A note on $H^p_w$-boundedness of Riesz transforms and $\theta$-Calderón-Zygmund operators through molecular characterization

Abstract : Let $0 < p \leq 1$ and $w$ in the Muckenhoupt class $A_1$. Recently, by using the weighted atomic decomposition and molecular characterization; Lee, Lin and Yang \cite{LLY} (J. Math. Anal. Appl. 301 (2005), 394--400) established that the Riesz transforms $R_j, j=1, 2,...,n$, are bounded on $H^p_w(\mathbb R^n)$. In this note we extend this to the general case of weight $w$ in the Muckenhoupt class $A_\infty$ through molecular characterization. One difficulty, which has not been taken care in \cite{LLY}, consists in passing from atoms to all functions in $H^p_w(\mathbb R^n)$. Furthermore, the $H^p_w$-boundedness of $\theta$-Calderón-Zygmund operators are also given through molecular characterization and atomic decomposition.
Type de document :
Article dans une revue
Analysis in Theory and Applications, Springer Verlag (Germany), 2011, 14 p
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00602760
Contributeur : Luong Dang Ky <>
Soumis le : samedi 14 janvier 2012 - 00:50:09
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : dimanche 15 avril 2012 - 02:21:02

Fichiers

CZO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00602760, version 3
  • ARXIV : 1106.4724

Collections

Citation

Luong Dang Ky. A note on $H^p_w$-boundedness of Riesz transforms and $\theta$-Calderón-Zygmund operators through molecular characterization. Analysis in Theory and Applications, Springer Verlag (Germany), 2011, 14 p. 〈hal-00602760v3〉

Partager

Métriques

Consultations de la notice

211

Téléchargements de fichiers

115