F. Aurenhammer, F. Hoffmann, and B. Aronov, Minkowski-Type Theorems and Least-Squares Clustering, Algorithmica, vol.20, issue.1, pp.61-76, 1998.
DOI : 10.1007/PL00009187

S. Angenent, S. Haker, and A. Tannenbaum, Minimizing Flows for the Monge--Kantorovich Problem, SIAM Journal on Mathematical Analysis, vol.35, issue.1, pp.61-97, 2003.
DOI : 10.1137/S0036141002410927

J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik, vol.84, issue.3, pp.375-393, 2000.
DOI : 10.1007/s002110050002

D. Bertsekas, The auction algorithm: A distributed relaxation method for the assignment problem, Annals of Operations Research, vol.5, issue.1, pp.105-123, 1988.
DOI : 10.1007/BF02186476

D. Bosc, Numerical Approximation of Optimal Transport Maps, SSRN Electronic Journal, 2010.
DOI : 10.2139/ssrn.1730684

Y. Brenier, Polar factorization and monotone rearrangement of vectorvalued functions, pp.375-417, 1991.

M. Balzer, T. Schlömer, and O. Deussen, Capacity-constrained point distributions, ACM Transactions on Graphics, vol.28, issue.3, pp.1-86, 2009.
DOI : 10.1145/1531326.1531392

F. Chazal, D. Cohen-steiner, and Q. Mérigot, Geometric Inference for Probability Measures, Foundations of Computational Mathematics, vol.40, issue.2, 2010.
DOI : 10.1007/s10208-011-9098-0

URL : https://hal.archives-ouvertes.fr/hal-00772444

F. Goes, D. Cohen-steiner, P. Alliez, and . M. Desbrun, Computational Geometry Algorithms Library An optimal transport approach to robust reconstruction and simplification of 2D shapes, 2011.

J. Delon, J. Salomon, and A. Sobolevski, Fast Transport Optimization for Monge Costs on the Circle, SIAM Journal on Applied Mathematics, vol.70, issue.7, pp.2239-2258, 2010.
DOI : 10.1137/090772708

URL : https://hal.archives-ouvertes.fr/hal-00362834

R. Fletcher, Practical methods of optimization, 1987.
DOI : 10.1002/9781118723203

Y. Lipman and I. Daubechies, Conformal Wasserstein distances: Comparing surfaces in polynomial time, Advances in Mathematics, vol.227, issue.3, 2011.
DOI : 10.1016/j.aim.2011.01.020

G. Loeper and F. Rapetti, Numerical solution of the Monge???Amp??re equation by a Newton's algorithm, Comptes Rendus Mathematique, vol.340, issue.4, pp.319-324, 2005.
DOI : 10.1016/j.crma.2004.12.018

T. Lachand-robert and É. Oudet, Minimizing within Convex Bodies Using a Convex Hull Method, SIAM Journal on Optimization, vol.16, issue.2, pp.368-379, 2006.
DOI : 10.1137/040608039

URL : https://hal.archives-ouvertes.fr/hal-00385109

R. Mccann, A Convexity Principle for Interacting Gases, Advances in Mathematics, vol.128, issue.1, pp.153-179, 1997.
DOI : 10.1006/aima.1997.1634

P. Mullen, F. De-goes, M. Desbrun, D. Cohen-steiner, and P. Alliez, Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets, Computer Graphics Forum, vol.2005, issue.5, pp.1733-1741, 2010.
DOI : 10.1111/j.1467-8659.2010.01782.x

URL : https://hal.archives-ouvertes.fr/inria-00502473

P. Mullen, F. Memari-de-goes, and M. Desbrun, Hodge-Optimized Triangulations, Proceedings of ACM SIGGRAPH 2011, 2011.

[. Manhães-de-castro, P. Tournois, J. Alliez, P. Devillers, and O. , Filtering Relocations on a Delaunay Triangulation, Computer Graphics Forum, vol.14, issue.1987, pp.5-1465, 2009.
DOI : 10.1111/j.1467-8659.2009.01523.x

G. Monge, Mémoire sur la théorie des déblais et de remblais, Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique etde Physique pour la même année (1781), pp.666-704

J. Moré and D. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Transactions on Mathematical Software, vol.20, issue.3, pp.286-307, 1994.
DOI : 10.1145/192115.192132

V. Oliker, Mathematical Aspects of Design of Beam Shaping Surfaces in Geometrical Optics, Trends in Nonlinear Analysis, p.193, 2003.
DOI : 10.1007/978-3-662-05281-5_4

Y. Rubner, C. Tomasi, and L. Guibas, The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, vol.40, issue.2, pp.99-121, 2000.
DOI : 10.1023/A:1026543900054

C. Villani, Optimal transport: old and new, 2009.
DOI : 10.1007/978-3-540-71050-9