Estimation in a Competing Risks Proportional Hazards Model Under Length-biased Sampling With Censoring

Abstract : What population does the sample represent? The answer to this question is of crucial importance when estimating a survivor function in duration studies. As is well-known, in a stationary population, survival data obtained from a cross-sectional sample taken from the population at time $t_0$ represents not the target density $f(t)$ but its length-biased version proportional to $tf(t)$, for $t>0$. The problem of estimating survivor function from such length-biased samples becomes more complex, and interesting, in presence of competing risks and censoring. This paper lays out a sampling scheme related to a mixed Poisson process and develops nonparametric estimators of the survivor function of the target population assuming that the two independent competing risks have proportional hazards. Two cases are considered: with and without independent consoring before length biased sampling. In each case, the weak convergence of the process generated by the proposed estimator is proved. A well-known study of the duration in power for political leaders is used to illustrate our results. Finally, a simulation study is carried out in order to assess the finite sample behaviour of our estimators.
Type de document :
Article dans une revue
Lifetime Data Analysis, Springer Verlag, 2014, 20 (2), pp.276-302. 〈10.1007/s10985-013-9248-6〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00605669
Contributeur : Jean-Yves Dauxois <>
Soumis le : dimanche 3 juillet 2011 - 18:34:23
Dernière modification le : jeudi 10 janvier 2019 - 11:14:05
Document(s) archivé(s) le : lundi 12 novembre 2012 - 09:56:05

Fichier

Prepublication_LBS_KG_model.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jean-Yves Dauxois, Agathe Guilloux, Syed N.U.A. Kirmani. Estimation in a Competing Risks Proportional Hazards Model Under Length-biased Sampling With Censoring. Lifetime Data Analysis, Springer Verlag, 2014, 20 (2), pp.276-302. 〈10.1007/s10985-013-9248-6〉. 〈hal-00605669〉

Partager

Métriques

Consultations de la notice

577

Téléchargements de fichiers

270