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Akhmediev breather evolution in optical fiber for realistic initial conditions

M. Erkintalo a,∗, G. Genty a, B. Wetzel b, J.M. Dudley b

a Tampere University of Technology, Optics Laboratory, FI-33101 Tampere, Finland
b Université de Franche-Comté, Institut FEMTO-ST, UMR CNRS 6174, 25030 Besançon, France

We study numerically Akhmediev breather dynamics in optical fibers under initial conditions that do not correspond to an ideal infinitesimal modulation on a 
plane wave. We examine two modifications that are commonly encountered in realistic experiments: (i) a finite-amplitude (not necessarily weak) initial 
modulation; (ii) the use of pulsed excitation. In the first case, we derive an expression for the propagation distance required to generate a train of compressed 
breather pulses. In the second case, we show that breather dynamics with pulsed excitation can be interpreted in terms of local breather states at different 
points on the pulse envelope.

1. Introduction

Modulation instability (MI) is a central process of nonlinear dy-

namics associated with the exponential amplification of a periodic

modulation on a continuous wave (CW) background. Originally

studied in the context of hydrodynamics [1] and plasma physics

[2], it has attracted particular attention in fiber optics [3] where

it has been applied to generate high contrast pulse trains [4–12].

Studies of MI have been performed using different techniques: di-

rect numerical simulations [4]; linear stability analysis of the per-

turbation growth [5]; or a description of the dynamics in terms

of energy exchange between a truncated number of the frequency

modes generated during the amplification process [13]. However,

results in the applied mathematics literature over 25 years ago

have actually shown that MI can be described analytically by di-

rectly solving the integrable (1 + 1)D nonlinear Schrödinger equa-

tion (NLSE) [14–16]. This yields an exact analytic description of

an ideal growth and decay cycle associated with the growth of an

infinitesimal perturbation on a plane wave towards a compressed

“pulse train”. The evolving pulses are now generally referred to as

Akhmediev breathers (ABs).

This result has been recently shown to provide an extremely

powerful description of MI under a range of conditions, providing

insight into the initial stage of supercontinuum (SC) generation in

the anomalous dispersion regime with long pump pulses [17], and

allowing the design of experiments exciting the rational Peregrine

soliton solution of the NLSE [18,19]. These recent studies, however,

have not considered in detail the wider accuracy of the AB descrip-
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tion of MI under realistic experimental conditions, and thus the

aim of this Letter is to complete this description. Specifically, we

derive an analytic approximation to the evolving AB field far from

the maximum compression point of the breather, and this allows

us to: (i) determine the experimental input conditions to excite

ABs (and compressed pulse trains) whose characteristics are fixed

by the initial modulated field; (ii) predict accurately the propaga-

tion distance for an input field at arbitrary modulation frequency

to evolve to the compressed AB. We also consider the accuracy

of the AB description using pulsed rather than CW excitation and

show that the evolution of a weakly-modulated pulse can be de-

scribed in terms of “localized” breather states whose analytic prop-

erties are fully determined by the local power at the corresponding

point on the initial pulse envelope.

2. Excitation of breathers and distance of maximal compression

2.1. The Akhmediev breather formalism

We begin by briefly reviewing the AB formalism in an optical

fiber context [14,15,17]. We consider the evolution of the field en-

velope A(z, T ) governed by the NLSE [5]:

i
∂ A

∂z
−

β2

2

∂2A

∂T 2
+ γ |A|2A = 0. (1)

Here A(z, T ) is normalized such that |A(z, T )|2 represents the in-

stantaneous power in watts. The group-velocity dispersion parame-

ter β2 < 0 and nonlinear coefficient γ have dimensions of ps2 m−1

and W−1 km−1, respectively. The AB solutions to the NLSE describe

a single growth–return cycle of a modulated plane wave. For a
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Fig. 1. Typical growth–return cycle characteristic for an Akhmediev breather. a =
0.25.

plane wave power P0 and modulation frequency ωmod , the solu-

tion is:

A
(

z′, T
)

=
√

P0

[

(1 − 4a) cosh(bz′) + ib sinh(bz′)
√
2a cos(ωmodT ) − cosh(bz′)

+
√
2a cos(ωmodT )

√
2a cos(ωmodT ) − cosh(bz′)

]

eiz
′
, (2)

where the coefficients a and b are related to the modulation fre-

quency and fiber parameters as 2a = 1 − (ωmod/ωc)
2 and b =√

8a(1 − 2a) with ω2
c = 4γ P0/|β2|. Note that in writing Eq. (2)

we have introduced a normalized distance z′ = z/LNL , where LNL =
(γ P0)

−1 is the nonlinear length. Eq. (2) is valid for modulation fre-

quencies experiencing nonzero MI gain such that 0 < a < 1/2, i.e.

ωc > ωmod > 0. The parameter b > 0 governs the growth rate of

MI and maximum gain b = 1 occurs for a = 1/4, corresponding to

ωmod = ωc/
√
2 [5]. The AB solution exhibits a single growth–return

cycle over −∞ < z < +∞ as is illustrated in Fig. 1 for a = 1/4

where the exponential growth and decay of a periodic train of

pulses with temporal separation Tmod = 2π/ωmod can readily be

observed.

2.2. Approximate input conditions and compression distance

The amplitude and the degree of temporal localization (i.e.

compression) of the AB peaks is maximum at z′ = 0, and the

modulated field asymptotically approaches a plane wave when

|z′| → ±∞ [14,15]. Although previous numerical studies suggested

that the AB evolution in Fig. 1 can be observed over a wide range

of initial modulation conditions [17], we study this more quantita-

tively here via a straightforward Taylor series expansion of the AB

solution (2) for large |z′| (see Appendix A for details). In particular,

retaining only the first-order terms and dropping a constant phase

term that affects all terms in the expansion equally, this yields:

A
(

z′ → ±∞, T
)

≈
√

P0

[

1+ 2be−b|z′|e−iψ± cos(ωmodT ) , (3)

where ψ± = ± tan−1(b/(2 − 4a)) = ± tan−1
√
2a/(1− 2a). It is

clear that Eq. (3) has the approximate form of a weakly-modulated

CW field

A
(

z′ → ±∞, T
)

≈
√

P0

[

1+ amode
−iψ± cos(ωmodT ) , (4)

where we define a real modulation amplitude amod = 2be−b|z′| . The
phase ψ± represents the relative phase difference between the

pump and modulation sidebands at +∞ and −∞, respectively.

The relationship with the phase-matching condition for the associ-

ated four-wave mixing process is discussed in Appendix B. On one

hand, the modulation amplitude amod depends both on the fre-

quency parameter a and the distance |z′| from the expected point

of maximum temporal compression. On the other hand, the phase-

mismatch ψ± does not depend on distance as long as the pump

remains undepleted, which reflects the fact that the phase differ-

ence between the pump and the sidebands remains constant with

propagation.

It is straightforward to use numerical simulations of the NLSE

to determine under what conditions the approximate form of the

initial condition described by Eq. (4) leads to the ideal AB growth–

return evolution as seen in Fig. 1. This is of course an important

study to carry out as the synthesis of an input field having the

form of Eq. (4) is experimentally straightforward. The results of ex-

tensive simulations over the full range of modulation frequencies

0 < a < 0.5 indicate that provided the effective modulation ampli-

tude satisfies amod < 0.2, the approximate form of the initial condi-

tion yields the expected AB evolution dynamics. In practical terms,

what this means is that injecting a field with the form of Eq. (4)

with amod < 0.2 into an optical fiber results in an evolution trajec-

tory similar to that of an ideal AB over the first growth–return cy-

cle. We emphasize of course that such an initial condition remains

an approximation of the exact analytical AB which will lead to de-

viation from the perfect decay of the AB solution and recurrence.

However, this is generally not important for applications aiming

to use MI for pulse train generation where it is the pulse charac-

teristics at the first point of compression in the fiber that are of

interest. Although such a periodic evolution may be of fundamen-

tal interest due to its links with the Fermi–Pasta–Ulam recurrence

phenomenon [20,21], it is beyond the scope of this Letter and here

we have restricted our discussion to the first growth–return cycle.

Simulations using the approximate initial condition are shown

in Fig. 2(a) for a = 0.25 and amod = 0.02. The false color plot

on the top shows the growth–return cycle evolution of the field

intensity and the bottom plot shows a comparison between the

simulated intensity profiles at the distance of maximal compres-

sion with that of the exact analytical AB. We can see how the

two intensity profiles are in excellent agreement at the distance

of maximum compression. In fact, we have checked that we ob-

serve similar agreement at any distance z′ and across the full MI

gain curve for any value of the normalized frequency parameter

0 < a < 1/2.

The distance scale used in this figure is such that the position

z′ = 0 corresponds to the input point in the fiber and not the point

of maximal compression as for the ideal AB solution. But in fact,

this illustrates clearly how we can use the relation amod = 2be−b|z′|

to determine the distance from an input field to the point of com-

pression for any initial modulation amplitude through the remark-

ably simple result:

z0 = −
LNL

b
ln

(

amod

2b

)

. (5)

In fact, a more approximate form for this characteristic compres-

sion distance has been obtained by other workers [22,23] assuming

purely exponential instability growth, but the result here is signif-

icantly more accurate, differing by a factor of 2b in the argument

of the log-function. For amod = 0.02, we compare in Fig. 3 predic-

tions of the compression distance using Eq. (5) (black line) with

results from NLSE simulations (red circles) over the full range of

modulation frequency parameter a and we see that there is ex-

cellent agreement. We note that similar results to those shown

in the figure are obtained for larger modulation amplitudes up to

amod < 0.2. For completeness we also plot in Fig. 3 the optimal dis-

tance of pulse train generation from seeded-MI dynamics derived

in [22,23]. It is clear that the distance of maximum compression as

derived from the AB formalism provides a significantly improved

estimate. This can be understood from the fact that the AB formal-

ism accounts for both the pump depletion and phase-mismatch

between the pump and sidebands unlike in the exponential ampli-

fication model.
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Fig. 2. (a) Top: Simulated temporal evolution of an input field corresponding to

Eq. (4) for a = 0.25 and amod = 0.02. Bottom: Comparison of the simulated intensity

profile at the distance of maximum compression with that of the corresponding ex-

act AB. (b) Same as (a) but for an input field with ψ = 0. The numerical simulations

use standard single-mode fiber parameters at 1550 nm, with β2 = −20 ps2 km−1 ,

γ = 1.1 W−1 km−1 , and we assume P0 = 30 W. The nonlinear length for the cho-

sen parameters corresponds to LNL = 30.3 m. The time scale is plotted in terms of

the oscillation period Tmod = 2π/ωmod .

Fig. 3. Maximum compression distance vs. modulation frequency parameter a as

obtained from Eq. (5) (black solid line). Distance obtained from numerical NLSE

simulations for a weakly-modulated input field with initial phase ψ = tan−1(b/(2−
4a)) (red circles) and initial phase ψ = 0 (black crosses) are also plotted. The red

solid line indicates the distance derived in Refs. [22,23]. In all cases amod = 0.02 and

other parameters as those used for Fig. 2. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this Letter.)

An important factor in the solution given by Eq. (4) is the pres-

ence of the relative pump-sideband phase difference ψ . Although

in some experiments, it may be possible to control this accurately

to obtain precise correspondence with the theoretical AB result,

it is interesting to examine how the dynamics change if we use

a purely real input field of the form
√

P0[1 + amod cos(ωmodT )]
(i.e. with ψ = 0). For this purpose the upper subplot in Fig. 2(b)

shows the intensity evolution as in the ideal case in Fig. 2(a) but

with ψ = 0. We see similar temporal evolution to the ideal case

and as shown in the lower subplot, the intensity profile at the

distance of maximum compression coincides with the “maximally-

compressed” AB. The exact distance at which the compression

occurs, however, is different from the case in Fig. 2(a) with ini-

tial pump-sideband phase control. Physically, this difference in

the compression distances is a manifestation of the fact that the

growth rate of the modulation is sensitive to the relative pump-

sideband phase difference [5] (see also Appendix B). Yet, simula-

tion results as shown in Fig. 3 carried out over the full range of a

shows that this compression distance offset is � 15%. This suggests

that Eq. (5) provides a very useful result allowing compression dis-

tance to be estimated even when ψ = 0.

Fig. 4. Maximum compression distance vs. modulation frequency parameter a as

obtained from Eq. (5) (black solid line). Distance obtained from numerical NLSE

simulations for a weakly-modulated input field with a single sideband (see Eq. (6))

(red circles). The red solid line indicates the distance derived in Refs. [22,23]. In all

cases amod = 0.02 and other parameters as those used for Fig. 2. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this Letter.)

2.3. Dynamics with only single sideband excitation

Synthesizing an input field as given by Eq. (4) would require

an appropriate amplitude modulation technique or the use of a

pump and two distinct sideband seeds with phase-control. In some

experiments, an alternative approach could use an input with a

single sideband that can be arbitrarily tuned with respect to the

pump. This would correspond to an experimental arrangement that

employs e.g. two CW lasers as typically used in seeded-MI experi-

ments for generating ultra-fast pulse trains.

This particular case has an input field given by:

A(0, T ) =
√

P0

[

1+ amode
i(ωmodT+ψ) . (6)

Even for this single-sideband input, apart from a trivial tempo-

ral translation the field evolution closely resembles that of the

ideal AB determined by the corresponding modulation frequency

parameter as fixed by the initial pump-sideband frequency detun-

ing. Indeed, in this case the symmetrical sideband with respect

to the pump is generated at a very early propagation stage due

to parametric four-wave mixing and the phase of the sideband is

automatically set such that the initial pump-sideband phase mis-

match (as defined in Appendix B) θ = −π/2 [5]. As a consequence,

in contrast with a dual-sideband input the evolution is indepen-

dent of the input pump-sideband phase-mismatch ψ which, from

an experimental view point means, that an active stabilization of

the phase difference is not required to excite an AB with this tech-

nique. It is worth noting that although the pump-sideband phase

mismatch θ = −π/2 is valid only for an AB whose modulation

parameter a = 0.25 (see Appendix B), the distance of maximum

compression for a single sideband input is well approximated by

Eq. (5) for arbitrary a as illustrated in Fig. 4. Therefore Eqs. (2),

(5), and (6) provide a simple general recipe to generate ultra-fast

pulse trains with desired characteristics. Finally, we point out that,

although we have restricted ourselves to the pure NLSE, we have

carefully checked that the inclusion of higher-order effects such

as stimulated Raman scattering, higher-order dispersion and self-

steepening do not modify significantly the dynamics during the

first growth cycle and, therefore, the results are also applicable in

the presence of higher-order perturbations.

3. The use of a pulsed input – non-CW initial conditions

In many experiments studying MI, the power levels needed to

seed the instability are such that it is necessary to use high peak

power narrowband pulses from modelocked lasers rather than an

ideal CW input field [24–27]. It is clear that the dynamics here will
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Fig. 5. (a) Evolution of a modulated pulsed input illustrating the “local” breather behavior. (b) This figure shows the same results as in (a) but plotted to clearly show how

the point of maximum compression at different points along the pulse envelope corresponds to distances calculated from Eq. (5) using the local peak power (red crosses).

(c) We see how the central subpulse (at the peak of the pulse envelope) at the point of compression distance from simulations is in excellent agreement with the form of

the compressed pulse profile from AB theory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

not be exactly the same as expected from the AB theory, because

there will be power variation across the pulse envelope. In this

section we consider how the analytic AB theory above applies to

this particular case of non-ideal (yet realistic) initial conditions.

In order to examine how the AB formalism can be applied to

a pulsed input we numerically study the evolution of a weakly

modulated pulsed field of the form

A(0, T ) =
√

P0 sech(T /T0)
[

1+ amode
iψ cos(ωmodT ) , (7)

where P0 and T0 represent the peak power and duration of the

unmodulated pulse envelope. From an experimental point of view

this initial condition corresponds to the simultaneous injection of

a strong pump pulse and frequency-shifted seed replicas by an

amount ωmod with a ψ phase difference between the pump and

the seed pulses. The full-width at half-maximum of the pump and

seed pulses is related to the parameter T0 through τ = 1.763T0 . It

is clear that unambiguous MI dynamics in the pulsed regime will

be seen only if the pulse duration significantly exceeds the modu-

lation period τ ≫ Tmod .

Numerical results studying the evolution of a 4 ps (FWHM),

170 W peak power weakly modulated pulse (amod = 0.02) are

shown in Fig. 5. Here we use realistic parameters of a commer-

cially available photonic crystal fiber (Crystal Fiber NL-PM-750) at

815 nm: β2 = −13.7 ps2 km−1 and γ = 0.12 W−1m−1 . The ini-

tial phase ψ is taken from the exact AB solution as calculated

from the corresponding a parameter. The modulation frequency

ωmod = 55 THz corresponds to the maximum of the MI gain curve

for the power level at the peak of the pulse. With this choice

of parameters Tmod = 114 fs, satisfying the requirement where we

would expect MI dynamics even with a pulsed input, as discussed

above.

With a pulsed input, comparing Fig. 1 with Fig. 5(a) clearly

shows that the growth of the modulation does not occur uniformly

across the pulse profile. Certainly we see that propagation yields

increased modulation contrast and sub-pulse formation across the

pulse envelope, but the point of maximum amplitude and temporal

compression occurs at different propagation distances for differ-

ent temporal points across the envelope. This behaviour, however,

can be understood very simply in terms of “localized” breather

states, where the local peak power at any point on the pulse enve-

lope determines the breather properties at this point. Specifically,

a modulation cycle at a given temporal position Tn ≈ ±nTmod ,

n = 0,1,2, . . . , along the pulse envelope will evolve with AB char-

acteristics of a CW wave of power Pn = P0 sech
2(Tn/T0). These

“local” AB dynamics are highlighted in Fig. 5(b) where the max-

imally compressed distances of separate sub-peaks are shown to

closely follow those analytically predicted using Eq. (5) when ac-

counting for the power variation along the pulse envelope. To

further illustrate the correspondence with ideal AB dynamics we

show in Fig. 5(c) the temporal profile of the central sub-peak at its

maximally-compressed distance which is exactly fitted by the ideal

AB sub-peak corresponding to the peak power of the unmodulated

pulse. Of course, we have carefully checked that the sub-pulses at

the wings of the pulse envelope are equally well fitted with an

isolated sub-pulse of the AB whose power is determined by the

corresponding point along the input pulse envelope.

As with the CW case, the pulsed dynamics with a single ini-

tial sideband seed are similar to that observed with dual sideband

input and the local compression distances are well predicted by

Eq. (5). However, it should be noted that for a fixed modulation

frequency ωmod the modulation parameter a decreases as we move

from the peak of the pulse envelope to the wings, which corre-

spondingly leads to discrepancies when using Eq. (5) to predict

the distance of maximal compression for the wings of the pulse in

the case of a single sideband seed (see Fig. 4).

4. Conclusions

There are several important conclusions to be drawn from this

work. We have used the Akhmediev breather formalism to de-

rive an improved analytical prediction for the distance of maximal

compression of a weakly modulated CW field and shown that the

theory can be extended to the pulsed regime. Specifically, we have

found that the evolution of a weakly modulated pulse can be de-

picted in terms of “local” breather states, whose analytic properties

are determined by the local power at the corresponding point on

the initial pulse envelope. We expect our results to be of use in

the design and realization of ultrahigh-repetition-rate sources as
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well as to provide significant insight into the initial stages of noise-

driven SC generation.

Appendix A

A first-order approximation of the AB solution (see Eq. (2))

at large distances from the maximum compression point can be

obtained by keeping only the dominant term in the hyperbolic

trigonometric functions

cosh
(

bz′
)

≈
eb|z

′|

2
(A.1)

and

sinh
(

bz′
)

≈ ±
eb|z

′|

2
(A.2)

where the ‘+’ and ‘−’ sign corresponds to z′ = ∞ and z′ = −∞,

respectively. Factorizing out eb|z
′| from the numerator and denom-

inator the AB solution can be written as

AB
(

z′ → ±∞, T
)

≈
√

P0

[

(1− 4a) ∓ ib − 2
√
2aeb|z

′| cos(ωmodT )

1− 2
√
2aeb|z

′| cos(ωmodT )

]

eiz
′
. (A.3)

Expanding the denominator in Taylor-series and retaining only the

first term, we obtain

AB
(

z′ → ±∞, T
)

≈
√

P0

[

(4a − 1) ∓ ib

+ (4a − 2∓ ib)2
√
2ae−b|z′| cos(ωmodT ) eiz

′
. (A.4)

After some straightforward algebra the AB solution is given by

AB
(

z′ → ±∞, T
)

≈
√

P0

[

1+ 2be−b|z′|e∓i tan−1( b
2−4a ) cos(ωmodT ) e∓iφeiz

′
, (A.5)

where φ = tan−1( b
4a−1

)+π for a � 0.25 and φ = tan−1( b
4a−1

) oth-

erwise. After dropping the phase term that affects all the terms in

the brackets equally (and does not affect the evolution of the field

intensity), the solution can be conveniently written as

AB
(

z′ → ±∞, T
)

≈
√

P0

[

1+ 2be−b|z′|e−iψ± cos(ωmodT ) (A.6)

where ψ± = ± tan−1(b/(2 − 4a)).

Appendix B

Connection between ABs and degenerate four-wave mixing

(FWM) in the undepleted pump approximation can be derived by

considering degenerate FWM processes between the pump and

sidebands of the initial modulated signal. The dynamical evolution

of the system can be solved by injecting in the NLSE a 3-frequency

field of the form

A(z, T ) = a0(z) + a1(z)e
−iωmodT + a2(z)e

+iωmodT , (B.1)

where ωmod represent the applied modulation frequency and a0 ,

a1 , and a2 represent the complex amplitude of the pump, Stokes,

and anti-Stokes frequency components, respectively. Separating the

terms oscillating at different frequencies yields three coupled dif-

ferential equations which, in the undepleted pump approximation

(i.e. assuming |a1|2 , |a2|2 ≪ |a0|2), can be written as

i
da0

dz
+ γ |a0|2a0 = 0, (B.2)

i
da1

dz
+

β2

2
ω2

moda1 + 2γ |a0|2a1 + γ a20a
∗
2 = 0, (B.3)

i
da2

dz
+

β2

2
ω2

moda2 + 2γ |a0|2a2 + γ a20a
∗
1 = 0. (B.4)

Writing the complex amplitudes ak(z) = bk(z)e
iφk(z) with bk and φk

real amplitude and phase, respectively, we find that the evolution

of the Stokes complex amplitude is governed by

db1

dt
+ i

dφ1

dz
b1

= i

(

β2

2
ω2

mod + 2γ |a0|2
)

b1 + iγ b20b2e
i(2φ0−φ2−φ1). (B.5)

Introducing the pump-sidebands linear phase-mismatch θ = 2φ0 −
φ2 − φ1 and separating the real and imaginary parts we subse-

quently obtain for the amplitude and phase-mismatch evolution

db1

dz
= −γ b20b2 sin(θ), (B.6)

dφ1

dz
= κ + γ

b20b2

b1
cos(θ), (B.7)

where κ = β2

2
Ω2 + 2γ |a0|2 . Similar equations for the evolution of

the anti-Stokes amplitude and phase can be written by interchang-

ing indices 1 ↔ 2. Accounting for the phase variation of the pump

due to self-phase modulation as

dφ0

dz
= γ b20 (B.8)

and replacing bk =
√

Pk , the evolution of the power and phase-

mismatch of the Stokes and anti-Stokes modes are described by

dP1

dz
=

dP2

dz
= −2γ P0

√

P1P2 sin(θ), (B.9)

dθ

dz
= |β2|ω2

mod − 2γ P0 − γ
P0√
P1P2

(P1 + P2) cos(θ) (B.10)

where we have assumed anomalous dispersion, i.e. sgn(β2) = −1.

If we assume the FWM process to be seeded from an initial cosine

modulation the power of the Stokes and anti-Stokes sidebands is

equal so that P1 = P2 and Eqs. (B.9) and (B.10) reduce to

dP1

dz
=

dP2

dz
= −2γ P0P1 sin(θ), (B.11)

dθ

dz
= |β2|ω2

mod − 2γ P0 − 2γ P0 cos(θ). (B.12)

From Eq. (B.12) it can be seen that if the initial phase-mismatch

between the pump and sidebands θ is such that

θ = ± cos−1

( |β2|ω2
mod

− 2γ P0

2γ P0

)

, (B.13)

it remains clamped to this value with propagation as long as the

undepleted pump approximation holds. Replacing ωmod in terms of

the a-parameter as ω2
mod

= 4γ P0(1 − 2a)/|β2| we can rewrite the

phase-mismatch condition for constant phase-mismatch evolution

as

θ± = ± cos−1(1− 4a). (B.14)

This condition on the phase-mismatch value as given by Eq. (B.14)

is precisely equal to the phase difference between the pump and

first Fourier modes as obtained from the Taylor series expansion of

ABs at ±∞: A(z′ → ±∞, T ) =
√

P0[1+2be− jψ±e−b|z′| cos(ωmodT )]
with

5



ψ± = ± tan−1

(

b

2− 4a

)

= ±
1

2
cos−1(1 − 4a) =

1

2
θ±, (B.15)

where the ‘+’ and ‘−’ signs correspond to the analytical AB at +∞
and −∞, respectively. Therefore, at large distance from the point

of maximum compression the evolution of ABs can be interpreted

as degenerate FWM with constant phase-mismatch.

When a single sideband is injected together with the pump,

the phase of the symmetrical sideband resulting from the para-

metric process is automatically set such that θ = −π/2 which

corresponds to the phase-mismatch of an AB at −∞ whose mod-

ulation parameter a = 0.25.
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