MINIMA OF NON COERCIVE FUNCTIONALS

LUCIO BOCCARDO, GISELLA CROCE, LUIGI ORSINA

Abstract. We study an integral non coercive functional defined on $H^1_0(\Omega)$, proving the existence of a minimum in $W^{1,1}_0(\Omega)$.

In this paper we study a class of integral functionals defined on $H^1_0(\Omega)$, but non coercive on the same space, so that the standard approach of the Calculus of Variations does not work. However, the functionals are coercive on $W^{1,1}_0(\Omega)$ and we will prove the existence of minima, despite the non reflexivity of $W^{1,1}_0(\Omega)$, which implies that, in general, the Direct Methods fail due to lack of compactness.

Let J be the functional defined as

$$J(v) = \int_{\Omega} \frac{j(x, \nabla v)}{1 + b(x)|v|^2} + \frac{1}{2} \int_{\Omega} |v|^2 - \int_{\Omega} f v, \quad v \in H^1_0(\Omega).$$

We assume that Ω is a bounded open set of \mathbb{R}^N, $N > 2$, that $j : \Omega \times \mathbb{R}^N \to \mathbb{R}$ is such that $j(\cdot, \xi)$ is measurable on Ω for every ξ in \mathbb{R}^N, $j(x, \cdot)$ is convex and belongs to $C^1(\mathbb{R}^N)$ for almost every x in Ω, and

$$\alpha |\xi|^2 \leq j(x, \xi) \leq \beta |\xi|^2,$$

(2)

$$|j_\xi(x, \xi)| \leq \gamma |\xi|,$$

for some positive α, β and γ, for almost every x in Ω, and for every ξ in \mathbb{R}^N. We assume that b is a measurable function on Ω such that

$$0 \leq b(x) \leq B,$$

(3)

for almost every x in Ω, where $B > 0$, while f belongs to some Lebesgue space. For $k > 0$ and $s \in \mathbb{R}$, we define the truncation function as $T_k(s) = \max(-k, \min(s, k))$.

In [3] the minimization in $H^1_0(\Omega)$ of the functional

$$I(v) = \int_{\Omega} \frac{j(x, \nabla v)}{1 + |v|^2} - \int_{\Omega} f v, \quad 0 < \theta < 1, \quad f \in L^m(\Omega),$$

was studied. It was proved that $I(v)$ is coercive on the Sobolev space $W^{1,q}_0(\Omega)$, for some $q = q(\theta, m)$ in (1,2), and that $I(v)$ achieves its minimum on $W^{1,q}_0(\Omega)$. This approach does not work for $\theta > 1$ (see Remark 7 below). Here we will be able to overcome this difficulty thanks to the presence of the lower order term $\int_{\Omega} |v|^2$, which will yield the coercivity of J on $W^{1,1}_0(\Omega)$; then we will prove the existence of minima in $W^{1,1}_0(\Omega)$, even if it is a non reflexive space.

Integral functionals like J or I are studied in [1], in the context of the Thomas-Fermi-von Weizsäcker theory.
We are going to prove the following result.

Theorem 1. Let $f \in L^2(\Omega)$. Then there exists u in $W_0^{1,1}(\Omega) \cap L^2(\Omega)$ minimum of J, that is,

$$\int_\Omega j(x, \nabla u) \frac{1}{[1 + b(x)|u|^2]} + \frac{1}{2} \int_\Omega |u|^2 - \int_\Omega f u \leq \int_\Omega j(x, \nabla v) \frac{1}{[1 + b(x)|v|^2]} + \frac{1}{2} \int_\Omega |v|^2 - \int_\Omega f v,$$

for every $v \in H^1_0(\Omega)$. Moreover $T_k(u)$ belongs to $H^1_0(\Omega)$ for every $k > 0$.

In [2] we studied the following elliptic boundary problem:

$$\begin{cases}
-\text{div} \left(\frac{a(x) \nabla u}{1 + b(x)|u|^2} \right) + u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

under the same assumptions on Ω, b and f, with $0 < \alpha \leq a(x) \leq \beta$. It is easy to see that the Euler equation of J, with $j(x, \xi) = \frac{1}{2} a(x)|\xi|^2$, is not equation (5). Therefore Theorem 1 cannot be deduced from [2]. Nevertheless some technical steps of the two papers (for example, the a priori estimates) are similar.

We will prove Theorem 1 by approximation. Therefore, we begin with the case of bounded data.

Lemma 2. If g belongs to $L^\infty(\Omega)$, then there exists a minimum w belonging to $H^1_0(\Omega) \cap L^\infty(\Omega)$ of the functional

$$v \in H^1_0(\Omega) \mapsto \int_\Omega j(x, \nabla v) \frac{1}{[1 + b(x)|v|^2]} + \frac{1}{2} \int_\Omega |v|^2 - \int_\Omega g v.$$

Proof. Since the functional is not coercive on $H^1_0(\Omega)$, we cannot directly apply the standard techniques of the Calculus of Variations. Therefore, we begin by approximating it. Let $M > 0$, and let J_M be the functional defined as

$$J_M(v) = \int_\Omega j(x, \nabla v) \frac{1}{[1 + b(x)|T_M(v)|]} + \frac{1}{2} \int_\Omega |T_M(v)|^2 - \int_\Omega g v, \quad v \in H^1_0(\Omega).$$

Since J_M is both weakly lower semicontinuous (due to the convexity of j and to De Giorgi’s theorem, see [4]) and coercive on $H^1_0(\Omega)$, for every $M > 0$ there exists a minimum w_M of J_M on $H^1_0(\Omega)$. Let $A = \|g\|_{L^\infty(\Omega)}$, let $M > A$, and consider the inequality $J_M(w_M) \leq J_M(T_A(w_M))$, which holds true since w_M is a minimum of J_M. We have

$$\int_\Omega j(x, \nabla w_M) \frac{1}{[1 + b(x)|T_M(w_M)|]} + \frac{1}{2} \int_\Omega |w_M|^2 - \int_\Omega g w_M \leq \int_\Omega j(x, \nabla T_A(w_M)) \frac{1}{[1 + b(x)|T_M(T_A(w_M))]|} + \frac{1}{2} \int_\Omega |T_A(w_M)|^2 - \int_\Omega g T_A(w_M) \leq \int_\Omega j(x, \nabla w_M) \frac{1}{[1 + b(x)|T_M(w_M)|]} + \frac{1}{2} \int_\Omega |T_A(w_M)|^2 - \int_\Omega g T_A(w_M),$$
where, in the last passage, we have used that $T_M(T_A(w_M)) = T_M(w_M)$ on the set \{|w_M| \leq A\}, and that $j(x,0) = 0$. Simplifying equal terms, we thus get

$$\int_{\{|w_M| > M\}} \frac{j(x, \nabla w_M)}{[1 + b(x)] T_M(w_M)]^2} + \frac{1}{2} \int_{\Omega} \{[w_M]^2 - [T_A(w_M)]^2\} \leq \int_{\Omega} g \{w_M - T_A(w_M)\}.$$

Dropping the first term, which is nonnegative, we obtain

$$\frac{1}{2} \int_{\Omega} \{w_M - T_A(w_M)\} [w_M + T_A(w_M)] \leq \int_{\Omega} g \{w_M - T_A(w_M)\},$$

which can be rewritten as

$$\frac{1}{2} \int_{\Omega} \{w_M - T_A(w_M)\} [w_M + T_A(w_M) - 2g] \leq 0.$$

We then have, since $w_M = T_A(w_M)$ on the set \{|w_M| \leq A\},

$$\frac{1}{2} \int_{\{w_M > A\}} \{w_M - A\} [w_M + A - 2g] + \frac{1}{2} \int_{\{w_M < A\}} \{w_M + A\} [w_M - A - 2g] \leq 0.$$

Since $|g| \leq A$, we have $A - 2g \geq -A$, and $-A - 2g < A$, so that

$$0 \leq \frac{1}{2} \int_{\{w_M > A\}} \{w_M - A\}^2 + \frac{1}{2} \int_{\{w_M < A\}} \{w_M + A\}^2 \leq 0,$$

which then implies that $\text{meas}(\{|w_M| \geq A\}) = 0$, and so $|w_M| \leq A$ almost everywhere in Ω. Recalling the definition of A, we thus have

$$\|w_M\|_{L^\infty(\Omega)} \leq \|g\|_{L^\infty(\Omega)}. \tag{6}$$

Since $M > \|g\|_{L^\infty(\Omega)}$, we thus have $T_M(w_M) = w_M$. Starting now from $J_M(w_M) \leq J_M(0) = 0$ we obtain, by (6),

$$\int_{\Omega} \frac{j(x, \nabla w_M)}{[1 + b(x)] |w_M|^2} + \frac{1}{2} \int_{\Omega} |w_M|^2 \leq \int_{\Omega} g w_M \leq \text{meas}(\Omega) \|g\|_{L^\infty(\Omega)}^2,$$

which then implies, by (1) and (3), and dropping the nonnegative second term,

$$\frac{\alpha}{[1 + B \|g\|_{L^\infty(\Omega)}]^2} \int_{\Omega} |\nabla w_M|^2 \leq \text{meas}(\Omega) \|g\|_{L^\infty(\Omega)}^2.$$

Thus, \{w_M\} is bounded in $H^1_0(\Omega) \cap L^\infty(\Omega)$, and so, up to subsequences, it converges to some function w in $H^1_0(\Omega) \cap L^\infty(\Omega)$ weakly in $H^1_0(\Omega)$, strongly in $L^2(\Omega)$, and almost everywhere in Ω. We prove now that

$$\int_{\Omega} \frac{j(x, \nabla w)}{[1 + b(x)] |w|^2} \leq \liminf_{M \to +\infty} \int_{\Omega} \frac{j(x, \nabla w_M)}{[1 + b(x)] |w_M|^2}. \tag{7}$$
Indeed, since \(j \) is convex, we have
\[
\int_{\Omega} \frac{j(x, \nabla w_M)}{[1 + b(x)|w_M|^2]} \geq \int_{\Omega} \frac{j(x, \nabla w)}{[1 + b(x)|w_M|^2]} - \int_{\Omega} \frac{j(\xi, \nabla w)}{[1 + b(x)|w_M|^2]} \cdot \nabla [w_M - w].
\]

Using assumption (1), the fact that \(w \) belongs to \(H^1_0(\Omega) \), the almost everywhere convergence of \(w_M \) to \(w \) and Lebesgue’s theorem, we have
\[
\lim_{M \to +\infty} \int_{\Omega} \frac{j(x, \nabla w)}{[1 + b(x)|w_M|^2]} = \int_{\Omega} \frac{j(x, \nabla w)}{[1 + b(x)|w|^2]}.
\]

Using (8) and (9), we have that (7) holds true. On the other hand, since \(\nabla w_M \) tends to \(\nabla w \) weakly in the same space, we thus have that
\[
\lim_{M \to +\infty} \int_{\Omega} \frac{j(x, \nabla w)}{[1 + b(x)|w_M|^2]} \cdot \nabla [w_M - w] = 0.
\]

Using (8) and (9), we have that (7) holds true. On the other hand, using (1) and Lebesgue’s theorem again, it is easy to see that
\[
\lim_{M \to +\infty} \int_{\Omega} \frac{j(x, \nabla v)}{[1 + b(x)|T_M(v)|]^2} = \int_{\Omega} \frac{j(x, \nabla v)}{[1 + b(x)|v|^2]} \quad \forall v \in H^1_0(\Omega).
\]

Thus, starting from \(J_M(w_M) \leq J_M(v) \), we can pass to the limit as \(M \) tends to infinity (using also the strong convergence of \(w_M \) to \(w \) in \(L^2(\Omega) \)), to have that \(w \) is a minimum.

As stated before, we prove Theorem 1 by approximation. More in detail, if \(f_n = T_n(f) \) then Lemma 2 with \(g = f_n \) implies that there exists a minimum \(u_n \) in \(H^1_0(\Omega) \cap L^\infty(\Omega) \) of the functional
\[
J_n(v) = \int_{\Omega} \frac{j(x, \nabla v)}{[1 + b(x)|v|^2]} + \frac{1}{2} \int_{\Omega} |v|^2 - \int_{\Omega} f_n v, \quad v \in H^1_0(\Omega).
\]

In the following lemma we prove some uniform estimates on \(u_n \).

Lemma 3. Let \(u_n \) in \(H^1_0(\Omega) \cap L^\infty(\Omega) \) be a minimum of \(J_n \). Then
\[
\int_{\Omega} \frac{|
abla u_n|^2}{[1 + b(x)|u_n|^2]} \leq \frac{1}{2\alpha} \int_{\Omega} |f|^2;
\]
\[
\int_{\Omega} |\nabla T_k(u_n)|^2 \leq \frac{(1 + B k)^2}{2\alpha} \int_{\Omega} |f|^2;
\]
\[
\int_{\Omega} |u_n|^2 \leq 4 \int_{\Omega} |f|^2.
\]
\[
\int_{\Omega} |\nabla u_n| \leq \left[\frac{1}{2\alpha} \int_{\Omega} |f|^2 \right]^{\frac{1}{2}} \left(\text{meas}(\Omega)^{\frac{1}{2}} + 2B \left[\int_{\Omega} |f|^2 \right]^{\frac{1}{2}} \right);
\]

(14) \[
\int_{\Omega} |G_k(u_n)|^2 \leq 4 \int_{\{u_n \geq k\}} |f|^2,
\]
where \(G_k(s) = s - T_k(s) \) for \(k \geq 0 \) and \(s \) in \(\mathbb{R} \).

Proof. The minimality of \(u_n \) implies that \(J_n(u_n) \leq J_n(0) \), that is,

(15) \[
\int_{\Omega} \frac{j(x, \nabla u_n)}{1 + b(x)|u_n|^2} + \frac{1}{2} \int_{\Omega} u_n^2 \leq \int_{\Omega} f_n u_n.
\]

Using (1) on the left hand side, and Young’s inequality on the right hand side gives

\[
\alpha \int_{\Omega} \frac{|\nabla u_n|^2}{1 + b(x)|u_n|^2} + \frac{1}{2} \int_{\Omega} u_n^2 \leq \frac{1}{2} \int_{\Omega} u_n^2 + \frac{1}{2} \int_{\Omega} f_n^2,
\]

which then implies (10). Let now \(k \geq 0 \). The above estimate, and (3), give

\[
\frac{1}{(1 + Bk)^2} \int_{\Omega} |\nabla T_k(u_n)|^2 \leq \int_{\{u_n \leq k\}} \frac{|\nabla u_n|^2}{1 + b(x)|u_n|^2} \leq \frac{1}{2\alpha} \int_{\Omega} |f|^2,
\]

and therefore (11) is proved. On the other hand, dropping the first positive term in (15) and using Hölder’s inequality on the right hand side, we have

\[
\frac{1}{2} \int_{\Omega} |u_n|^2 \leq \int_{\Omega} |f_n u_n| \leq \left[\int_{\Omega} |f_n|^2 \right]^{\frac{1}{2}} \left[\int_{\Omega} |u_n|^2 \right]^{\frac{1}{2}},
\]

that is, (12) holds. Hölder’s inequality, assumption (3), and estimates (10) and (12) give (13):

(16) \[
\int_{\Omega} |\nabla u_n| \leq \left[\int_{\Omega} \frac{|\nabla u_n|^2}{[1 + b(x)|u_n|^2]} \right]^{\frac{1}{2}} \left[\int_{\Omega} [1 + b(x)|u_n|^2]^{\frac{1}{2}} \right]^{\frac{1}{2}} \\
\leq \left[\frac{1}{2\alpha} \int_{\Omega} |f|^2 \right]^{\frac{1}{2}} \left(\text{meas}(\Omega)^{\frac{1}{2}} + 2B \left[\int_{\Omega} |f|^2 \right]^{\frac{1}{2}} \right).
\]

We are left with estimate (14). Since \(J_n(u_n) \leq J_n(T_k(u_n)) \) we have

\[
\frac{1}{2} \int_{\Omega} \frac{j(x, \nabla u_n)}{1 + b(x)|u_n|^2} + \frac{1}{2} \int_{\Omega} |u_n|^2 - \int_{\Omega} f_n u_n
\]

\[
\leq \frac{1}{2} \int_{\Omega} \frac{j(x, \nabla T_k(u_n))}{1 + b(x)|T_k(u_n)|^2} + \frac{1}{2} \int_{\Omega} |T_k(u_n)|^2 - \int_{\Omega} f_n T_k(u_n).
\]

Recalling the definition of \(G_k(s) \), and using that \(|s|^2 - |T_k(s)|^2 \geq |G_k(s)|^2 \), the last inequality implies

\[
\frac{1}{2} \int_{\Omega} \frac{j(x, \nabla G_k(u_n))}{1 + b(x)|u_n|^2} + \frac{1}{2} \int_{\Omega} |G_k(u_n)|^2 \leq \int_{\Omega} f_n G_k(u_n).
\]
Dropping the first term of the left hand side and using Hölder’s inequality on the right one, we obtain
\[\frac{1}{2} \int_\Omega |G_k(u_n)|^2 \leq \left[\int_{\{ |u_n| \geq k \}} |f|^2 \right]^\frac{1}{2} \left[\int_\Omega |G_k(u_n)|^2 \right]^\frac{1}{2}, \]
that is, (14) holds.

\[\text{Lemma 4.} \] Let \(u_n \) in \(H^1_0(\Omega) \cap L^\infty(\Omega) \) be a minimum of \(J_n \). Then there exists a subsequence, still denoted by \(\{ u_n \} \), and a function \(u \) in \(W^{1,1}_0(\Omega) \cap L^2(\Omega) \), with \(T_k(u) \) in \(H^1_0(\Omega) \) for every \(k > 0 \), such that \(u_n \) converges to \(u \) almost everywhere in \(\Omega \), strongly in \(L^2(\Omega) \) and weakly in \(W^{1,1}_0(\Omega) \), and \(T_k(u_n) \) converges to \(T_k(u) \) weakly in \(H^1_0(\Omega) \). Moreover,
\[\lim_{n \to +\infty} \frac{\nabla u_n}{1 + b(x)|u_n|} = \frac{\nabla u}{1 + b(x)|u|} \quad \text{weakly in} \quad (L^2(\Omega))^N. \]

\[\text{Proof.} \] By (13), the sequence \(u_n \) is bounded in \(W^{1,1}_0(\Omega) \). Therefore, it is relatively compact in \(L^1(\Omega) \). Hence, up to subsequences still denoted by \(u_n \), there exists \(u \) in \(L^1(\Omega) \) such that \(u_n \) almost everywhere converges to \(u \). From Fatou’s lemma applied to (12) we then deduce that \(u \) belongs to \(L^2(\Omega) \).

We are going to prove that \(u_n \) strongly converges to \(u \) in \(L^2(\Omega) \). Let \(E \) be a measurable subset of \(\Omega \); then by (14) we have
\[\int_E |u_n|^2 \leq 2 \int_E |T_k(u_n)|^2 + 2 \int_E |G_k(u_n)|^2 \leq 2k^2 \text{meas}(E) + 2 \int_\Omega |G_k(u_n)|^2 \leq 2k^2 \text{meas}(E) + 8 \int_{\{ |u_n| \geq k \}} |f|^2. \]
Since \(u_n \) is bounded in \(L^2(\Omega) \) by (12), we can choose \(k \) large enough so that the second integral is small, uniformly with respect to \(n \); once \(k \) is chosen, we can choose the measure of \(E \) small enough such that the first term is small. Thus, the sequence \(\{ u^2_n \} \) is equiintegrable and so, by Vitali’s theorem, \(u_n \) strongly converges to \(u \) in \(L^2(\Omega) \).

Now we to prove that \(u_n \) weakly converges to \(u \) in \(W^{1,1}_0(\Omega) \). Let \(E \) be a measurable subset of \(\Omega \). By Hölder’s inequality, assumption (3), and (10), one has, for \(i \in \{1, \ldots, N\} \),
\[\int_E \left| \frac{\partial u_n}{\partial x_i} \right| \leq \int_E |\nabla u_n| \leq \left[\int_E \frac{|\nabla u_n|^2}{1 + b(x)|u_n|^2} \right]^\frac{1}{2} \left[\int_\Omega [1 + b(x)|u_n|]^2 \right]^\frac{1}{2} \leq \left[\frac{1}{2^\alpha} \int_\Omega |f|^2 \right]^\frac{1}{2} \left[\int_\Omega [1 + B|u_n|]^2 \right]^\frac{1}{2}. \]
Since the sequence \(\{ u_n \} \) is compact in \(L^2(\Omega) \), this estimate implies that the sequence \(\{ \frac{\partial u_n}{\partial x_i} \} \) is equiintegrable. Thus, by Dunford-Pettis
theorem, and up to subsequences, there exists \(Y_i \in L^1(\Omega) \) such that \(\frac{\partial u_n}{\partial x_i} \) weakly converges to \(Y_i \) in \(L^1(\Omega) \). Since \(\frac{\partial u_n}{\partial x_i} \) is the distributional partial derivative of \(u_n \), we have, for every \(n \in \mathbb{N} \),

\[
\int_{\Omega} \frac{\partial u_n}{\partial x_i} \varphi = -\int_{\Omega} u_n \frac{\partial \varphi}{\partial x_i}, \quad \forall \varphi \in C_0^\infty(\Omega).
\]

We now pass to the limit in the above identities, using that \(\partial_i u_n \) weakly converges to \(Y_i \) in \(L^1(\Omega) \), and that \(u_n \) strongly converges to \(u \) in \(L^2(\Omega) \): we obtain

\[
\int_{\Omega} Y_i \varphi = -\int_{\Omega} u \frac{\partial \varphi}{\partial x_i}, \quad \forall \varphi \in C_0^\infty(\Omega).
\]

This implies that \(Y_i = \frac{\partial u}{\partial x_i} \), and this result is true for every \(i \). Since \(Y_i \) belongs to \(L^1(\Omega) \) for every \(i \), \(u \) belongs to \(W^{1,1}_0(\Omega) \), as desired.

Since by (11) it follows that the sequence \(\{T_k(u_n)\} \) is bounded in \(H^1_0(\Omega) \), and since \(u_n \) tends to \(u \) almost everywhere in \(\Omega \), then \(T_k(u_n) \) weakly converges to \(T_k(u) \) in \(H^1_0(\Omega) \), and \(T_k(u) \) belongs to \(H^1_0(\Omega) \) for every \(k \geq 0 \).

Finally, we prove (17). Let \(\Phi \) be a fixed function in \((L^\infty(\Omega))^N \). Since \(u_n \) almost everywhere converges to \(u \) in \(\Omega \), we have

\[
\lim_{n \to +\infty} \frac{\Phi}{1 + b(x)|u_n|} = \frac{\Phi}{1 + b(x)|u|} \quad \text{almost everywhere in } \Omega.
\]

By Egorov’s theorem, the convergence is therefore quasi uniform; i.e., for every \(\delta > 0 \) there exists a subset \(E_\delta \) of \(\Omega \), with \(\text{meas}(E_\delta) < \delta \), such that

\[
\lim_{n \to +\infty} \frac{\Phi}{1 + b(x)|u_n|} = \frac{\Phi}{1 + b(x)|u|} \quad \text{uniformly in } \Omega \setminus E_\delta.
\]

We now have

\[
\left| \int_{\Omega} \frac{\nabla u_n}{1 + b(x)|u_n|} \cdot \Phi - \int_{\Omega} \frac{\nabla u}{1 + b(x)|u|} \cdot \Phi \right| \\
\leq \int_{\Omega \setminus E_\delta} \frac{\nabla u_n}{1 + b(x)|u_n|} \cdot \Phi - \int_{\Omega \setminus E_\delta} \nabla u \cdot \frac{\Phi}{1 + b(x)|u|} \\
+ \|\Phi\|_{L^\infty(\Omega)} \int_{E_\delta} ||\nabla u_n| + |\nabla u||.
\]

Using the equiintegrability of \(|\nabla u_n| \) proved above, and the fact that \(|\nabla u| \) belongs to \(L^1(\Omega) \), we can choose \(\delta \) such that the second term of the right hand side is arbitrarily small, uniformly with respect to \(n \), and then use (18) to choose \(n \) large enough so that the first term is arbitrarily small. Hence, we have proved that

\[
\lim_{n \to +\infty} \frac{\nabla u_n}{1 + b(x)|u_n|} = \frac{\nabla u}{1 + b(x)|u|} \quad \text{weakly in } (L^1(\Omega))^N.
\]

On the other hand, from (10) it follows that the sequence \(\frac{\nabla u_n}{1 + b(x)|u_n|} \) is bounded in \((L^2(\Omega))^N \), so that it weakly converges to some function \(\sigma \).
in the same space. Since (19) holds, we have that $\sigma = \frac{\nabla u}{1 + b(x)u}$, and (17) is proved.

Remark 5. The fact that we need to prove (17) is one of the main differences with the paper [2].

Proof of Theorem 1. Let u_n be as in Lemma 4. The minimality of u_n implies that

$$\int_{\Omega} j(x, \nabla u_n) \leq \int_{\Omega} j(x, \nabla v) + \frac{1}{2} \int_{\Omega} |v|^2 - \int_{\Omega} f_n v$$

for every v in $H_0^1(\Omega)$. The result will then follow by passing to the limit in the previous inequality. The right hand side of (20) is easy to handle since f_n converges to f in $L^2(\Omega)$. Let us study the limit of the left hand side of (20). The convexity of j implies that

$$\int_{\Omega} \frac{j(x, \nabla u_n)}{1 + b(x)|u_n|^2} \geq \int_{\Omega} \frac{j(x, \nabla T_k(u))}{1 + b(x)|u|^2}$$

$$- \int_{\Omega} \frac{j_k(x, \nabla T_k(u))}{1 + b(x)|u_n|} \cdot \left(\frac{\nabla u_n}{1 + b(x)|u_n|} - \frac{\nabla T_k(u)}{1 + b(x)|u|} \right).$$

By (17), assumptions (1) and (2), and Lebesgue’s theorem, we have

$$\liminf_{n \to +\infty} \int_{\Omega} \frac{j(x, \nabla u_n)}{1 + b(x)|u_n|^2} \geq \int_{\Omega} \frac{j(x, \nabla T_k(u))}{1 + b(x)|u|^2}$$

$$- \int_{\Omega} \frac{j_k(x, \nabla T_k(u))}{1 + b(x)|u|} \cdot \frac{\nabla [u - T_k(u)]}{1 + b(x)|u|},$$

that is, since $j_k(x, \nabla T_k(u)) \cdot \nabla (u - T_k(u)) = 0$,

$$\int_{\Omega} \frac{j(x, \nabla T_k(u))}{1 + b(x)|u|^2} \leq \liminf_{n \to +\infty} \int_{\Omega} \frac{j(x, \nabla u_n)}{1 + b(x)|u_n|^2}.$$
so that \(u \) is a minimum of \(J \); its regularity has been proved in Lemma 4.

Remark 6. If we suppose that the coefficient \(b(x) \) satisfies the stronger assumption

\[
0 < A \leq b(x) \leq B , \quad \text{almost everywhere in } \Omega ,
\]

it is possible to prove that \(J(u) \leq J(w) \) not only for every \(w \) in \(H^1_0(\Omega) \), but also for the test functions \(w \) such that

\[
\begin{align*}
T_k(w) & \text{ belongs to } H^1_0(\Omega) \text{ for every } k > 0 , \\
\log(1 + A |w|) & \text{ belongs to } H^1_0(\Omega) , \\
w & \text{ belongs to } L^2(\Omega).
\end{align*}
\]

Indeed, if \(w \) is as in (22), we can use \(T_k(w) \) as test function in (4) and we have

\[
J(u) \leq J(T_k(w)) = \int_{\Omega} j(x, \nabla T_k(w)) + \frac{1}{2} \int_{\Omega} |T_k(w)|^2 - \int_{\Omega} f T_k(w).
\]

In the right hand side is possible to pass to the limit, as \(k \) tends to infinity, so that we have \(J(u) \leq J(w) \), for every test function \(w \) as in (22).

Remark 7. We explicitly point out the differences, concerning the coercivity, between the functionals studied in [3] and the functionals studied in this paper. Indeed, let \(0 < \rho < \frac{N-2}{2} \), and consider the sequence of functions

\[
v_n = \exp \left[T_n \left(\frac{1}{|x|^\rho} - 1 \right) \right] - 1 ,
\]

defined in \(\Omega = B_1(0) \). Then

\[
\log(1 + |v_n|) = T_n \left(\frac{1}{|x|^\rho} - 1 \right) ,
\]

is bounded in \(H^1_0(\Omega) \) (since the function \(v(x) = \frac{1}{|x|^\rho} - 1 \) belongs to \(H^1_0(\Omega) \) by the assumptions on \(\rho \)), but, by Levi’s theorem,

\[
\lim_{n \to +\infty} \int_{\Omega} |\nabla v_n| = \rho \int_{\Omega} \frac{\exp \left[\frac{1}{|x|^\rho} - 1 \right]}{|x|^{\rho+1}} = +\infty .
\]

Hence, the functional

\[
v \in H^1_0(\Omega) \mapsto \int_{\Omega} \frac{|\nabla v|^2}{(1 + |v|)^2} = \int_{\Omega} |\nabla \log(1 + |v|)|^2 ,
\]

which is of the type studied in [3], is non coercive on \(W^{1,1}_0(\Omega) \). On the other hand, recalling (16), we have

\[
\int_{\Omega} |\nabla v| = \int_{\Omega} \frac{|\nabla v|}{1 + |v|} (1 + |v|) \leq \frac{1}{2} \int_{\Omega} \frac{|\nabla v|^2}{(1 + |v|)^2} + \frac{1}{2} \int_{\Omega} (1 + |v|)^2 .
\]
Thus, the functional

\[v \in H^1_0(\Omega) \mapsto \int_{\Omega} |\nabla v|^2 + \frac{1}{2} \int_{\Omega} \left(\frac{1}{1 + |v|} \right)^2 |v|^2, \]

which is of the type studied here, is coercive on \(W^{1,1}_0(\Omega) \).

References

L.B. – Dipartimento di Matematica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (ITALY)
E-mail address: boccardo@mat.uniroma1.it

G.C. – Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25, rue Philippe Lebon, 76063 Le Havre (FRANCE)
E-mail address: gisella.croce@univ-lehavre.fr

L.O. – Dipartimento di Matematica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (ITALY)
E-mail address: orsina@mat.uniroma1.it