down to use our “plan

recognition” mode as a planning algorithm, which could

provide good approximations of the optimal goal set [9].

This gives us a distribution on the build trees to follow (build

orders) to achieve a given opening.

IV. RESULTS

A. Prediction

For each match-up, we ran cross-validation testing with

9/10th of the dataset used for learning and the remaining

1/10th of the dataset used for testing. We ran tests finishing

at 5, 10 and 15 minutes to capture all kinds of openings

(early to late ones). To measure the predictive capability of

our model, we used 3 metrics:

• the final prediction, which is the opening that is pre-

dicted at the end of the test,

• the online twice (OT), which counts the openings that

have emerged as most probable twice a test (so that their

predominance is not due to noise),

• the online once > 3 (OO3), which counts the openings

that have emerged as most probable openings after 3

minutes (so that these predictions are based on really

meaningful information).

After 3 minutes, a Terran player will have or be building

his first supply depot, barracks, refinery (gas), and at least

factory or expansion. A Zerg player would have his first

overlord, zergling pool, extractor (gas) and most of the time

his expansion and lair tech. A Protoss player would have his

first pylon, gateway, assimilator (gas), cybernectics core, and

sometimes his robotics center, or forge and expansion.

Table III sums up all the prediction probabilities (scores)

of our model in all the match-ups with both labeling of the

game logs. Please note that when an opening is mispredicted,

the distribution on openings is often not P (badopening) =
1, P (others) = 0 and that we can extract some value out

of these distributions. Also, we observed that P (Opening =
unknown) > P (others) is often a case of misprediction:

Fig. 7. Evolution of P (Opening) with increasing observations in a TvP
match-up, with Weber’s labeling on top, our labeling on the bottom. The
x-axis corresponds to the construction of buildings.

our bot would use the next prediction in this case. Figure 7

shows the evolution of the distribution P (Opening) during

a replay for Weber’s and our labelings. Figure 8 shows the

resistance of our model to noise. We randomly removed some

observations (buildings, attributes), from 1 to 15, knowing

that for Protoss and Terran we use 16 buildings observations

and 17 for Zerg. We think that our model copes well with

noise because it backtracks unseen observations: for instance

if we have only the core observation, it will work with build

trees containing core that will passively infer unseen pylon

and gate. Also, uncertainty is handled natively.

B. Performances

The first iteration of this model was not making use of the

structure imposed by the game in the form of “possible build

trees” and was at best very slow, at worst intractable without

sampling. With the model presented here, the performances

are ready for production as shown in Table IV. The memory

footprint is around 3.5Mb on a 64bits machine. Learning

computation time is linear in the number of games logs

events (O(N) with N observations), which are bounded, so

it is linear in the number of game logs. It can be serialized

and done only once when the dataset changes. The prediction

computation corresponds to the sum in the question (III.B.5)

and so its computational complexity is in O(N ·M) with N

build trees and M possible observations, as M << N , we

can consider it linear in the number of build trees (values of

BuildTree).



TABLE III
PREDICTION PROBABILITIES FOR ALL THE MATCH-UPS

Weber and Mateas’ labels Our labels

5 minutes 10 minutes 15 minutes 5 minutes 10 minutes 15 minutes
match-up final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3

PvP 0.65 0.53 0.59 0.69 0.69 0.71 0.65 0.67 0.73 0.78 0.74 0.68 0.83 0.83 0.83 0.85 0.83 0.83
PvT 0.75 0.64 0.71 0.78 0.86 0.83 0.81 0.88 0.84 0.62 0.69 0.69 0.62 0.73 0.72 0.6 0.79 0.76
PvZ 0.73 0.71 0.66 0.8 0.86 0.8 0.82 0.87 0.8 0.61 0.6 0.62 0.66 0.66 0.69 0.61 0.62 0.62
TvP 0.69 0.63 0.76 0.6 0.75 0.77 0.55 0.73 0.75 0.50 0.47 0.54 0.5 0.6 0.69 0.42 0.62 0.65
TvT 0.57 0.55 0.65 0.5 0.55 0.62 0.4 0.52 0.58 0.72 0.75 0.77 0.68 0.89 0.84 0.7 0.88 0.8
TvZ 0.84 0.82 0.81 0.88 0.91 0.93 0.89 0.91 0.93 0.71 0.78 0.77 0.72 0.88 0.86 0.68 0.82 0.81
ZvP 0.63 0.59 0.64 0.87 0.82 0.89 0.85 0.83 0.87 0.39 0.56 0.52 0.35 0.6 0.57 0.41 0.61 0.62
ZvT 0.59 0.51 0.59 0.68 0.69 0.72 0.57 0.68 0.7 0.54 0.63 0.61 0.52 0.67 0.62 0.55 0.73 0.66
ZvZ 0.69 0.64 0.67 0.73 0.74 0.77 0.7 0.73 0.73 0.83 0.85 0.85 0.81 0.89 0.94 0.81 0.88 0.94

overall 0.68 0.62 0.68 0.73 0.76 0.78 0.69 0.76 0.77 0.63 0.67 0.67 0.63 0.75 0.75 0.63 0.75 0.74

Fig. 8. Two extreme evolutions of the 3 probabilities of opening recog-
nition with increasing noise (15 missing attributes/observations/buildings
correspond to 93.75% missing information for Protoss and Terran openings
prediction and 88.23% of missing attributes for Zerg openings prediction).
Zerg opening prediction probabilitly on top, Protoss bottom.

TABLE IV
EXTREMES OF COMPUTATION TIME VALUES (IN SECONDS, C2D 2.8GHZ)

Race Nb Games Learning time Inference µ Inference σ2

T (max) 1036 0.197844 0.0360234 0.00892601
T (Terran) 567 0.110019 0.030129 0.00738386
P (Protoss) 1021 0.13513 0.0164457 0.00370478
P (Protoss) 542 0.056275 0.00940027 0.00188217
Z (Zerg) 1028 0.143851 0.0150968 0.00334057
Z (Zerg) 896 0.089014 0.00796715 0.00123551

V. CONCLUSIONS

A. Possible Uses

Developing beforehand a RTS game AI that specifically

deals with whatever strategies the players will come up

is very hard. And even if game developers were willing

to patch their AI afterwards, it would require a really

modular design and a lot of work to treat each strat-

egy. With our model, the AI can adapt to the evolutions

in play by learning its parameters from the replay, and

it can dynamically adapt during the games by using the

reverse question P (BuildTree|Opening, T ime), or even

P (TechTree|Opening, T ime) if we use a TechTree vari-

able encoding buildings and technology upgrades. This

question would give the distribution over technology trees

knowing the opening we want to perform at which time.

This would allow for the bot to dynamically choose/change

build orders.

We will also investigate the use of our model in a

commentary assistant AI. In the StarCraft and StarCraft 2

communities, there are a lot of progamers tournaments that

are commented and we could provide a tool for commen-

tators to estimate the probabilities or different openings or

technology paths. As in commented poker matches, where

the probabilities of different hands are drawn on screen for

the spectators, we could display the probabilities of openings.

In such a setup we could use more features as the observers

and commentators can see everything that happens (upgrades,

units) and we limited ourselves to “key” buildings in the

work presented in this paper.



B. Improvements

First, our prediction model can be upgraded to have a

higher recognition rate: we could reason about t+1 explicitly

before computing the distribution over possible openings

at t and thus compute the distribution over technology

trees at t + 1. Perhaps it would increase the results of

P (Opening|Observations), but it almost surely would in-

crease P (BuildTreet+1|Observations) which is important

for late game predictions. We could also make use of more

features as we currently only use at most 20 features (only

buildings), and never all at once. Perhaps also that incorpo-

rating priors per match-up would lead to better results.

Then, we could feed it with more replays during the

learning by scrapping more progamers level replays websites.

Also, we could learn from replays of bot vs bot matches. For

the learning part, the labeling of replays is very important,

and our labeling methods can be improved. We could explore

auto-supervised learning [23]. Clearly, some match-ups are

handled better, either in the replays labeling part and/or in the

prediction part. Replays could be labeled by humans and we

would do supervised learning then. Or they could be labeled

by a combination of rules (as in [1]) and statistical analysis

(as the method presented here). Finally, the replays could

be labeled by match-up dependent openings (instead of race

dependent openings currently) and could contain either the

two parts of the opening or the game time at which the label

is the most relevant, as openings are often bimodal (“fast

expand into mutas”, “corsairs into reaver”, etc.).

Finally, a hard problem is detecting the “fake” builds

of very highly skilled players. Indeed, some progamers

have build orders which purpose are to fool the oppo-

nent into thinking that they are performing opening A

while they are doing B. For instance, they could leadthe

opponent to think they are going to tech and perform

an early rush instead. We think that this can be handled

by our model by changing P (Opening|LastOpening) by

P (Opening|LastOpening, LastObservations) and adapt-

ing the influence of the last prediction with regard to the last

observations (i.e., we think we can learn some “fake” label

on replays).

C. Conclusion

We contributed a probabilistic model to be able to compute

the distribution over openings (strategies) of the opponent in

a RTS game from partial and noisy observations. The bot can

adapt to the opponent’s strategy as it predicts the opening

with 63− 68% of recognition rate at 5 minutes and > 70%
of recognition rate at 10 minutes (up to 94%), while having

strong robustness to noise (> 50% recognition rate with 50%
missing observations). It can be used in production due to

its low CPU (and memory) footprint. We also contributed a

semi-supervised method to label RTS game logs (replays)

with openings (strategies). Both our implementations are

free software and can be found online3. We will use this

model (or and upgraded version of it) in our StarCraft

3https://github.com/SnippyHolloW/OpeningTech/

AI competition entry bot as it enables it to deal with the

incomplete knowledge gathered from scouting.
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