Chemotaxis: from kinetic equations to aggregate dynamics

Abstract : The hydrodynamic limit for a kinetic model of chemotaxis is investigated. The limit equation is a non local conservation law, for which finite time blow-up occurs, giving rise to measure-valued solutions and discontinuous velocities. An adaptation of the notion of duality solutions, introduced for linear equations with discontinuous coefficients, leads to an existence result. Uniqueness is obtained through a precise definition of the nonlinear flux as well as the complete dynamics of aggregates, i.e. combinations of Dirac masses. Finally a particle method is used to build an adapted numerical scheme.
Type de document :
Article dans une revue
Nonlinear Differential Equations and Applications NoDEA, 2013, 20 (1), pp.101-127. 〈10.1007/s00030-012-0155-4〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00605479
Contributeur : Francois James <>
Soumis le : vendredi 2 décembre 2011 - 12:18:23
Dernière modification le : jeudi 21 mars 2019 - 13:09:20
Document(s) archivé(s) le : samedi 3 mars 2012 - 02:30:36

Fichiers

chemohydro.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François James, Nicolas Vauchelet. Chemotaxis: from kinetic equations to aggregate dynamics. Nonlinear Differential Equations and Applications NoDEA, 2013, 20 (1), pp.101-127. 〈10.1007/s00030-012-0155-4〉. 〈hal-00605479v3〉

Partager

Métriques

Consultations de la notice

1033

Téléchargements de fichiers

262