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Abstract

During a highly productive period running from 1995 to about
2002, the research in lossless compression of 3D meshedymain
consisted in a hard battle for the best bitrates. But for ayfears,
compression rates seem stabilized arousdbit per vertex for the
connectivity coding of usual meshes, and more and more vgrK i
dedicated to remeshing, lossy compression, or giganti¢ roes-
pression, where memory and CPU optimizations are the new-pri
ity. However, the size of 3D models keeps growing, and many ap
plication fields keep requiring lossless compression. is phaper,
we present a new contribution for single-rate lossless ectivity
compression, which first brings improvement over curreatesof
the art bitrates, and secondly, does not constraint thengaafithe
vertex positions, offering therefore a good complemetytasith

the best performing geometric compression methods. Thialini
observation having motivated this work is that very oftemstrof
the connectivity part of a mesh can be automatically dedtroed

its geometric part using reconstruction algorithms. This already
been used within the limited framework of projectable otgdes-
sentially terrain models and GIS), but finds here its firsegaliza-
tion to arbitrary triangular meshes, without any limitaticegard-
ing the topological genus, the number of connected compsnen
the manifoldness or the regularity. This can be obtaineddry c
straining and guiding a Delaunay-based reconstructioorisgn

so that it outputs the initial mesh to be coded. The resultittgs
seem extremely competitive when the meshes are fully iecud
Delaunay, and are still good compared to the state of then ahiei
general case.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords. Mesh, Compression, Reconstruction, Lossless, Con-

nectivity

1 Introduction

For several years, meshes have played a leading role in ¢cempu
graphics, and their ability to model the world throws thenthie
heart of advanced applications in all the fields of sciencts, @
leisure. If some of these applications can tolerate a linitess

of information (provided that this loss is well controlledcadoes
not damage a certain visual realism), the others, for malctr
even legal reasons, impose to work continuously with exapies

of original objects. In this case, the only way of optimizitige
storage and the transmission of 3D information is to haveuese

to lossless compression methods.

A mesh is defined by a set of points (we speak of the geometry

of the mesh), and by a combinatorial structure describirgréa
lations between these points, using geometric objectsgtiehnidi-
mensions : edges, facets, polyhedra (we speak of the cavityect
or the topology of the mesh). To this fundamental inforntatoe
sometimes added attributes allowing to improve the rengemor-
mals, colors or textures. If we put aside these attributesy/(telate
only to a subset of the meshes met in practice), all the diffidar
compressing 3D objects is to process with an equal efficiémey
geometry and the connectivity of a wide class of meshes. Mexve
most of the methods proposed so far stress on one of thesestwo a
pects (usually the connectivity), generally to the detritn@r at
least, not to the advantage) of the other one, which is caingt
by a description order rarely optimal in terms of compressim
this article, we propose a new single-rate connectivityecaehich
is not only general and efficient, but also does not imposecany
straint on the coding of the geometry. In particular, it isaty
compatible with the position coders that currently propibeebest
compression rates.

We took it as given that very often, the main part of a mesh eonn
tivity can be deduced from its vertex set using reconstoaatieth-
ods. This remark has already been made in the past, but thiepro
was to find an effective way of describing the difference lestw
the initial mesh and its reconstructed version. Indeedhiwithe
framework of lossless compression, it is indispensableetatide
to correct these errors in order to obtain a decoded meshqpigrf
identical to the original mesh. But rather than describediffer-
ence to the initial object at the end of the reconstructioasphwe
suggest adapting an existing algorithm so that it can acoeg-
sional codes modifying its default behavior at the momeritswit
would commit an "error” of reconstruction with regard to héial
mesh.

Having placed our work in the historical context of 3D congare
sion and 3D reconstruction (Section 2), we will expose the-ge
eral principle of the method (Section 3), first within a restéed
framework, then generalized to arbitrary triangular meghegard-
ing the genus, the number of connected components, thearégul
and the manifoldness). Then we will detail the coding teghes
and optimization steps leading to better compression (&estion
4), before presenting some comparative results and consneent
the method performances (Section 5).

2 Context and Previous Works

2.1 Mesh Compression

As mentioned above, a mesh is composed of both a geomettic par

(the vertex positions), and a topological part (the vertaxectiv-
ity). Now, by looking at the whole scientific production in afe
compression since 1995 until now, we notice clearly thatcthre
nectivity coding has motivated most of the proposed meth®tis
usual scheme consists in describing the combinatoriattstre by
enumerating its vertices in a precise order, designed tanmza
the size of the code : each vertex is coupled with a varialzie si
symbol defining the way it is connected to the rest of the mesh.
Consequently, the geometric coder has to work with thisgfiedd



order of the vertices, but it can exploit the connectivityptedict
their location. The position of the currently transmittesttex is
estimated from its neighbors, and the prediction errorésstble in-
formation to be coded. But the order imposed by the conngctiv
coding is not necessarily favorable to this prediction, fasas by
the results obtained on usual meshes by classical algarithtime
best of them reduce the connectivity information to less thar

2 bits per vertex, while for the geometric part, the rateslyago
down under 90% of the initial size (except for very low quaati
tions). Among the works that follow this principle, we fodusre in
single-rate methods, which code and decode the mesh in @se pa
and do not allow progressive visualization [Deering 199%arts

2.3 Compression and Reconstruction

The idea to entrust a reconstruction algorithm with the tdslom-
puting the connectivity of a mesh from its vertices has alydzeen
used in the context of mesh compression. Within the framiewbr
terrain models, Kinet al. [Kim et al. 1999] suggest transmitting
only a fraction of the edges composing the object, and usimg c
strained Delaunay triangulation — in 2D, since the terragdeis
are projectable — to find the whole connectivity. Devilleredda
Gandoin [Devillers and Gandoin 2000] also mention the ca®sypr
sion of GIS as an application of their geometric coder, anelde
an edge coder well suited for this context, which result®mpres-

et al. 1996; Taubin and Rossignac 1998; Gumhold and Strassersion rates as low as®bits per vertex for the complete connectivity.

1998; Touma and Gotsman 1998; Li and Kuo 1998; Bajaj et al.
1999a; Bajaj et al. 1999b; Gumhold et al. 1999; Rossigna®;199

Rossignac and Szymczak 1999; King and Rossignac 1999; Isen-

burg and Snoeyink 1999; Isenburg 2000; Alliez and Desbr@120
Lee et al. 2002; Coors and Rossignac 2004; Kaelberer et @h; 20
Jong et al. 2005]. To understand how these methods compare, t
reader can also refer to the following surveys [Alliez andsBman
2004; Gotsman et al. 2002; Peng et al. 2005]. It is worth to-men
tion here that the relative stability in compression ratbseoved
these days can be explained by the new interest of the cortynuni
for gigantic meshes : in this framework, the challenge isrtprove
the efficiency of the compression in terms of CPU and memory re
quirements rather than in terms of bitrates [Isenburg anachia&ld
2003; Isenburg and Lindstrom 2005; Isenburg et al. 2005].

2.2 Prioritizing the Geometric Coding

After this first wave of works, in the knowledge that the getme

of a mesh weighs generally much more than its connectivigyre-
searchers began to propose methods giving the prioritydmgéic
compression. Some of them deviate from the lossless frankdyyo
proposing algorithms that often impose a complete remgsifithe
object before applying spectral decomposition tools likevelets,
subdivision schemes, or classic geometric methods of cessmm
[Gross et al. 1996; Certain et al. 1996; Lounsbery et al. 1987adt

et al. 1998; Guskov et al. 2000; Khodakovsky et al. 2000; Kho-
dakovsky and Guskov 2000; Karni and Gotsman 2000; Szymczak
et al. 2002; Attene et al. 2003].

On the other hand, the works introduced by Gandoin and 2esill
and improved by Peng and Kuo [Devillers and Gandoin 2000;: Gan
doin and Devillers 2002; Peng and Kuo 2005] describe a psagre
sive and lossless compression method, centered on the ggpme
which interests us particularly within the framework ofstarti-
cle. Indeed, this method was originally designed to coderan u
structured point cloud, with the underlying idea that in mmaases,
the connectivity information could be deduced from the getsyn
thanks to reconstruction algorithms. So, the first versibthis
method [Devillers and Gandoin 2000] proposed a multiragmiu
compression algorithm for an unstructured point cloud rguotee-
ing a theoretical minimal gain af(logzn — 2.4) (wheren denotes
the number of points), and very competitive practical penances,
even compared to the best single-rate algorithms. The rdetlas
then extended to deal with the connectivity compressiorilewhb-
maining centered on the geometry [Gandoin and DevillerP00
Indeed, the kd-tree decomposition scheme involved in tlagt o
the geometric coder, is enriched with a connectivity cotlat tises
some of the classical mesh simplification operations intced by
Hoppeet al. [Hoppe 1996; Popovit and Hoppe 1997]). Eventually,

Besides, Devillergt al. show that the minimal set to be transmitted
to guarantee the exact reconstruction of the initial mogetdn-
strained Delaunay triangulation is constituted by the edbat are
non locally Delaunay [Devillers et al. 2003].

Unfortunately, the generalization from 2.5D to 3D meshesads
straightforward : since the mesh is not projectable any mibe
use of the constrained Delaunay triangulation is impossiblev-

ertheless, the idea to use a reconstruction method drivengay-
tial description of the connectivity remains extremelymising in

terms of compression results. Provided that it could beiplesto

find a method both powerful and capable of taking advantagaref
tial connectivity data to guarantee an exact reconstmeticatever
the initial model may be.

A first attempt to use a reconstruction algorithm to encodeeo-
tivity information has been proposed by Lewirgtral. [Lewiner
et al. 2005]. The geometry is coded independently, througt-a
tree based algorithm derived from [Gandoin and Deviller820
and [Botsch et al. 2002] and the connectivity is coded thincaiy
advancing front triangulation inspired of the ball-pivaistrategy
[Bernardini et al. 1999]. This algorithm requires a code dach
edge of an active border that is initialized to a trianglethe ge-
ometry of the mesh meets good sampling conditions, the gntro
of each code will be extremely low. In Section 5, we compaig th
method to ours regarding the compression rates.

2.4 Reconstruction by Convection

The problem of reconstructing a surface from a set of poiats h
received considerable attention during the last decadex¢Mend
Muller 1998]. Interesting and outstanding algorithmseénaeen is-
sued both in computer graphics and computational geomiaity,
we have decided to focus on the algorithms of the second@ateg
since their combinatorial concerns are more suitable fesléss
compression purposes. Most of computational geometryitthgaes
exploit the geometric properties of structures such as glauhay
triangulation, the Voronoi diagram or the power diagramhef in-
put point set, assuming auspicious properties on the waywieee
sampled on the surface-6ample [Amenta and Bern 1999]). A con-
sistent set of facets can then be extracted from the geansétuc-
ture, sometimes using global heuristics or local analysisalve
ambiguities. The existing algorithms are numerous and temgt
to classify and distinguish them has recently been proposéte
state of the art by Cazals and Giesen [Cazals and Giesen.2002]
Most of these algorithms produce triangular meshes, whiakes
them good candidates to use for compression purposes.

The convection algorithm we use in our method is based on a sim

the method has recently been resumed by Peng and Kuo [Peng andlar notion of flow as it was developped in the Wrap algorithyn b

Kuo 2005] who improve its performances by imposing a pryorit
on the cell subdivision order in the octree, and by propoaingpre
effective prediction model for the point distribution ireteub-cells
generated by a subdivision.

Edelsbrunner [Edelsbrunner 2002], and the flow complexahgo

by Giesen and John [Giesen and John 2002]. Indeed, this-recon
struction algorithm has been inspired from a convectiorcgss
described by Zhaet al. [H.K.Zhao et al. 2001]. They use it to ini-



tialize their surface before running an energy minimizapoocess
in the level set framework. Given an evolving surf&enclosing
an input point seP, the convection process makes each poir of
move inwards, along the direction of its normal, towardglitsest

point in P. However, the numerical scheme they propose can be

translated in Delaunay, to make it depend on the geometriieof t
input data set only, and not on the precision of some gridratou
the surface. A demonstration of this result is presented hgire
[Chaine 2003] together with a subsequent convection dlgariA
Delaunay triangulation o is a partition of space into tetrahedra
so that the ball circumscribed to each tetrahedron doesaméin
any point of P. The convection process is run directly in the 3D
Delaunay triangulation dP, with an evolving surfac& composed
of oriented Delaunay facetsSis initialized to the convex hull of
P. An oriented facet ofs that does not meet the oriented Gabiriel
property —i.e. its inwards diametral half-sphere is not empty — is
attracted towards the 3 inner facets in the incident Debaumaer
tetrahedra (see Fig. 1, for an illustration in 2D where the\grg
surface is replaced by an evolving curve, and the Delaunag-te
hedra are replaced by Delaunay triangles). During the atiore
process, thin parts can appear (see Fig. 1, ¢ and d), on wi#En a
surface based version of the convection is run. A deepearapl
tion of this algorithm will be presented in Section 3 whilgis#ting

it for compression purposes.

(b)

(d)

Figure 1: Geometric convection on a 2D point set : (a) thewngl
curveC is initialized to the convex hull, (b locally evolves at
the level of an edge iff the half-circle associated to thigees not
empty, (c) result of the initial convection process, (d)¢bavection
process is locally enhanced to hollow a pocket out.

An interesting property of the convection algorithm is tlitais
driven locally, in the Delaunay triangulation of the pointsthout
involving a global heuristic. The topology of the evolvingrface
may change during the convection process, so that it canldand
surfaces with boundaries and surfaces of high genus. A dreikvb
of the convection process is that it can locally be stuck aspnce

of pockets [Edelsbrunner et al. 1998] hiding facets, butnapke
and local point density analysis permits to hollow them @hidine
2003].

3 Principle of the Compression Algorithm

3.1 Compliant Meshes

The benefit of using a 3D reconstruction method for compoassi
purposes is double : first, this allows to obtain very low sdet the
coding of the connectivity — ideally, a null cost if the restruc-
tion algorithm is able to find the exact structure of the ovégimesh
by itself —, and secondly, unlike the previous methods obtogic
compression, no constraint is imposed on the order of thicesr
to the geometric coder, which constitutes an importantieficy
token.

The main difficulty consists in being able to help the recardion
algorithm at a reasonable cost : indeed, it is highly impbidao
design an algorithm capable of finding the complete conviectif
a mesh from its vertex set. Itis thus necessary to be ableécothe
course of the reconstruction process, by occasionallygihgrthe
default behavior of the algorithm to drive it in a sure way tesult
known in advance : the structure of the initial mesh.

Among the plethora of available methods, the reconstrocdhyp
convection is distinguishable from others by two importasgets :
its qualities in terms of reconstruction — practical aceyrand
faithfulness to the original model, handling of complexdties,
computation times —, and above all, its ability to be effeslty
driven by means of simple instructions. The first asset guees
that the algorithm will not need to be guided too often (smati-
ber of codes), the second guarantees that this can be domeeat |
cost (compactness of the codes).

In return, as many algorithms in computational geomety,dbin-
vection algorithm is based on a Delaunay triangulation, iy
be difficult to force it out of this structure. This imposesomdition
over the initial mesh : all its facets have to belong to the 3&aD-
nay triangulation of its vertex set. It is quite a strong ndyp that
is not verified by all the 3D objects met in practice. We wikse
second stage (Section 3.3) how to break it.

Intuitively, the reconstruction by convection consistembedding
the vertex set in a block of marble that will be sculpted gedigu
facet after facet, tetrahedron after tetrahedron, untdkes on the
exact shape of the initial object. The algorithm begins bspgr-
ing the sculpting material : an enclosing block which is agh
else than the convex hull of the point cloud, as well as the/orkt
of galleries through which it is going to dig until the initishape
is reached. This network is composed of the tetrahedra oB8Ehe
Delaunay triangulation, and every stage towards the olsjeape
consists in examining a new facet of the current surface antie
ing if it is necessary or not to open it and excavate the inside
its associated tetrahedron. When a facet is opened, it isven
from the current surface of the 3D object under constructiom
replaced by the three other facets of the excavated tetrammed

As mentioned above, the criterion that decides on this opers
purely local : it consists in observing whether the Gabrialf-h
sphere associated to the current oriented facet containstahe
fourth vertex of the tetrahedron. If it is the case, the dadrfacet
is opened and replaced in the current surface by the 3 otbetsfa
of the associated tetrahedron. (If this one is already extedy the
surface locally vanishes through the current facet.) Qtlsey, it is
maintained on the surface.

Note that if all the facets of the initial object are in its 3RBunay
triangulation, they are reachable by this sculpture po&esn the
convex hull. The problem is to make sure that the algorithih wi
not dig a facet belonging to the initial mesh, or that, cosedy,

it will not be retained before having reached such a facethcde
the need for additional codes allowing to modify the behaaib



the convection algorithm, and to drive it towards the objecbe D, i.e. the 3 other facets of the tetrahedron that is removed when
coded. Even if the convection algorithm was designed to edenp f is opened. Finally, we would like to draw the reader’s aitent
with a good accuracy the structure of a mesh sufficiently eeibs to the fact that the reference marks transmitted to the decack

will most likely need occasional assistance to guarante@énfect not exactly absolute moments of events in the compressmoeps,
reconstruction of any mesh. but rather intervals between two such moments (which expldie
presence of the instructionsirhe<— 0” in the detailed algorithms).
This well-known technique of differential coding allowsreduce

the size of the transmitted codes.

To present our method in a progressive way, we focus in this se
tion on a mestM verifying the following two assumptions : all its
facets are in the 3D Delaunay triangulation of its vertex aetl it

is manifold, that is to say without borders nor thin partshigTis

. FunctionConvecti : rf :
what we call a "compliant” mesh.) unctionConvectionS : Surfacg

while S# 0 do
Under these assumptions, here is the general principle of ou f « pop first oriented facet i6
compression algorithm : if Gabriel half-sphere of is emptythen
pushf at the end oGemp
else
1 Build the 3D Delaunay triangulatidd of the point se®, if f € M then {RDG even}
2 Mark the facets ob belonging to the initial mesM, outputtime
time—0
3 Initialize the current surfac8 with the convex hull ofP (in- pushf at the end 0B;jnal
cluded inD), dse

if f such thatfassoc S(resp.Semp then

4 Launch the convection process®nevery oriented facef in remove fassoffom S(resp. Semp)

Sis examined in turn, and depending on whether its Gabriel

- . : . ese
half-sphere is empty or nof, is, by default, maintained o8
or replaced by its 3 neighbors B. To modify this default englijfh{fl’ f2, f3} atthe end of
behavior of the convection reconstruction, it is necessary time — time-+ 1
locate the oriented facets 8ffor which the algorithm has to end if
act differently. It is thus indispensable to define a conghjet end if
deterministic traversal of the facets $ so that thenth ori- end while

ented facet met during the compression would also baefthe
oriented facet met during the decompression. More generall
it is necessary to ensure the synchronization of the alyost

of compression and decompression so thatrfleaction of
the coder matches th#" action of the decoder. Thanks to
these reference marks, the behavior of the convection gsoce
can be safely altered in the following two circumstances :

With this recursive definition of th€onvectiorfunction, the step 4
of our algorithm amounts to the following :

Main function :

S« convex hull ofP
Soorder < O {set of facets creating a thin part

a) when the convection asks for the opening of a fdcet Stinal — 0 {set of facets that are i}
that belongs tavl, the coder forbids this opening, and Semp+ 0 {set of facets candidates to beNt}
codes the index of (more exactly, the moment when time«— 0

is met in the algorithm) to warn the decoder that at this ~ ConvectioiS)

precise moment of the reconstruction, it has to break  while Semp# 0 do

the rules of the convection algorithm. We will call this f — pop first oriented facet iGemp
a RDG event (Retain Despite the Geometry), if f such thatfasso€ Sempthen

L " . . removefassoffom §
b) at the end of this first step, it is possible that some ori- push{f, ?:Zq at th:nt;FId Boorder

ented facets o6 — those whose Gabriel half-spheres dse
are empty and thus the convection did not decide to if f €M then

dig —, do not belong tavi. Therefore, it is necessary pushf at the end 0final
to specify to the decompression algorithm that these fime time+ 1 ina
oriented facets must be forced, against the convection else {ODG even}

rules : for each remaining oriented facet 8fnot

belonging toM, the coder transmits its index.€. ;)itjrfguitl(;ne
the moment when it has been met) and relaunch the S {f1, fp, f3}
convection process by forcing its opening. We will call ConvecEiotflS)
this a ODG event (Open Despite the Geometry). Note end if

that by relaunching the convection process locally, end if

some facets that were due to be forced can disappear end while

by autointersection of.

At the end of the compression algorithm, the convection fegenb
A detailed description of step 4 can be given through a réers  driven towards the initial mestd, and the correcting data have been

functionConvectiorapplied to the current surfac For each ori- stored for the decompression algorithm. However, a lagiesta-
ented facef, let fassodenote the oriented facet associated tthat mains that consists in cleaning thin parts possibly geadray the
is to say the oriented facet constructed on the same veasdedut convection. Indeed, since we first assumed that the initsmwas
with the opposite orientation. Whehand fasspare both in the sur- manifold, it suffices to delete all these thin parts, thabisay each
faceS, that means they belong to a thin partBesides, lefq, f, facet of S whose associated facet is also &n In the algorithm

and f3 denote the 3 neighbors 6fin the 3D Delaunay triangulation described above, the thin parts exactly match th&ggler



3.2 Non Manifold Meshes 3.3 Non Delaunay Meshes

In this section, we are going to adapt the previous algorihmon As previously described, the method can only be applied shes
manifold, thin parts meshes. It suffices to modify the finabst: whose facets all belong to the 3D Delaunay triangulatiorhefrt
it is no longer possible to delete the thin parts created byatho- vertex set. Indeed, we saw that this structure constitutedstip-
rithm, because facets belonging to the initial mesh couldobe port of the convection algorithm, and that it was thus imjizes

This stage is thus replaced by a new convection processhisut t for the current surface to reach a non Delaunay facet. Nesleds,
time in its 2D version, and on the thin parts only. In this feam most of the meshes met in practice contain a fraction of non De
work, the convection updates a cur@econstituted by the edges launay facets (see the unfavorable case of Fig. 2). So, te ek
composing the boundaries of the thin parts. The orienteésdf method widely usable, it is necessary to manage the codisgabf
C are examined in turn : an oriented edge whose Gabriel halfeci facets. A simple and efficient way to do this is to code exfdlgiall
is empty will be kept oI, whereas an oriented edge in the opposite the non Delaunay facets of the initial mesh in the same tinmitsas
case will be removed and replacedGrby the two other oriented vertices, using the method of Gandoin and Devillers [Gam@oid
edges of its incident trianglee{ and e, in the algorithm detailed Devillers 2002], which we will note GD in the following. Mogae-
below). cisely, non Delaunay facets constitute patches on thecaudbthe
o ) ) ) mesh. Before launching the convection process, the comitectf
The general principle remains the same as in the 3D versitimeof  these patches is transmitted to the GD coder. Then, theitilgor

algorithm, and each edge that is opened against the cooneates previously described is applied to the mesh minus the noawel
(ODG event) launches a new 2D convection process. Note thatnay facets. Consequently, even if the initial mesh is méahifthe
there is no seCyorger similar to the previousS,order. Here is @ convection process is going to perform on a mesh with boueslar
detailed version of the portion of the compression algarittedi- As shown in the previous section, it is no theoretical probleut
cated to the processing of the thin parts. It adds to the dteps} risks though to result in a significant increase of the nunoberiv-
described in the previous section : ing codes. Indeed, each facet of the mesh will be reachea twic

first through a facet oriented outwards, then through thecsted
oriented facet lying on the internal side of the object stefaWe
FunctionConvection2D(C : Curve) : propose seve_ral heuristics in order to limit this phenomeribhe
whileC # 0 do intuitive idea is to block temporarily the c_onvection sedavhen it
e — pop first oriented edge i@ is about to cross a patch — a facet opening is delayed if trmmt
if Gabriel half-circle ofeis emptythen drorj l?ghlnd itintersects the megh — soasto favor the dﬁyw
pushe at the end 0Eemp the initial mesh facets from outside (see Fig. 3). Thus,smmttlng
dse the total_ number of mesh facets to the decoder will allowadp $he
if ec M then {RDG even} convection process as soon as they are all discovered, wiiich
outputtime drastically reduce the number of corrective codes.

time—0
pushe at the end 0Cyina
else
if eSUCh thaEassoe C (reSp-Ctem[) then

5 Processing of thin parts

RATA AT
removeeassofrom C (resp.Ciemp 5 L mu,#immnggg AR

else N 55?%%%%
push{es,e,} at the end o€
end if
time«— time+1
end if
end if
end while

A A
A

w4
v
P

AT
K

AT
AAAAA

=
i

I

Main 2D function :
C « boundaries 0§,orger
Cfinal « 0;Ctemp+— O;time«— 0
Convection2D(C)
while Ciemp# 0 do
e« pop first oriented edge Gemp
if e such thakasso€ Ciempthen

removeeassofrom Ciemp
ese
if e M then 2
’ AR
pushe at the end 0Cying - };}'_éaum :

time«—time+1
else {ODG even}
outputtime
time«<—0
C—{e, e}
Convection2D(C)
end if
end if Figure 2: Fandisk : complete (12946 facets), then showiagtn
end while Delaunay facets only (1104 facets representifay/@of the set)




In the decoding stage, the vertex set is first obtained frem3b
decoder, as well as the patches connectivity. Then the migisbui/

the patches is reconstructed by the algorithm of driven ection.

At last, the patches connectivity is merged into the reconstd
leaky mesh. We thus see that our method improves the reé$tiits o
method of Gandoin and Devillers only for meshes whose farets
mainly Delaunay. In the limit case where all the mesh facetsla

be non Delaunay, we would come across the GD coder compnessio
rates.

Figure 3: 2D Example : the original curve to be coded is in red
thick line, including non Delaunay patches (parts in sdfié). The
Delaunay triangulation is in black thin line. The currenbleing
convection curve, in orange thick line, is temporarily ided (parts

in solid line) to avoid intersecting the patches. The hidDetaunay
edges of the original curve will thus be discovered lateremwthe
convection process will be relaunched to intersect thehestc

4 Coding and Optimization

We saw in section 3 that the codes resulting from the comjaress
algorithm are a sequence of positive or null integers, ssgréng
the number of facets met between two special interventibtiseo
algorithm, that is to say between two facets for which the&igm
does not follow the rules of the reconstruction by convec{iloDG
and RDG events). To minimize the output size, we have chasen t
transmit these numbers to an arithmetic coder, which istaldede

a sequence of symbols in a nearly optimal way, given a prdhabi
model. Thus, ifp(s) denotes the probability of appearance of the
symbols, the arithmetic coder will encodgon logy(1/p(s)) + €.

In particular, this entropic coder is capable of coding alsghon a
fractional number of bits.

The main difficulty consists in defining a good probability ded
for the integers to be coded. The first solution consists impding
statistical data for each mesh and transmitting the prdibatable
in the header of the compressed file. But ideally, to savertrest
mission of such a table, we would like to model for a wide clafss
meshes the behavior of the sequence to be coded, or altefgaid
design an adaptive model recomputing the probability ofralsy
each time it occurs. Several kinds of model can be used, diccpr
to the size of the context from which the probability is estied.
For the order-0 model, each integer has an absolute prdiyebil
the whole coding sequence, independent from the contextthEo
order-1 model, the probability of an integer depends on #iaev
of the previously transmitted integer, and so on. We havdlyina
opted for an adaptive order-1 model specifically designethke
advantage of the particular structure of the integer sezpiefror
instance, this model handles the long runs of null integegdently
occuring in the sequence.

As a matter of fact, these runs often correspond to largénpatof
facets that have to be forced (ODG events) because the Getdrie
terion is too restrictive compared to the local density & thesh.
Statistics show that the convection process is rarely wrehgn
it decides to open a facet; on the contrary, at the end of the co
vection, a lot of facets have been retained but do not beloniget
initial mesh. To encourage the convection algorithm to opene
facets, we have relaxed the Gabriel criterion under someitons.
Intuitively, a facet will be opened when its size is "big” Witegard
to the vertex density in its neighborhood [Chaine 2003]. Blisg
this ratio to a near optimal value, the improvements can hstidr,
particularly in the case of poorly sampled meshes whereuheer
of driving codes can be lowered by about 50%.

5 Experimental Results

The table 1 shows the results of the method applied to sona usu
meshes (the rates are in bits per vertex). The obfacidisk blob,
andhorseare there essentially for comparison purposes, since they
have been used for example by Touma and Gotsman [Touma and
Gotsman 1998]. The Stanfolminnyis also a very classical mesh,
widely used in 3D compression for about ten years. Howeliege
models are not very representative of today meshes, whase nu
ber of vertices is much higher. The last three meshes are more
typical of what can be found nowadays. Thand (see Fig. 6)

and maxplanck (see Fig. 5) can be found drttp://shapes.aim-
at-shape.netwhile thetriple_hecate(see Fig. 4) comes frorhe
Louvre C2RMF lab

model number of [ connectivity | computing time
(number Delaunay | ratein bpv in seconds
of (non Del.) | (Del. +non | (compression /
vertices) facets Del. facets) | decompression
fandisk 11842 2.08 14.45s/
(6475) (1104) (1.22 + 0.86) 14.48s
blob 15226 2.68 16.69s /
(8036) (842) (1.98 + 0.70) 14.64s
horse 38173 2.00 26.38s/
(19851) (1525) (1.48 + 0.52) 22.01s
bunny 71890 0.08 17.60s/
(35947) ©) (0.08 + 0.00) 13.66
triple_hecate| 151462 0.04 46.30s /
(75729) 0) (0.04 + 0.00) 37.15s
maxplanck | 391181 0.90 200.87s/
(199169) (6862) (0.69 +0.21) 156.75s
hand 649922 0.19 341.52s/
(327290) (4674) (0.11 + 0.08) 287.57s
ajax 547117 0.14 153.63s/
(273383) 0) (0.14 + 0.00) 117.13s

Table 1: Experimental results on usual meshes

The first remark is that the rates obtained for the first thredets
are not especially competitive with regard to the best cuinmeeth-
ods (for example, [Kaelberer et al. 2005], whose algorithefdg
0.74 bpv for thdandisk and 0.96 bpv for thborsg. The main rea-
son is that the vertex set of these meshes are clearlg-sample
and therefore, not favorable to the convection algorithot (iote
that on these meshes, we gain on the geometry coding by using
the GD coder, as shown in [Gandoin and Devillers 2002]). @n th
contrary, thehandandmaxplanckare correctly sampled and give a
quite good idea of what the method can achieve when the pemt d
sities are reasonable. Tiigple_hecateandajax models are highly
compliant meshes, not only because their facets are fulDelau-
nay, but also because they were constructed from a set ofspoin



using some reconstruction algorithm similar to the corieaecpro-

addition, the algorithm can be used in parallel with curgentost

cess. However, this kind of mesh is more and more widespread performing geometric compression methods, which resualtery

since a large class of objects are obtained from scanningegod-
struction.

Besides, we can notice that the rates associated to thegeofiion

Delaunay facets are quite bad facing their small numberheasy

penalize the global rates. Indeed, the GD coder is not opfiona
sparse connectivity, and it should be possible to find a betig to

code this small set of facets.

The last column of the table shows the computing user times in
seconds for the connectivity compression / decompressidgheo
meshes on a Pentium 1V 3.0 Ghz 2 Go RAM computer. Globally,
these times are rather high compared to classical methatigxh
plicitly encode the whole connectivity, using some tragétisrough

the mesh vertices. One can incriminate the precomputatidritee
traversal of the Delaunay tetrahedrization required bycthrevec-
tion process. This constraint particularly intends ourhodtto ap-
plications where storage space or network bandwidth are timor

ited resources than processing power. However, a secostrer
of the algorithm could be developped where Delaunay contipata

is not explicit any more. The current version also encountien-
ings limitations when the mesh is not entirely included inddeay.
This is due to intersection determinations between the ubalp
tetrahedrization and non-Delaunay mesh facets.

We can compare our algorithm to the only other compression
method using reconstruction through the 3 meshes we hawarin ¢
mon : the method [Lewiner et al. 2005] obtains 1.19 bpv for the
horse, 2.63 bpv for the fandisk, and 1.18 bpv for the bunnygckvh

is globally slightly higher than the rates of the table 1. &eing

the methods [Alliez and Desbrun 2001; Lee et al. 2002; Kaelbe
et al. 2005], derived from the Touma and Gotsman'’s codingcpri

ple [Touma and Gotsman 1998], they obtain rates around M5 bp
for usual meshes, and can achieve very low rates for higlglylae
meshes where vertex degrees are almost constant. We deg't ha
any result of these algorithms for meshes fully included éieD-
nay, but there is no particular reason why their rates woelbdite

in such cases.

Another limitation of the algorithm concerns the memorytfomt.
This footprint is that of a Delaunay triangulation enricheih
mesh information. The compression algorithm is implemei
CGAL [CGAL ] and the Delaunay tetrahedrization size is pne
tional to the number of Delaunay cells and the number of Dely
vertices. Note that the Delaunay tetrahedrization of caserbase
point set meeting good sampling conditions is nearly linadhe
number of points.

6 Conclusion and Future Work

We have presented a new method of lossless single-rate aon
ity compression based on a semiautomatic reconstructiocep:
able to deduce most of the mesh connectivity from its soléex
set, and occasionally guided through compact codes thet itd
default behavior when necessary. This method is origirsaiitable
for Delaunay embedded meshes. We have also described a
alization removing this constraint inherent to the coneecalgo-
rithm, using a separated coding of non Delaunay patchesgl
as heuristics minimizing the number of driving codes durting
convection process. So the final algorithm is able to conspaes
kind of 3D mesh, including non manifold ones, without any «
straint on the topological genus or the number of conneobect
ponents. After a probabilistic modelization and an entauiding
of the output, the numerical results show a substancial orger
ment above the current state of the art, with an average fate o
bit per vertex, reaching belowDbpv for well sampled meshes. In

competitive overall rates. The main limitations of the noettare

its computing times, relatively high compared to some ofdtiate-
of-the-art algorithms, and its memory footprint, which lexte for
now the compression of gigantic meshes on standard 32-bit ma
chines. As a result, the optimization of the compressiod,aoove

all, of the decompression algorithm remains a primary pEtige

for this work.

The compression rates could probably be improved througte mo
accurate probability models for the entropic coder, andhewere,
through a better coding of the non Delaunay facets. Sinhjilati
could be possible to keep improving the behavior of the conve
tion algorithm, by opening the facets more accurately, ating

to some smarter criterion than the local vertex distributiblow-
ever, we are currently working on the generalization of isk to
multiresolution, which is surely the most important peipe of
this paper. This will be made possible by progressive irsef
vertices in the convection surface [Allegre et al. 2005]der the
constraints imposed by a kd-tree type progressive gecrrezider.
About the GD coder, a last significant perspective consisiste-
grating it to the convection process, in order to improve ghe-
metric prediction by using connectivity information.
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Figure 4: triplehecate (detail) : 75729 vertices and 151462 facets
coded with 004 bits per vertex



Figure 5: maxplanck : 199169 vertices and 398043 facets coded
with 0.90 bits per vertex
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