
HAL Id: hal-00603465
https://hal.science/hal-00603465

Submitted on 26 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualization of Folktales on a map by coupling dynamic
DEVS simulation within Google Earth

Jean-François Santucci, Laurent Capocchi

To cite this version:
Jean-François Santucci, Laurent Capocchi. Visualization of Folktales on a map by coupling dynamic
DEVS simulation within Google Earth. SIMULTECH 2011, Jul 2011, Noordwijkerhout, Netherlands.
6 p. �hal-00603465�

https://hal.science/hal-00603465
https://hal.archives-ouvertes.fr

Visualization of Folktales on a Map by Coupling Dynamic DEVS

Simulation within Google Earth

Santucci Jean-François, Capocchi Laurent
SPE UMR CNRS 6134, University of Corsica, Campus Grimaldi, 20250 Corte, France

santucci@univ-corse.fr, capocchi@univ-corse.fr

Keywords: DEVS, Discrete Event Simulation, Google Earth API, Dynamic variable structures

Abstract: This paper deals with dynamic visualization of folktales on a map. The visualization is performed using a

coupling of dynamic simulation with the google earth API. The simulation is based on the DEVS (Discrete

EVent system Specification) formalism. We have defined a set of basic models to perform visualization of

folktales using a software framework called DEVSimPy. DEVSimPy is a framework dedicated to DEVS

modeling and simulation of complex systems. We also present in this paper a validation of the developed

basic models based on folktales coming from the Corsican mythology.

1 INTRODUCTION

This paper deals with spatial visualization of

folktales. This work is part of a global project

concerning the study of myths according to the

method defined by Claude Levi-Strauss (Levi-

Strauss, 1955; Levi-Strauss,1969; Levi-

Strauss,1971; Levi-Strauss,1978; Levi-Strauss,1981)

when dealing with Structural Anthropology. The

goal is to offer anthropologists the possibility to

visualize on a map a dynamic progress of the story

involved by a given myth. The visualization is based

on a Discrete EVent system Specification simulation

(DEVS) dynamically linked with the Google Earth

API (Brown, 2006). The interest of such a work for

anthropologists is to be able to visualize a story

stemming from a myth obtained after a DEVS

structural anthropology simulation. From a computer

science point of view the interest is to define a

generic way to propose dynamic visualization of a

given story. We choose to perform the dynamic

features of the problem of visualization using the

DEVS formalism. The spatial visualization on a map

has been done using the Google Earth API. We

describe in detail in this paper how a dynamic

coupling between DEVS formalism and Google

earth has been realized. The proposed approach has

been implemented using the DEVSimPy framework

in order to develop a dynamic library of DEVS

models. We have validated this library using a story

stemming from a myth belonging to the Corsican

oral culture. This myth is a “”reference” myth

according to the meaning of “reference” as Claude

Levi Strauss has defined it in his Mythologiques

Book Series (Levi-Strauss,1969; Levi-Strauss,1971;

Levi-Strauss,1978; Levi-Strauss,1981). The outline

of the paper is as follows: we first give the context

of the research: which is the structural analysis of

myths using DEVS formalism. We also introduce in

this first section how the DEVS formalism has been

used in order to perform myth transformation. The

DEVSimPy framework is briefly presented. Section

3 deals with dynamic visualization of folktales. First

an overview of the proposed approach is described.

Then we explain how we implemented the

simulation of variable dynamic structures which are

used in order to perform dynamic visualization of

folktales on a Google Earth map. Then we detail the

description of the dynamic relationship between the

DEVSimPy library of models and the Google Earth

API. The validation of the proposed library is

presented in section 4 before the concluding remarks

and future work.

2 BACKGROUND

We present in this section the background of the
work that is the main contribution of this paper. The
dynamic visualization of folktales belongs to a
method called Structural Anthropology (Levi-
Strauss, 1955). We have developed a software
approach based on DEVS formalism in order to
perform Structural Anthropology. This software
approach leans on the use of the DEVSimPy
framework. We first briefly introduce in this section
how to perform structural anthropology using a
computer science approach. The DEVS formalism is
summarized in sub-section 2.2. The DEVSimPy
framework is detailed in sub-section 2.3 before the
presentation in sub-section 2.4 of the DEVSimPy
implementation of folktale transformations as
defined by Claude Levi Strauss when dealing with
Structural Anthropology.

2.1 Structural analysis of myths

The structural analysis of myths has been defined by
Claude Levi Strauss in his books. He specially
explained how to apply his method in his famous
book series (Levi-Strauss,1969; Levi-Strauss,1971;
Levi-Strauss,1978; Levi-Strauss,1981). The method
leans on the concept of myth transformation.
Myth transformation consists in performing the

generation of myths from a first “reference” myth as

Claude Levi Strauss calls it. The generation involves

a set of basic transformations that are applied on the

mythems of a given myth. A mythem has been

defined in 1955 (Levi-Strauss,1955) as a sentence of

a given myth composed by a term and a function.

For example the following sentence:” the ogre lives

near Casta” is described by the term “ogre” and the

function “lives-near-Casta”. All the sentences of a

given myth can be expressed by a set of mythems.

Then a set of transformations can be applied in order

to generate a new myth. Seven basic transformations

have been defined by Claude Levi-Strauss:

homology, symmetry, opposition, homology,

canonical formula, suppression of mythems, and

addition of mythems. A set of work associating

computer sciences and structural analysis of myth

has been proposed in the past towards the objective

of myth transformation modeling (Klein,

Aeschlimann , Applebaum, Balsiger, Curtis, Foster,

Kalish, Kamin, Lee, Price & Sasieder, 1997;

Maranda,1967; Maranda 1968; Richard & Jaulin,

1971). These works are attempts to formalize the

analysis of tales developed by Claude Levi Strauss.

These approaches are based on computer sciences in

order to perform systematic myth transformations

software. However all these attempts did not

succeed in this task. In order to find a solution to this

problem we have defined a software myth

transformation approach based on the DEVS

formalism which is summarized in sub-section 2.2.

The structural anthropology of myth as defined by

Claude Levi Strauss also proposes the analysis of a

given myth according to his spatial representation in

the landscape. Since it is issued from oral cultures, a

myth is told and retold in front of people. Usually a

myth involves a set of places well known by the

people who are listening to the story. When the story

is told, the landscape linked with the myth is

mentally viewed by the listeners. In this paper we

describe in detail how after having performed a set

of myth transformation we are able to propose the

dynamic visualization of a myth on a map using a

computer.

2.2 DEVS formalism

We briefly introduce the DEVS formalism (Zeigler,

1976; Zeigler, 1984; Zeigler, Praehoffer & Kim,

2000). In the DEVS formalism, one must specify: 1)

basic models from which larger ones are built, and

2) how these models are connected together in

hierarchical fashion.

An atomic model allows specifying the behavior of a

basic element of a given system.

Basic models (called Atomic Models) are defined by

the following structure:

AM = < X, S, Y, C, δext, δint, λ, ta >

Where,

 X is the set of input values,

 S: is the set of sequential states,

 Y: is the set of output values,

 δint, is the internal transition function

dictating state transitions due to internal events,

 δext the external transition function dictating

state transitions due to external input events.

 λ is the output function generating external

events at the output, and

 ta is the time-advance function which allows

to associate a life time to a given state.

An atomic model allows to specify the behavior of a

basic element of a given system. Connections

between different atomic models can be performed

by a Coupled Model (CM) (Zeigler,1976 ; Zeigler,

1984):

CC = < X, Y, D, {Md / d є D}, IC,EIC, EOC>

Where,

 X is the set of input values,

 Y is the set of output values,

 D is the set of model references, that is to say

a set of names associated to the model’s components

{Md / d є D} is the set of coupled model’s

components, with d being in D. These components

are either atomic or coupled DEVS model,

 IC, EIC and EOC define the coupling

structure in the coupled system (IC defines the

internal coupling, transforming a component’s

output into another component’s input within the

coupled model ; EIC is the set of external input

coupling, which connects the inputs of a coupled

model to components inputs; EOC is the set of

external output coupling

A coupled model, tells how to couple (connect)

several component models together to form a new

model. This latter model can itself be employed as a

component in a larger coupled model, thus giving

rise to hierarchical construction.

A simulator is associated with the DEVS formalism

in order to exercise coupled model's instructions to

actually generate its behavior. The architecture of a

DEVS simulation system is derived from the

abstract simulator concepts (Zeigler, 1990)

associated with the hierarchical and modular DEVS

formalism.

In order to implement DEVS modeling and

simulation we use the DEVSimPy framework

presented in sub-section 2.3.

2.3 DEVSimPy Framework

DEVSimPy (stand for DEVS simulator in
Python language) is a collaborative Modeling and
Simualtion (M&S) software. It is used in order to
model and simulate complex systems based on the
DEVS formalism in Python programming language.

The initial idea of DEVsimPy is to develop a

Graphical User Interface based on the wxPython

library (Sanner, 1999) around the PyDEVS kernel

(Bolduc & Vangheluwe, 2001).

Figure 1: The DEVSimPy framework interface

PyDEVS is an API of the modeling and

simulation algorithms of DEVS implemented in

python language. It is used in the software ATOM3

(De Lara & Vangheluwe, 2011). WxPython is a

blending of the wxWidgets C++ class library with the

Python programming language.

The DEVSIMPY framework provides a friendly

interface for discrete event modelling and simulation

by integrating the basic classes of the PyDEVS

kernel. Figure 1 gives an example of the window

interface. You may notice in figure 1 that the

window is split into two parts:

 The left part allows the user to visualize the

classes which can be instantiated (using a drag and

drop). Two kinds of classes appear on figure 1: (i)

Basic classes which correspond to the basic

components of Discrete EVent Specification

formalism and already defined in the classical

PyDEVS kernel (Bolduc & Vangheluwe, 2001); (ii)

classes which have been defined in the context of the

proposed software for performing myth

transformations and myth analysis which may be

found under the Myths and Atomic Models (AM)

folder.

 The right part (called a canevas) which is

dedicated to the design of coupled models (also

called diagrams in the following) with a simple drag

and drop of classes belonging to the left part of the

window. The created coupled model can be saved

under a format allowing it to be easily reused and

shared.
During the design of a DEVS coupling between

several atomic or coupled DEVS models, errors can
occur due to the difficulty to follow multiple links.
Using DEVSimPy, this task becomes fast and easy.
Indeed, it proposes the coupling between models by
using the drag-and-drop. Moreover, the port
numbers are displayed to facilitate the identification
of ports.

DEVSimPy has several other advantages and
most of them are inherited from DEVS formalism.
First, atomic and coupled DEVS models are
considered as black-boxes which have both
graphical and the behavioural features that can be
configurable by a user-friendly dialog. The modular
and the hierarchic aspect of the DEVS formalism is
also proposed in DEVSimPy. Since coupled models
can be composed by atomic or/and coupled models,
DEVSimPy proposes an easy way to visualize the
components belonging to a coupled model and their
interconnections by double clicking. Secondly, as it
is defined by the DEVS formalism, there is no need
to implement the simulator in DEVSimPy after the
modeling step has been performed. After the
modeling task, the simulator is automatically built
by clicking on a simple button in the toolbar of
DEVSimPy. Thus, a dialog appears allowing the
user to choose some of the following options: the
verbose mode, the simulation algorithm, the
profiling mode and the final simulation time.

Another benefit of the use of DEVSimPy is the
possibility to define a dynamic library of atomic and
coupled models. Each model is stored in a tree view
and is directly accessible by a Developer. When he
would like to instantiate a model, he has just to use a
drag-and-drop from the panel library to the canvas.
When the simulation is performed, it is possible to
suspend the process and change the behavior of
model under simulation. The loading of a new
library is performed dynamically and the
modification is immediately operational when the
simulation restart. Even better, it is possible to
modify the code of model during the suspension of
the simulation and to reload it before to restart the
simulation process. This property is often used
during the model-debugging phase.

When a Developer needs to implement a new
functionality, which is required by a specific domain
modeling, he can use a plug-in approach.
DEVSimPy is based on an efficient system of plug-
in allowing the extension of functionality in a
modular way. Overall, when the developer wants to
visualize output data in a specific way or to debug
models, he can create a plug-in based on the viewer
model proposed in DEVSimPy. Plug-ins are
independent of the DEVSimPy kernel and there are
managed through a specific dialog dedicated to their
import, activation, deactivation or configuration.
This plug-in approach is very interesting from the
point of view o the developer view. The Developer
can load or unload plug-in depending on the nature
of the studied domain without having to define new
atomic models that can pollute the library.

The myth modeling requires several atomic
models due to the important number of
transformation processes. Therefore, the number of

coupling between these models is important and the
use of DEVSimPy makes sense. Moreover, the
analysis of the simulation results can be done with a
specific plug-in in order to facilitate both the historic
and the final interpretation of the transformation of
the myths. The implementation of a data collector
(or viewer) using a plug-in is easily done with
DEVSimPy.

2.4 DEVS simulation for myth
transformations

We present the software framework we used in order
to implement the DEVS models required to perform
myths transformation.
The DEVS modeling process we develop is based on
the three following steps:

 DEVS modeling of a mythem

 Data structure for representing a set of

mythems (that is to say a myth)

 DEVS modeling of the transformation of a

myth based on the application of the seven basic

transformations

In order to represent a tale belonging to a set of

variants of a myth we model the structure of a tale

using a coupled model of the DEVS formalism. The

coupled model is composed by a set of atomic

models corresponding to the different parts of the

tale. At the latest level we are using atomic models

of the DEVS formalism in order to model the

narrative structures of the tale. Each atomic model

refers to a basic element of Claude Levi Strauss

theory: the mythem involving two variables: a and x.

A tale is therefore split into mythems and stores in a

text file. The beginning of the story is described

through the following four sentences called

mythems described in figure 2.

1. The ogre named Orcu knows the secret of

fabrication of the Corsican cheese using some milk.

2. The shepherds are jealous of the Orcu because of

this secret.

3. The ogre is captured because of an ingenious

trap.

4. The shepherds ask for the secret of fabrication of

the cheese.

Figure 2: The four first mythems of a Corsican folktale.

We enumerate below for each mythem the value of

the variables ―a‖ and ―x‖:

 1st mythem : a = orcu; x = secret

 2nd mythem: a = shepherd; x = jealous

 3rd mythem: a = orcu; x = trapped

 4th mythem: a = shepherd; x = secret

We consider a set of folktales issued from Corsican
mythology. Corsica is an island of the
Mediterranean area where more than 6000 years ago
megaliths emerged all over the island territory.
These megaliths are signs that define a sacred space
linked with a very old mythology. A set of folktales
that are linked with the landscape of the Corsican
Island has been generated using our approach.
Figure 3 presents the DEVS modeling scheme
allowing to generate a set of myths belonging to the
Corsican Mythology. In order to obtain the
visualization of the set of transformations
concerning the myths already generated starting
from the reference myth we used a graph
representation. Graph visualization is a way of
representing the relations between myths as
diagrams where nodes are labelled with a given
myth and oriented arcs between two nodes
represents the fact that the successor node of the arc
corresponds to a myth which has been generated
from the myth corresponding to the predecessor
node of the same arc. The graph representing the set
of transformations obtain from the simulation of the
DEVS model described in figure 3 is given in figure
4. The generated myths have been validated by the
anthropologist specialized in Corsican Culture.

Figure 3: overview of the coupled model allowing the

generation of s set of myths from an initial myth.

Figure 4: Resulting graph describing the transformations

of myths after simulation of the DEVS model of figure 3

The next step is the visualization on a map of a
given myth belonging to the set of myths already
generated. This step is the main contribution of this
paper and explained in section 3 while its validation
is presented in section 4.

3 DYNAMIC VISUALIZATION

OF FOLKTALES

The goal is to offer the possibility to dynamically

visualize on a map the unfolding of a given myth.

The myth under study is obtained using the myth

transformation software presented in section 2. In

this section after having pointed out the interest of

such a study for the anthropologists we detail the

proposed approach. We particularly explain how we

have been able to deal with: (i) DEVS variable

dynamic structures, (ii) an association of the Google

Earth API and (iii) the DEVSimpY framework and

dynamic visualization using Google Earth API.

3.1 Interest and proposed approach

The study of folktales is an important task
belonging to the anthropologist domain. As we
presented in section 2.1 one of the main contributor
to this kind of study is Claude Levi Strauss. We
summarized in section 2 how we have been able to
help anthropologist to perform structural analysis
using a computer. Once a set of myths belonging to
the same geographical region has been generated
using the structural analysis method, it is common
for an anthropologist to study each myth
individually. This study leans on a two kinds of
analysis: analysis of a given myth according to the
notion of codes as defined by Claude Levi Strauss in
his Mythologiques book series(Levi-Strauss,1969;
Levi-Strauss,1971; Levi-Strauss,1978; Levi-
Strauss,1981); analysis of a given myth according to
its contextualization in the landscape. In this paper
we focus on the second type of analysis. The goal is:

 to visualize the unfolding of a folktale

own to the story skeleton

 to sequence the story on a map which

summarizes the flow of events.
We decide to combine the simulation of models

involved in the DEVSimPy framework (see section
2.3) with some features of the Google Earth API in
order to perform the dynamic visualization of a
given folktale on a map. The following problems
have been solved in order to implement this
proposed approach:

- simulation of variable dynamic structures using
DEVSimPy

- activation of google earth from the DEVSimPY
framework

- dynamic refreshment on the map while the
story skeleton is being simulated.

3.2 DEVS modelling overview

In order to perform the dynamic visualization of a

folktale we have defined a DEVS modeling scheme

by implementing the following set of specific atomic

models: (1) Viewergen; (2) SIGviewer; (3)

MythVisu; (4) PointMyth

Figure 5: DEVS modelling for dynamic visualization

We also defined a coupled model called

MythVariant that is used as the initial variable
structure, which will evolve when a new mythem
has to be visualized on a map. Figure 5 presents the
DEVS modeling scheme involving four DEVS
models: the three atomic models (Viewergen,
MythVisu and SiGviewer) as well as the coupled
model MythVariant. Furthermore instances of the
PointMyth atomic model will be dynamically added
into the MythVariant coupled model when a new
mythem is encountered by reading a myth.

The inter-connection between the four DEVS
models is given in figure 5. The goal of the atomic
model called ViewerGen consists in: (i) scanning a
text file corresponding to the given myth under
study and generated as presented in sub-section 2.4;
(ii) sending a message on its output for every

mythem belonging to the given myth, where the
message contains the term and the function involved
in the mythem as well as the location of each of the
mythems belonging to the myth. This information is
located in the two files associated to the ViewerGen
atomic model as seen on figure 6 (the files can be
loaded using the two attributes: filename (term and
function of the mythems) and filename2 (location of
each mythem). The Viewergen atomic model is
connected to the MythVisu atomic model which is in
charge of the management of variable dynamic
structures: for each message received on its input
port, the MythVisu atomic model is able to add an
instance of the PointMyth atomic model in the
MythVariant coupled model. A message containing
the location of the point associated with the current
mythem (as well as the term and the function
involved by the mythem) is then sent to the
SIGviewer atomic model. The implementation of the
MythVisu atomic model is detailed in sub-section
3.3.

Figure 6: Properties of the MythVisu atomic model.

The goal of the SIGviewer atomic model is to:

(i) open the google earth window; (ii) print the point
corresponding to the current mythem on the map.
The implementation of the SIGviewer atomic model
is detailed in sub-section 3.4

3.3 Variable dynamic structures

In order to perform dynamic visualization of a

given myth we had to implement a way to perform

DEVS simulation of variable dynamic structures. In

order to deal with the modeling of dynamic variable

structure system a set of scholars have proposed in

the recent past to extend the DEVS formalism

(Barros,1997; Hu, Zeigler,Mittal,2005; Baati,

Frydman, Giambiasi, 2007a; Baati, Frydman,

Giambiasi, 2007b ; Hui & Wainer, 2006 ; Barros,

2003). The proposed implementation leans on the

definition of a special coupled model involving a

classical atomic model usually called Supervisor

component (Baati,Frydman,Giambiasi, 2007a ;

Baati,Frydman,Giambiasi, 2007b) which drives the

dynamic structure discrete event system

modifications and coupled models representing the

set of potential structures.

Our approach supports changes in structure by the

introduction of a special atomic model that keeps in

its internal state the structure of a network of

models. Changes in the state are automatically

mapped into changes in structure. We have called

MythVisu the special atomic model in charge of the

management of dynamic variable structures in the

case of this application.
Figure 7 illustrates the empty DEVS coupled

model called MythVariant while the MythVisu
atomic model coding is given below:

1class MythVisu(MythDomainBehavior) :

2 def __init__(self,fileName=""):

3 MythDomainBehavior.__init__(self)

4 self.msg = None

5 self.LAT = []

6 self.LONG = []

7 self.state = {'status':'ACTIVE',

8 'sigma' : INFINITY}

9

10 def intTransition(self):

11 self.state['sigma'] = INFINITY

12

13 def extTransition(self):

14 mv= self.OPorts[0].outLine[0].host

15 msg = self.peek(self.IPorts[0])

16 if msg != None:

17 self.msg = msg

18 mv.componentSet = []

19 m = PointMyth.PointMyth(latitude

20 = …)

21 m.timeNext=m.timeLast=

22 m.myTimeAdvance = 0.

23 m.addInPort()

24 m.addOutPort()

25 mv.addSubModel(m)

26 mv.connectPorts(mv.IPorts[0],m.IPo

27 rts[0])

28 mv.connectPorts(m.OPorts[0],

29 mv.OPorts[0])

30 self.state['status']='ACTIF'

31 self.state['sigma'] = 0

32

33 def outputFnc(self):

34 self.msg.value = 0

35 self.msg.time= self.timeNext

36 self.poke(self.OPorts[0],self.msg)

37

38 def timeAdvance(self): return

39 self.state['sigma']

The dynamic modification of the initial empty

coupled model MythVariant (pointed out on figure

4) is realized by the δext transition function of the

atomic model called MythVisu as it may be seen in

the code presented above (see statement line 25

mv.addSubModel(m)). The variable m is an

instance of the PointMyth atomic class model and is

computed by the statement line 19 and 20:
m = PointMyth.PointMyth(latitude =…)

Figure 7: Illustration of the MythVariant coupled model

The class MythVisu described above points out five

methods corresponding to the four basic functions of

an atomic model and the constructor method of the

class (called __init__) which consists in initializing

the all attributes of the component (cf. the code

above from line 2 to line 8). The DEVS δint, function

of the atomic model MythVisu is coded through the

intTransition method (described in lines 10 and 11)

and consists in assigning the current value of the

state variable sigma to infinity in order to indicate

that the atomic model is waiting for an external

event. The DEVS δext, function of the atomic model

MythVisu is coded through the extTransition

method (cf. from line 13 to 31) which mainly

consists in generating new atomic models in the

associated coupled model called MythVariant. The

DEVS λ function is coded through the outputFnc

method of the atomic model MythVisu -from line

33 to 36) and consists in sending a message on the

output port of the atomic model own to the statement

of line 36:
self.poke(self.OPorts[0],self.msg)

 Finally the DEVS ta function is coded through the

timeAdvance method of the atomic model MythVisu

(lines 38 and 39) and consists in returning the

current value of the state variable sigma.

We have detailed in this sub-section how to manage

dynamic variable structures using the DEVSimPy

framework. This concept of dynamic variable

structures is used in order to dynamically modify the

coupled model MythVariant every time an event

corresponding to the detection of a new mythem

occurs. In sub-section 3.4 and 3.5 we describe in

detail how we have been able to link the dynamic

evolution of the coupled model MythVariant with a

dynamic visualization of mythems on a map. This

visualization leans on the use of the Google earth

API.

3.4 Google Earth invocation

The Google earth invocation leans on the two

following atomic models: PointMyth and

SIGViewer. The link between the DEVSimPy

software and google earth is performed through a

KML (Keyhole Markup Language) file (Google Inc,

2007). KML is a specialized type of XML that

enables to build and organize points, lines and other

information on a google earth map. The δext function

of the SIGviewer atomic model allows the

management of the placement of marks on google

earth using a KML file as it may be seen below:
1def extTransition(self):

2 activePort = self.myInput.keys()[0]

3 msg = self.peek(activePort)

4 point = msg.value[0]

5 kml_tree = KML.KML_Tree(self.fn)

6 ### if there is no Folder, we create

7 ###it with a placemark

8 kml_tree.add_placemark(…..)

9 ### some Folder are present

10 else:

11 folder_list = ……….

12 if folder_list != []:

13 folder = folder_list[0]

14 place_list =………

15 if place_list != []:

16 place = place_list[0]

17 kml_tree.add_placemark(folder,

18 point, place)

19 ### the new placemark is added on

20 ###the existing Folder

21 else:

22 kml_tree.add_placemark(….)

23 else:

24 kml_tree.add_placemark(….)

25 kml_tree.write(self.fn)

26 self.state['sigma'] = 0

Furthermore the dynamic visualization will be

performed using the plug-in view_myth of

DEVSimPy. This plug-in allows the user to

associate the initialization of the software which will

be concerned with the dynamic visualization. The

user has to choose between Google Earth and

Google Map as it may be seen in figure 8.

Figure 8: ViewMyth plug-in initialisation

3.5 Dynamic visualization

The dynamic visualization of the placement of
points on the map is realized by setting a
refreshment of the KML file associated with the
SIGviewer atomic model like described above. The
file is modified every time an event is sent to the
SIGviewer atomic model own to the δext function
presented in sub-section 3.4. The detection of an
event is performed through the statement pointed out
line 3 of the previously detailed code of δext: msg =
self.peek(activePort). Then the KML file is
modified according to the code presented above in
sub-section 3.4 (form line 6 to line 25). Furthermore
the KML file can be checked by the Google Earth
API periodically in order to have dynamic
refreshment by enabling the auto-update function of
the Google Earth API. Using this option the KML
file source is regularly reloaded at an interval that
we have specify. The modification of the KML file
is performed during the DEVS simulation of the
overall DEVS modelling presented in sub-section
3.2. However one of the main interests of the
proposed approach is to offer the possibility of a
dynamic printing on a map the unfolding of a
folktale. We therefore have to perform a step-to-step
simulation in order to activate the refreshment of the
KML file associated with the SIGViewer using the
previously introduced method. We use a special
plug-in called Blink belonging to the DEVSimPy
features allowing to perform a step-to-step
simulation as described in figure 9. Using the
Forward button of the Blink Logger window we are
able to control the generation of the KML file. By
setting an appropriate period of refreshment (for
example 10 second) the user is able to see the
placement of every mythem on the screen and read
the required information concerning the folktale as it
is described in the next section.

Figure 9: Step-to-step simulation of the generation of

points on the map.

4 VALIDATION

In order to validate the previously DEVS models we

consider a set of myths belonging to the Corsican

mythology. We detail the validation of the first myth

of this set. This myth is untitled U Lurcu which

means the ogre in Corsican language. The twenty

mythems belonging to this folktale are given in

figure 10. They are expressed in Corsican language.

As presented in sub-section 2.4, each mythem is

composed by a term and a function. Furthermore

each mythem is numerated.

Figure 10: the twenty mythems in Corsican language of

the folktale under test

We present in figure 11 the result of the simulation

of the myth presented in figure 10. The screenshot

describes the sequence of points that have been

automatically generated during the simulation

process. All the mythems are represented on the map

and identified through a number pointing out the

order of generation corresponding to the order of the

mythems in the given folktale. Furthermore by

clicking on the information button of one of the

generated point the user may read the content of the

mythem as it may be seen on figure 11.

Figure 11: Screenshot of the result of generation on the

map of the points involved in the folktale under test

There are therefore two ways of using the

simulation: (i) by selecting the step-to-step

simulation -the user has in this case chosen the Blink

plug-in as seen in sub-section 3.5 and is able to

discover the unfolding of the myth interactively by

clicking on the forward button; (ii) by performing a

complete simulation and own to the enumeration of

the generated points on the map the user is able to

read the unfolding of the myth on the map by

clicking on the different points of the story one after

the other. The main interest for an anthropologist is

to be able to visualize how the story takes place in

its natural environment. Since the places of the myth

very often correspond to sacred places of the

considered territory it is very important for an

anthropologist to see how they are linked together

through the unfolding of a myth.

5 CONCLUSIONS

We have presented in this paper set an approach to
dynamically visualize the unfolding of a folktale.
This work is part of a multi-disciplinary research
concerning Structural anthropology of myths and
computer science: the goal is to offer a software
approach to help an anthropologist to perform
Claude Levi Strauss myth analysis method. This
method is based on the concept of mythem. Each
folktale (or myth) is decomposed into a set of
mythems which are the basic elements of a given
story. The proposed approach leans on an
association of the DEVS formalism and the Google
Earth API. We have detailed the set of DEVS
models which has been defined in order to: (i)
dynamically read a text file containing the story
where each line of the file corresponds to a mythem
; (ii) dynamically print on a map each mythem using

the Google Earth API. We introduced a software
framework called DEVSimPy which has been used
in order to implement the set of DEVS models
required in order to perform the dynamic
visualization of myths. We also described the
validation of these DEVS model using a concrete
folktale belonging to the Corsican mythology. The
future work will consist in deeply collaborating with
an anthropologist in order to model the 813 myths
defined by Claude Levi Strauss in his Mythologiques
Series and a set of more than 200 myths coming
from the Corsican Mythology and known by the
anthropologist. Our future work will also concern
the dynamic simulation of a given myth in a 3D
environment.

REFERENCES

Baâti, L., Frydman, C. & Giambiasi, N. (2007a), LSIS-

DME M&S Environment Extended by Dynamic

Hierarchical Structure DEVS Modeling Approach.

ACM/SMS proceedings of the Spring Simulation

Conference, Norfolk, Virginia, USA.

Baâti, L., Frydman, C. & Giambiasi, N. (2007b).

Algorithm for DEVS structure changes. Proceedings

of the 6th EUROSIM Congress on Modeling and

Simulation, Ljubljana, Slovenia.

Barros, F.J. (1997). Modeling Formalism for Dynamic

Structure Systems. ACM Transactions on Modeling

and Computer Simulation, 7(4), 501-514.

Barros, F.J. (2003). Dynamic structure multiparadigm

modeling and simulation, ACM Transactions on

Modeling and Computer Simulation, 13(3), 259-275.

Bolduc, J.S. & Vangheluwe, H, (2001). The modeling and

simulation package PythonDEVS for classical

hierarchical DEVS. Technical report MDSL-TR-2001-

01, McGill University, Montréal, Canada

Brown, M.C. (2006), Hacking Google Maps and Google

Earth, Canada: Wiley Publishing, Inc
De Lara, J. and Vangheluwe, H.(2001), ―AToM3: A Tool

for Multi-formalism and Meta-modelling.‖, In
Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering
(FASE '02), Ralf-Detlef Kutsche and Herbert Weber
(Eds.). Springer-Verlag, London, UK, UK, pp. 174—
188.

Google Inc. , KML 2.1 Reference, 2007,

http://earth.google.com/kmlkml_tags_21.html.

Hu, X., Zeigler B. P. & S. Mittal, (2005). Variable

Structure in DEVS Component-Based Modeling and

Simulation, Simulation, 81(2), 91-102

Hui, S. & Wainer, G. (2006). A Simulation Algorithm for

Dynamic Structure DEVS Modeling. Proceedings of

the Winter Simulation Conference, WSC 06, 815 –

822.

Jason, H. & Segal, D. (1977). Patterns in Oral Literature.

The Hague: Mouton Publishers

Klein, S., Aeschlimann, J.F., Applebaum, M.A., Balsiger,

D.F., Curtis, E.J., Foster, M., Kalish, S.D., Kamin,

S.J., Lee, Y.D, Price, L.A. & Sasieder, D.F. (1977).

Modeling Propp and Levi-Strauss in a Metasymbolic

Simulation System. In Jason & Segal (Ed.), Patterns

in Oral Literature (pp. 141- 222), The Hague: Mouton

Publishers.
Lévi-Strauss, C. (1955). The structural study of myths.

Journal of American Folklore, 68(270), 428-444.

Levi-Strauss, C. (1969). Introduction to a Science of

Mythology 1. The Raw and the Cooked, New York:

Harper & Row

Levi-Strauss, C., (1973). Introduction to a Science of

Mythology 2. From Honey to Ashes, New York:

Harper & Row.

Levi-Strauss, C. (1978). Introduction to a Science of

Mythology 3. The Origin of Table Manners, New

York: Harper & Row.

Levi-Strauss, C. (1981). Introduction to a Science of

Mythology 4. The Naked Man. New York: Harper &

Row

Maranda, P.(1967). Computers in the Bush: Tools for the

Automatic Analysis of Myths. In J. Helm (Ed.),

Essays on the Verbal and Visual Arts: Proceedings of

the 1966 Annual Spring Meeting of the American

Ethnological Society (pp. 77-83), Seattle: University

of Washington Press.

Maranda, P. (1968). Analyse Quantitative et Qualitative de

Mythes sur Ordinateur. In J. C. Gardin & B. Jaulin,

(Ed.), Calcul et Formalisation dans les Sciences de

l'Homme (pp. 79-86), Paris: Editions du Centre

National de la Recherche Scientifique.

Richard, P. & Jaulin, R. (1971). Anthropologie et calcul,

Paris: Union Générale d’édition.
M. F Sanner, ―Python: a programming language for

software integration and development,‖ J. Mol.
Graphics Mod 17, pp. 57–61 , 1999.

Zeigler, B.P. (1976). Theory of Modeling and Simulation.

New York: Wiley.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete

Event Simulation. London: Academic Press.

Zeigler, B.P. (1990). Object-Oriented Simulation with

Hierarchical, Modular Models, London: Academic

Press.

Zeigler, B.P., Praehofer, H. & Kim, T.G. (2000). Theory

of Modeling and Simulation. Second edition, London:

Academic Press.

http://www.lsis.org/~lassaad_baati.html
http://www.lsis.org/~claudia_frydman.html
http://www.lsis.org/~norbert_giambiasi.html
http://www.lsis.org/~lassaad_baati.html
http://www.lsis.org/~claudia_frydman.html
http://www.lsis.org/~norbert_giambiasi.html
http://www.informatik.uni-trier.de/~ley/db/journals/tomacs/tomacs13.html#Barros03
http://www.informatik.uni-trier.de/~ley/db/journals/tomacs/tomacs13.html#Barros03
http://earth.google.com/kmlkml_tags_21.html

