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strategies but is still better than the greedy strategy. With increase in the look
ahead policy length the computational time increases, therefore, a heuristic
based on partitioning the search space into sectors is developed. The simu-
lation results show that the performance of game theoretical strategies with
sector partitioning performs almost as well to that of without partitioning but
with significant decrease in computational time.

Keywords: game theory, cooperative search, route planning.

1. Introduction

1.1. Problem Motivation and Preliminaries

Recently, considerable effort has been expended in developing technologies that would
enable search and surveillance operations to be carried out in hostile and inaccessible en-
vironments using unmanned aerial vehicles (UAVs) and robots. The UAVs/robots/agents
are equipped with sensors that collect necessary information as they pass through a re-
gion. An important requirement for these agents is to have the ability to make optimal
decisions independently based on their sensor information and have minimal communi-
cation among themselves. The problem of decision making becomes complex when more
than one agent is deployed to perform search operation. The search of an unknown region
can be more effective when the agents can cooperate with each other. The cooperation
can be either implicit, by considering the possible actions of the other agents without
actual communication between them, or it can be explicit, where communication among
the agents is used to achieve cooperation.

Usually the agents used for these missions have limited endurance time due to limited
fuel carrying capacity or battery power. The agents need to return to the base for refu-
elling and also to download the information they have collected during the sortie. The
agents make online route decisions based on local information sensed by them and by
considering the presence of other agents in the neighbourhood. During the exploration
process the searcher may not know the way back to the base. In such cases, one simple
strategy would be to back track along the route which the agent has explored, but this
route would not be optimal as the uncertainty on that path has been reduced during its
exploration. Hence, the route used by the agents to get back to the base must also be
optimal for the entire sortie to be optimal in terms of search effectiveness. To compute
the optimal search route back to the base some restrictions on the paths selected by the
agents need to be applied. If the number of bases stations available are more than one
then the agents have to select the base station dynamically.

These types of problems, where a search mission with constraints on the endurance
time and having a requirement that the agents have to return back to a base station
for refuelling, are realistic and are not addressed in the search literature Benkoski et al.
(1991), Stone (1975). This is the first paper that addresses a problem of conducting sorties
with (i) limited endurance time (ii) return back to base station, and (iii) dynamic selection
of base station by agents for refuelling. The only other paper that addresses the notion
of generating sorties with limited endurance time is by Sujit and Ghose (2004-AES).
However, the k-shortest path approach used in this paper does not address the problem
of changing the base station dynamically. The source and destination base stations have
to be pre-determined before the start of the sortie.
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In this paper, a framework for obtaining optimal search strategies and dynamic se-
lection of base stations for two agents operating in an unknown region with limited
endurance time is presented. The framework is based on principles from game theory,
namely, noncooperative Nash, security and cooperative strategies. Each agent is modeled
as a player and the possible actions of the agent as strategies. The noncooperative Nash
and security strategies do not require or allow any kind of communication between the
agents, while cooperative strategy requires communication among the agents. An algo-
rithm that yields an optimal route for two agents with the combination of restricted path
selection is presented. Preliminary work on developing optimal search strategies using
game theory was reported in Sujit and Ghose (2004-ACC).

Although in a multiple-agent search scenario there could be many agents, the results
presented in this paper are restricted to two agents, both of which use game theoretical
strategies for route selection. The results give crucial insight into the use of game the-
oretical strategies to search problems. These results can be extended to multiple agent
scenarios but with increased computational burden. Hence, this is beyond the scope of
the present paper.

1.2. Motivation for using a Non-cooperative Game Paradigm

One of the motivations of this work arises from the fact that game theoretical frame-
work of modelling multiple decision-making situations give rise to two different solution
concepts: one based on cooperation between players and the other based upon non-
cooperation. Application of these notions to the economic market place had to take into
account the fact that players are not inherently altruistic, thus making the cooperative
framework somewhat untenable, unless the cooperation is enforced by a third party. On
the other hand, the non-cooperative framework has shown that in repeated games, coop-
eration automatically emerges as the best non-cooperative solution and hence the notion
of cooperation is inherent and enforceable in the non-cooperative framework. When co-
operation between automated agents that are devoid of any selfish motive and have only
a common goal in mind, it is more logical to use a cooperative framework. In this paper,
it is observed that the non-cooperative framework is almost equally effective and is no
more computationally time consuming than the cooperative framework.

There are other reasons too, related to the specific problem structure, which justifies
the usage of the non-cooperative framework. For instance, when the sensor performance
is unreliable or noisy, or due to ineffective communication the uncertainty map of each
agent changes with time unknowingly to the other agents, leading to different uncertainty
maps for different agents. In such situations, the cooperative decision making mechanism
breaks down resulting in non-cooperative Nash strategies performing better than the
cooperative strategies.

1.3. Organization

The remainder of the paper is organized as follow: A survey of the recent literature on
cooperative search is given in Section II. In Section III, the search space, objectives and
constraints for the problem is presented. Section IV describes the algorithm required for
the agents to return back to base for two agents with one base station and the extension of
the algorithm for multiple bases in the search space. Section V describes the formulation
of game theoretical framework and various strategies. Finally, Section VI presents and
discusses the simulation results on the performance of various game theoretical strategies
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with variable length look ahead policies.

2. Related Work

Searching an unknown region has been a topic of interest for the past few decades.
However, the main focus has been to develop decentralized algorithms for maximizing
the detection of targets, optimal trajectory generation and exploring the search region
efficiently.

For a given source and destination points one can design an optimal path planning
algorithm. Nikolas and Brintaki (2005) present an offline path planner using differen-
tial evolution technique for a given pair of target and source locations taking obstacle
avoidance between obstacles and inter-UAVs into account. Shanmugavel et al. (2006)
developed a 3D dubin paths based algorithm for multiple UAV rendezvous. Geiger et al.
(2006) present a non-linear programming based optimal path planner to provide maxi-
mum coverage on a target using multiple UAVs. Bortoff (2000) designed an optimal path
planning algorithm in the presence of threats by initially constructing a voronoi diagram
and then using virtual potential field to generate the optimal path. Ryan and Hedrick
(2005) developed a path planner that takes kinematic constraints into account while fol-
lowing a path generated by a helicopter that can carry out steep turns for a search and
rescue mission. Wong et al. (2004) presents a circular arc based path planning technique
to tour a set of predefined targets. In the above cited paper the authors assume that
sufficient fuel is present during the mission which is a strong assumption as vehicles do
carry limited fuel and have to return to the base station for refueling. In this paper,
the problem of route planning is posed by taking this endurance time and the need for
refueling into account.

Coordinating these multiple vehicles to achieve effective search with minimal search
effort is a complicated task. Cooperative control of UAVs was initially addressed by
Passino et al. (2000), Polycarpou et al. (2001), in which the behavior of a team of UAVs
were studied under various operational conditions, strategies, and task goals. A recursive
approach for cooperative search using a multi-objective cost function, and g¢-step path
planning was developed. Yang et al. (2002-GNC) propose a decentralized cooperative
strategy where cooperation is achieved by having each agent take into account the other
agent’s possible actions. A team of agents are deployed into an environment which is
cleaved into square cells. Each cell has an associated uncertainty value, and also a prob-
ability of finding a target in the cell. Every agent has a feed-forward neural network
trained with reinforcement learning that predicts a reward after two look ahead steps.
The path that provides the best reward is selected. The paper assumes complete com-
munication among the agents and the objective is to have effective search and maximize
the detection of targets in the given region within a specified time. Some analysis for
the upper limit on search time to search fully each unknown cell in the environment
with the same framework is presented in Yang et al. (2002-CDC). Coordinating multiple
UAVs for simultaneous target intercept is described in Beard et al. (2002), where the
authors present a heuristic approach for target assignment of aerial vehicles and then
design paths through hostile environment based on Voronoi diagrams. The paths are
subjected to minimizing the threat exposure and length costs with the objective that all
the aerial vehicles should intercept their assigned targets simultaneously. In Beard and
McLain (2003), a team of UAVs is given the task of searching a region with unknown
opportunities and hazards. The regions of opportunities and hazards are identified using
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the g-step look ahead policy. The objective of the team is to maximize the regions of
opportunity visited by the team, while minimizing visits to regions of hazard, subject
to constraints that the UAVs must remain connected by a communication network at
all times and avoid collisions among themselves. All paths of length ¢ are computed on
a longitudinal front and a dynamic programming approach is used to evaluate the best
rewardable path. Some heuristics to reduce the computational complexity considering
the constraints on the paths are presented. In Mot et al. (2000), the authors present an
algorithm for coordinated path planning for two vehicles acquiring a target. The terrain
is divided into regions and each of these region is associated with a payoff. The terrain
traversal is mapped into a graph traversal problem with a node on the graph denoting
a region. The decision to move along the graph is decided using a two step look ahead
policy.

Exploring unknown regions for seeking information has also been a topic of interest
for researchers in robotics. In Goldsmith and Robinett (1998), a problem of exploring
an unknown environment using multiple robots is posed and solved using the concept of
target points being assigned to each individual robot to maximize search effectiveness.
In Batalin and Sukhatme (2002), the authors address the problem of deploying a mobile
sensor network into an environment with the task of maximizing sensor coverage of the
environment. Two algorithms are proposed to perform the coverage task successfully
using only local sensing and local interaction information between robots. In Spires and
Goldsmith (1998), space-filling curves are used to define open-loop search trajectories for
a team of robots carrying out an exhaustive geographical search operation. In Burgard
et al. (2002), several mobile robots are assumed to search for targets in a search region.
The paper addresses the problem of communication between two groups of robots for
effective coordination between them.

Some researchers have considered path constraint in their design for search strategies,
but have not studied the possibility of the agents returning back to base for refuelling.
For instance, in Nygard et al. (2001) and Scerri et al. (2005), the authors address the
endurance time constraint for wide area search munitions which will either destroy the
target within the fuel limit or self destruct.

3. Problem Formulation

3.1. Scenario

Consider a two dimensional search space with some a priori knowledge of the area
represented in the form of an uncertainty map as shown in Figure 1. A search mission
consists of multiple agents performing search operation at the same time. The multiple
agents perform a number of sorites in the search space. A sortie is a search route that
starts from the base station (B) and terminates or returns back to base at the end of
its endurance time for refuelling. After refuelling the agents start another sortie. Figure
1 shows typical sorties for an agent with a single base station. Intuitively, an effective
search route would have an agent spend more time in the high uncertainty region and
less time in the low uncertainty region. The agents have to take decisions autonomously
while considering the presence of other agents in the search region.
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3.2. D:iscretization of the Search Region

A two-dimensional search region is partitioned into a collection of identical regular hexag-
onal cells. The reason for using a hexagon as the basic unit is that it offers the flexibility
to the searcher to move in six uniformly distributed directions at each time step and
reach a neighboring cell while expending the same amount of energy (see Figure 2). This
discretized search space model is the same as that used in Sujit and Ghose (2004-AES).
Assume that the cells are large compared to the sensor range and the minimum turning
radius of the UAV. Thus, the agent spends an unit time searching the cell. One way to
interpret this model is to consider the cells that constitute a search route for an agent as
waypoints that are used by the agent as a reference to determine its flight path and to
determine in which region its search effort should be expended. The exact search pattern
can be spiral or lawn mowing paths. For example, if a route is given as a sequence of
cells, then the agent uses this as a command to visit the region represented by each of
these cells in the same sequence, design the paths and use its sensor to search each cell
through the paths, and then continue on to the next cell in the sequence.

3.3. Uncertainty Map

The uncertainty map constitutes real numbers between 0 and 1 associated with each cell
in the search space. These numbers represent the uncertainty about the location of the
target in that cell. An interpretation of the uncertainty map would be as follows: An
uncertainty value of 0.6 would imply that any statement about the target’s location in
cell i (say) would be true only with probability 0.4. An uncertainty value of 0 would imply
that everything is known about the cell (that is, one can say with certainty whether a
target is located in that cell or not). On the other hand, an uncertainty value of 1 would
imply that nothing can be said about the location of the target in that cell. Another
interpretation of the uncertainty value is that it is the undetected mass in the cell and
represents the extent of the lack of information about that cell. Hence, a successful search
operation is one that manages to visit those cells that have large uncertainty values. This
model of uncertainty map representation of the search space is similar to the one used
in Sujit and Ghose (2004-AES).

Once a cell Cj is visited by a UAV at time ¢ then the uncertainty value of the cell U;
reduces to

Ui(t+1) = Uy(t)(1 — B) (1)

where, 3 € [0, 1) is the uncertainty reduction factor associated with each visit to a cell by
a UAV. This factor § has a similar effect as the detection function used in search theory
Stone (1975), where the detection function represents the probability that a search in
a given cell for a specified duration of time will detect the target provided that the
target is present in that cell. An exponential detection function, which is normally used
in search problems, is represented as 1 — e~ where ¢ is the time spent in the cell and
« is a scaling factor, which is also known as the detection rate. It has the property of
diminishing returns in the sense that each incremental time spent in searching a cell
produces a decreasing return on the probability of detection. Note that 5 in (1) has a
similar effect in the sense that the incremental reduction in uncertainty reduces with
each subsequent visit.
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3.4. Searcher Objectives and Constraints

The multiple agents used for search missions generally have limited fuel or battery power
that allows them to search for a limited length of trajectory per sortie and then return
back to base for refuelling or recharging. After refuelling, the agents perform the next
sortie of the same length. The number of such sorties are not necessarily specified. How-
ever, the sorties can be stopped once the average uncertainty of the region that the agents
can reach is below a certain threshold. During each sortie, the agents pass through the
cluster of cells and collect information about the cells. The objective of these agents is
to maximize the uncertainty reduction per sortie with a constraint on the length of the
trajectory.

The search space is composed of identical sized cells, hence the energy spent by an
agent in moving from one cell to another is equivalent to one unit step length. Therefore,
the fuel limit for an agent can be interpreted as a maximum of N steps. The agent has to
return back to the base at the end of the N step for refuelling. At every time step, the
agent can move from one cell to the neighboring cell or the searcher may devote more
search effort in the same cell, because of higher uncertainty value in the cell. This would
mean that the agent may spend more time, in terms of multiple steps, in this cell.

It is assumed that each agent is equipped with a sensor through which it collects data
or information about the cell it visits. So, an agent that spends a certain number of steps
in searching any given cell is essentially using this time to collect data about the cell and
thus the uncertainty in that cell reduces as a function of the time that the agent spends
there.

Assume that at any given time ¢ the agents know the position and route (up to time
t) of the other agents. So, at a given time ¢, the searcher objective is to determine its
future route based on its own perceived uncertainty map. The problem can be looked
upon as a centralized one if the searchers are assumed to communicate with each other
and decide upon a globally beneficial decision. This would be the cooperative solution.
In the absence of any such cooperation each searcher has to decide its next search route
using some other strategy.

3.5. Uncertainty Map Dynamics: The Ideal Case

In an ideal case, every agent A; has information about the current location of all the
other agents and also their uncertainty reduction factors. Each agent starts with the same
initial uncertainty map and updates it after every time step using information about the
route taken by the other agents till that time. In which case, at any given time, the
agents have the same uncertainty map and also know the past route and present location
of the other agents. The update is also assumed to be synchronous. Although each agent
is aware of the current position, and hence the past route, of the other agents, they do
not communicate with each other and thus cannot convey or decide upon their actions
in a coordinated fashion.

One possible scenario, where this assumption would be valid, is the one shown in Figure
3, where several agents (UAVs) are searching an unknown region and are tracked by a
satellite. The satellite broadcasts the track information of each agent to all the agents.
The agents use this information to update their uncertainty map as each agent knows its
own past route as well as the other agents’ past routes. Since all the information relevant
to compute the current uncertainty map is available to all the agents, their uncertainty
maps are also the same. There is no direct communication among the agents and neither is
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there any communication of information from the agents to the satellite. The information
flow is from the satellite to the agents only. Alternatively, one can consider a scenario
where each agent broadcasts to the others its current position at every decision step.

3.6. Uncertainty Map Dynamics: The Non-ideal Case

In a non-ideal case, it is possible that an agent’s perceived uncertainty map may differ
from that of the other agents. This can happen due to various reasons. The updating of
the uncertainty map, in the ideal case, depends on the following factors: (i) Same initial
uncertainty map (ii) Perfect and complete route information of the agents (iii) Perfect
knowledge of the uncertainty reduction factors § of all the agents by each agent, and
(iv) Perfect synchronization among agents in updating the uncertainty map. In a perfect
world all these are feasible assumptions. In fact, if all these are indeed true, then the
uncertainty map for all the agents would be the same, and a pre-determined protocol
(which in itself may be rather complicated) can, in principle, be devised in order to
enable the agent collective to produce a well-coordinated cooperative decision. In this
case, there is no need to look for non-cooperative strategies.

However, consider a scenario where the uncertainty map may not be the same for all
the agents due to violations of any one or more of the above factors. The most common
reasons could be change in the uncertainty reduction factor of an agent due to change
in performance of the sensor systems of an agent, which only the agent itself is aware
of. This change in performance can happen because of various reasons such as reduced
visibility, deterioration of sensor hardware performance, unexpected terrain features that
hamper search, etc. Another reason for the uncertainty map to differ could be because
of the detection of some features in a cell that increases or decreases the demand of
search effort for that cell and is reflected in enhancing or decreasing the uncertainty
value of the cell by the searcher. This information is not conveyed to the other searchers
due to lack of communication between agents. Noisy broadcast, faulty communication,
asynchronous updates, lack of communication with distant neighbors, etc., also contribute
to the uncertainty map being different for different agents.

It is this non-ideal scenario that prompts us to explore the possibility of using non-
cooperative strategies, since a pre-determined protocol for cooperation needs the under-
lying uncertainty map to be the same. When the perceived uncertainty maps are not the
same, an agent cannot be sure of the actions of the other agents and it is more logical to
treat them as (unintentional) adversaries rather than as cooperating team members.The
neighboring cell chosen by an agent to move from step ¢ to £ + 1 has to be such that the
agent can return back to base from that cell. The procedure for selecting the cells which
guarantee safe return to a base are discussed in the following section.

4. Route Planning

The agents have to compute the route depending on the number of available bases. If
the search space contains only one base then the mission starts and ends at the same
base station. This kind of routes are also known as sorties. But, if there are multiple base
stations then the agent may choose any of the base stations. Initially, the route planning
is considered for a single base station and then the concept is extended to multiple base
stations.
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4.1. Single Base Station

Consider a single base station located at cell C* and let the duration of the search be N
time steps. The time steps represents the fuel capacity of an agent. An agent starts the
search from the base and at the N** step has to return to the base cell. Thus, at every
time step ¢, the agent needs to constrain its next step to only those cells that allow it to
return to the base in N —¢—1 steps. To find these cells a virtual graph of the uncertainty
map has to be created.

Virtual Graph: A graph G = (V, E) is created on the uncertainty map using the centers
of the hexagonal cells. Consider every center of a cell (C?) to be a node V;. Each node
V; is connected to its neighboring cell centers (nodes) V;,V; € N (Vi) by edges (V;,V;)
which are assigned unit weights (Cj; = 1). The virtual graph G does not contain any
loops. A virtual graph of a cell and its neighbours is shown in Figure 4(a) with unity
cost for all the arcs (Cj; = 1). The dotted lines show the extension of the edges to other
cells in the graph.

Cell Selection: Assume that an agent A; is present at cell Cj, at time ¢t. The next step
for agent A; should be such that choosing that cell the agent should be able to return
to a base. Consider C to be a set of all the cells that are within a depth of ¢ steps. For
example, if ¢ = 1, then the set C consists of cell C? and its neighboring cells N'(C?).
Now consider the base station C? to be the source node and a cell C* € C to be the
destination node. Then, the shortest path between these two nodes can be determined
using Dijkstra’s shortest path algorithm (Dijkstra (1959)). The algorithm is described in
the appendix.

The shortest path gives the least number of steps required to traverse from the source
node (base cell) to the destination node Ck, since every arc is equivalent to a unit step
length. Let C be a set, which contains cells C* that satisfy the following condition:

ISP(C*,CH) < N—(m+1), VC*e( (2)

where |SP(C®, C*)| represents the minimum number of steps given by Dijkstra’s algo-
rithm with source cell C® and destination cell C*, N the number of steps for a sortie,
and m the current time step of the searcher. Using these restricted cells C*¥ € C, paths of
q step length are generated. If the cells that do not satisfy (2) are selected and suppose
the searcher chooses those cells then the searcher will not be able to return to the base
by the end of the N*" step.

Algorithm 1 Return to Base Algorithm (Single base)

1: Function: return_base(x, base, q_neighbouring_cells, ¢, time_left)
2: source = base; destinations = q_neighbouring_cells;

3: graph = wirtual_graph(cells) /* virtual graph with all cells */

4: safe_destinations = [ | /* initialize */

5: for i = 1 : no_of_destinations do

6:  min_distance_from_base = shortestPath(base, destinations(i), graph)
7:  if (min_distance_from_base < time_left—1) then

8: safe_destinations = [safe_destinations destinations(i)]

9:  end if

10: end for

11: restricted paths = make_q_paths(x, safe_destinations, q )

[
[\]

: return(restricted_paths)
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The function virtual_graph, creates a virtual graph with nodes as the cell centers of the
entire search space and the weight of each arc being unity. The function shortestPath
finds the least number of cells required to traverse from the base cell to the destination
cell. The function make_q_paths generates all possible paths of length ¢ from the current
location of the agent.

The search region may contain some forbidden regions as shown in Figure 4(b), hence
it is necessary to use the shortest path algorithm to find the shortest path for the agent
to return back to the base station. In the search space, if the forbidden regions were not
there, then an analytical expression can be derived using the indices of the cells to get
the shortest route.

4.2. Multiple Base Stations

In practical situations, there can be more than one base in a region and the agent can
choose the base in which it may land for refuelling. After refuelling in a base station,
the agent flies for another sortie. The agents can start their search from one base and
land in a different base. There is no restriction on the selection of the base for the agent,
but the agents start their search operations simultaneously. In this section, the route
planning algorithm of a single base station is extended to addresses the problem with
multiple base stations. Figure 5 shows a search mission with multiple bases (B1, B2, B3)
and three different sorties.

Consider that at the m'™ time step a UAV is at cell C* and let C be the q step
neighborhood cells of the UAV from cell C%. Similar to the single base case a virtual
graph of the uncertainty map is constructed but taking the presence of all the base
stations in the region. Every cell C* € C, is checked to determine if by using the cell C*
the searcher can reach any one of the bases, which may not necessarily be the base from
which the UAV has started its search operation. For all the sorties it may be possible to
have the choice of all the bases for the UAVs. Depending on the search route they have
adopted, the UAVs may find some bases or no other base stations except the base station
from which it has started the sortie. At every time step, the decision to move from one
cell to its neighboring cell is carried out using a game theoretical strategy which will be
described later.

Algorithm 2 Algorithm for Multiple Bases

1: Function: return_base(x, base, q_neighbouring_cells, ¢, time_left)

2: source = base; destinations = q_neighbouring_cells;

3: graph = wirtual_graph(cells) /* virtual graph with all cells */

4: safe_destinations = [ | /* initialize */

5: for j=1:no_of bases do

6: for i = 1: no_of destinations do

7 min_distance_from_base = shortestPath(source(j), destinations(i), graph)
8: if (min_distance_from_base < time_left—1) then

9: safe_destinations = [safe_destinations destinations(i)]

10: end if

11:  end for

12: end for

13: restricted paths = make_q_paths(x, safe_destinations, ¢ )

—_
W~

: return(restricted_paths)
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The k-shortest path algorithm based search as described in Sujit and Ghose (2004-
AES) can be used for multiple bases, provided the destination base station are specified
for refuelling before the start of the search. Since the agents do not consider the presence
of neighbouring agents during the sortie, the effectiveness of the search may reduce due
to search route overlaps in common regions. Also, the k-shortest path algorithm fails
when multiple agents start from the same base station as all the agents choose the same
path. These shortcomings of the k-shortest path algorithm based uncertainty reduction
search can be eliminated with game theoretical real time search mechanism and using
the path planning algorithms which guarantees safe return to any of the bases.

There could be a concern that, at each step, a cell that allows the agent to return to
a base station is selected and this kind of selection mechanism can lead to a case where
a finite number of sequences form a cyclic loop. The formation of such cyclic loops is
not possible because the shortest path determines those cells that ensure the agent will
return to any of the base stations. But choosing a particular cell for the next time step
is based on the game theoretical strategies. These strategies choose those cells that yield
high uncertainty reduction. Once a cell is visited, its value decreases (Equation (1)).
Since, the value decreases, the strategies will not choose this cell, unless this cell still has
higher uncertainty value than the other cells, or this is the only remaining cell. Therefore,
the possibility of a set of cells being selected always to form a cycle is not possible. Each
agent chooses its next path segment based on various game theoretical strategies that
are described next.

5. Game Theoretical Model and Strategies

5.1. A Game Model

The agents make decisions during the search operations and these decisions are based on
a game theoretical model. In this section, the game theoretical model is formulated using
g-step look ahead planning, as proposed in Passino et al. (2000) (where ¢ determines the
depth of the exploratory search environment) to obtain optimal strategies. In Sujit and
Ghose (2004-AES), the implementation of the search algorithm required the knowledge
of the complete uncertainty map. Further, the route decision of an agent was determined
independent of the other agents’ current decisions. In the present paper, the algorithm
that takes into account possible actions of the other agents with different levels of coop-
eration. Here, two agents are considered which are performing the search operation and
formulate the game as a bimatrix game. The payoff that an agent receives by considering
the actions of the other agent are expressed in terms of a search effectiveness matrix.

5.1.1.  Search Effectiveness Matriz
Let a cell’s uncertainty value be U;. Let P}(Cy,), i € {1,2} be the set of all possible

paths of length ¢ for agent A;, emanating from cell Cs,. A path Pij(Csi) e P(Cs,), j =
1,2,...,|PI(Cs,)|, is a sequence of cells

Pl(C,,) =[C',C?C8,...,C (3)

7 i

where C* € C (C is the collection of all cells), C* = Cy,, the current position of A;, and
Ck+1 € N(C*) where, N'(C*) is the set of all neighboring cells of C*.

Let the uncertainty value of cell C* at time ¢t be U(C*,t). Given a path P/(Cs,) of
agent A;, suppose A; is at cell C* at time ¢, then the reduction in uncertainty associated
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with C*, and the subsequent updated value of uncertainty, is evaluated as follows:
Case 1: Only A; is at cell C! at time ¢, then

vi(t) = U(C',1)8;
UCt+1) =U(CLt) —v(2) (4)

Case 2: A; and Ay are both at cell C*, then

B
vi(t) = ﬁl+ﬁ2U(0l,t)[1—(1—51)(1—62)]
UC,t+1) =U(CLt) — (v1(t) + va(t)) (5)

So, given two routes P{(Cs,) and Py / (Cs,) of the two agents, the reduction in uncertainty
achieved by A; at each step t (¢t = 1,2,...,q) is given by v;(¢) and is computed using
Case 1 or Case 2. Note that this computation has to be carried out simultaneously for
both agents. The total benefit to A; due to path P/ (Cy,) is

V(P/(Cs)) = uilt) (6)
t=1

The search effectiveness matrix M* has dimension |P{(Cs, )| x|P3(Cs, )| and every element
mzk ) of the matrix represents the payoff V(P! (Cs,)) obtained by the agents, when Ay

chooses the path PF(Cs,) € P{(Cs,) and Ay selects the path PL(Cs,) € PI(Cs,).

5.2. Solution Concepts

The decision to choose a particular path that would provide the maximum informa-
tion gain (or uncertainty reduction) can be based on various strategies. The strategies
can be classified into two categories (one being those strategies that can be derived by
the present framework, and the other is those that can be derived using extra informa-
tion/coordination/communication). The strategies that do not require communication
and uses the current state information about the environment are non-cooperative Nash
equilibrium, security strategy, and greedy strategy. While cooperative and global optimal
strategies require communication/extra information.

Noncooperative Nash Equilibrium: This strategy is used when the agents do not com-
municate with each other to decide on their future action at time ¢, and each agent
assumes the other agent to take actions that are individually beneficial to them.

Security Strategy: This strategy becomes relevant when the agents do not communicate
with each other and each agent assumes the other agent to be an adversary who is likely
to take actions that are harmful to the first agent without heed to its own self interest. In
such a situation the best strategy for the agent is to secure its minimal benefit. Hence, it
is logical for the agent to a use security strategy that would guarantee a minimal payoff.

Cooperative Strategy: The agents communicate with each other and decide collectively
(jointly) to take the best possible action. This is also the centralized case.

Greedy Strategy: The agents do not communicate among themselves and use greedy
strategy for future actions. An agent does not consider the effect of the possible actions of
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the other agents and selects an action that yields the maximum benefit to itself according
to (4).

Globally Optimal Strategy: The game theoretical strategies are based on local informa-
tion up to ¢ steps. Hence, the solution is optimal for these ¢ steps and are not globally
optimal. The globally optimal solution can be obtained by making ¢ equal to the largest
possible number of steps in an agent’s search path. This requires prohibitively large
computational time and also increases the computational complexity as the domain of
the search effectiveness function increases. This strategy is not considered in the present
paper, but some heuristic algorithms to implement such strategies have been discussed
in Dell et al. (1996).

5.3. Two-Person Game Model

The two-person game problem can be formulated as a bi-matrix game, and use it to find
the equilibrium strategies.

5.3.1.  Non-cooperative Nash equilibrium strategy

A non-cooperative bimatrix game for two players or agents Basar and Olsder (1995)
is defined as a game consisting of two search effectiveness matrices, M!' = {m},} and
M? = {m2,}, with each pair of entries (m};, m?;) denoting the payoff to each agent
respectively, corresponding to a pair of decisions made by the players. The players do
not cooperate with each other and arrive at their decisions independently. In such a
situation the equilibrium solution can be stated as follows:

A pair of strategies {row k*, column [*} is said to constitute a noncooperative (Nash)
equilibrium solution to the bimatrix game, if the following pair of inequalities are satisfied,
Vk=1,2,...,|PlCs) and VI =1,2,...,|PI(Cs,)|

1 1 2 2
T g 1+ Z My, AR Z My (7)

The pure strategy Nash equilibrium may not exist always, in which case mixed strategies
that guarantee a solution to the noncooperative game need to be computed.

Mized Strategies: A mixed strategy for a player is a probability distribution on the space
of its pure strategies. A mixed strategy for A; is to choose ‘row 1’ with probability (w.p.)
Y1, ‘row 22 w.p. ya,. .., and ‘row |P{(Cs,)|” w.p. Yipa(c,,)|» SO that,

[P (Cs

)l
o om=1 (8)

k=1
The mixed strategy space for A; is denoted as Y, while for A, it is denoted as Z. A pair
{y* € Y,2* € Z} is said to constitute a noncooperative (Nash) equilibrium solution to

the bimatrix game (M', M?) in mized strategies, if the following inequalities are satisfied
VyeY, VzeZ:

Yy Mz >y MYy ey, y M2t >yt M?z, e Z (9)

Computation of mixed strategy equilibrium solution can be posed as a bilinear program-
ming problem Basar and Olsder (1995) as follows:
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A pair {y*, z*} constitutes a mixed-strategy Nash Equilibrium solution to a bimatrix
game (M?!, M?) if, and only if, their exists a pair (f*, g*) such that {y*, z*, f*,¢*} is a
solution of the following bilinear programming problem:

mifn [~y M'z —y' M%2 + f + g] (10)
y7z? 7g

subject to

“M'z>—f Lpse, ), — M7 22 =g Lpyc.,)

y=0, 220,y Lprc,) =1 2 Ipye.,) =1 (11)

where, 1jps(c, y] and 1pg(c,,) are column vectors of dimensions |P{(Cs, )| and [P3(Cs, )|,
with all elements equal to 1.

The dimension of the search effectiveness matrix increases with ¢. Thus, computing
the mixed strategy equilibrium using the bilinear programming formulation may be-
come computationally time consuming, therefore, the dominating strategies concept as
described below is used for reducing the size of the search effectiveness matrix.
Dominating Strategies (Basar and Olsder (1995)): Some rows and columns can be elimi-
nated that have no influence on the equilibrium solution. The 'row i’ of matrix M is said
to dominate row k if milj > m,lgj, Viji=12...,|PiCs,)| and if, for at least one j, the
strict inequality holds. Similarly, for As, 'column j’ of M? is said to dominate ’column
U if m?j >m2, Vi=12...,|P}Cs)|, and if, for at least one i, the strict inequality
holds. The dominated strategies (row k and column [, in the above example) can be
eliminated without affecting the equilibrium solution. The resultant matrix dimensions
will be smaller than the original |P{(Cs,)| x |P§(Cs,)| and will need less computational
time to compute the mixed equilibrium strategy.

5.3.2.  Security strategy

When there is no communication between the agents each agent assumes the other
agent behaves as an adversary. In this situation the best strategy for the agent is to
secure its minimal benefit. The strategy that the agent chooses to secure its profit is
called the security strategy. For a bimatrix game, agent A; chooses a 'row k* whose
smallest entry is no smaller than the smallest entry of any other row, which implies

k* = arg ml?x{mlin mp (12)

while agent Ao chooses a strategy [* given as

I* = arg mlax{mkin mi,} (13)

where, k € {1,2,...,|P{(Cs,)|} and | € {1,2,...,|PJ(Cs,)|}.
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5.3.3.  Cooperative strategy

A pair of strategies {'row k*’, ’column [*’} is said to be a cooperative strategy, if the
following condition is satisfied.

e (14)

Vik=12...,|PLCs) and ¥V I =1,2,...,|PL(Cs,)].

5.3.4. Greedy strategy
The agent chooses a path PfC with a look ahead policy of ¢, using the following relation:

V(PR >V(P)), ¥V j=1,2,...,|P (15)

where, V(PF) is the benefit obtained by agents A; using the path PF only and it is
evaluated using Eqn. (4).

5.4. Selection of Strategies

When there are multiple solutions, the selection of strategies by players becomes a crucial
issue. The security strategies and cooperative strategies are straightforward to implement.
If there exists multiple security strategies, any one of them will guarantee the same
payoff. In fact, the actual payoff is bound to be higher for both players so long as they
stick to their security strategies. In the case of multiple cooperative strategies, since
players communicate with each other during the decision process, they can decide on a
strategy which is beneficial to the overall goal. But, when multiple solutions occur for
pure or mixed strategy Nash equilibrium, one of the solutions need to be selected. Since
every agent has the search effectiveness matrix of all the agents, selecting a solution
that maximizes the joint payoff is an ideal strategy. The selection of solution does not
involve any communication with the other agent, but uses the available data in the search
effectiveness matrix, and may be based upon some sort of prior agreement. The selection
procedure is described in the algorithm for noncooperative Nash strategy.

When mixed strategy equilibrium exists, a random number may be generated according
to the probability distribution of the optimal mixed strategy to select the appropriate
strategy. There can be other kind of selections too, such as choosing the strategy that has
the highest probability (maximum likelihood). In the simulations, the random number
generation method is used.

6. Simulation Results

The performance in terms of uncertainty reduction achieved taking the endurance time
constraints of the UAVs into account is evaluated using simulations. The UAVs use
various game theoretical strategies to perform the mission. Through simulations the
performance of each strategy is analyzed. Especially, the noncooperative Nash strategy
and cooperative strategies when the variation of the uncertainty maps is high due to
degrading sensor accuracy.
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Table 1. Time taken by various strategies for
each search step on P4 3Ghz machine

Strategy Time for computation in msec
qg=1 q=2

Cooperative 6.2 232.3

Nash 3.5 200.7

Security 3.9 26.5

Greedy 0.86 2.8

6.1. Ideal case

In the ideal case, each agent has complete information about the other agents’ position
in the search space and about its uncertainty reduction factor. Simulations are carried
out on a 30 x 30 hexagonal grid for 50 different uncertainty maps. The search space has 3
base stations Bi, Bo, and Bj as shown in Figure 6. The uncertainty reduction factors are
B1 = 0.65 and B2 = 0.5. The search mission was carried out for 10 sorties with each sortie
of 60 search steps. The mission is started with two agents placed at base station By for
all the uncertainty maps. The agents dynamically choose any base station for refuelling.
Figure 6 shows the search route for two agents. From the figure it is observed that agent
A1 chooses By for refueling while As chooses Bs. The next sortie starts from the current
base station where the UAV has landed. This process continues for 10 sorties. Then, the
performance of the game theoretical strategies and the effect of increase in look ahead
step length on the search performance is analyzed.

Figure 7 shows the performance of noncooperative Nash, cooperative, security and
greedy strategies for look ahead step lengths of ¢ = 1 and ¢ = 2. The results show
that the game theoretical strategies out perform greedy strategies. Among the game
theoretical strategies, for ¢ = 1 and ¢ = 2, noncooperative Nash strategy performs as
well as the cooperative strategy, while security strategy performs slightly worse.

From these results, it can be concluded that the noncooperative Nash and cooperative
strategies are the best in terms of reduction in uncertainty for both ¢ = 1 and ¢ = 2.
Although, there is an increase in uncertainty reduction with increased look ahead step
length, there is a corresponding increase in the computational time. Table 1 shows the
time taken by various strategies for each search step.

6.2. Sector partitioning strategy

From Table 1, it is observed that the computational time increases exponentially with
increase in the look-ahead step size. This is because, with increase in ¢ the number of
paths increases and computing the bi-matrix for larger number of paths increases the
computational time. Hence, there is a need to reduce the computational time in decision-
making.

In order to reduce the computational time, the number of paths are limited by choosing
those regions that have higher uncertainty. These regions are generated by partitioning
of the search space into sectors. The ¢ neighboring cells of an UAV is partitioned into six
sectors as shown in Figure 8 and evaluate the average uncertainty in a sector (Sgyg) as:

IN;|
U
Savg(k:):zju\l[]?], k=1,2...,6, ne{l,05} (16)
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where, |N,| represent the number of cells present in a sector, and U; is the uncertainty
of the cell Cj;. If the cell is entirely inside the sector then n = 1, else if the cell is common
to two sectors (see Figure 8) then n = 0.5, that is, only half its uncertainty is considered.
The values Sqyq(k) are sorted in a decreasing order of average uncertainty in the sectors.
Selecting the number of sectors required for computing the search effectiveness matrix
is a tradeoff between increase in computational burden and the uncertainty reduction
achieved. To obtain maximum uncertainty reduction the searchers should choose different
routes. Hence, allowing the searcher to choose a path from all the six sectors would
be equivalent to a case without sectoring and the computational time requirement is
very high. When the searchers are far apart, a sector that has the maximum average
uncertainty can be selected. But selecting only one sector would imply that the searcher
is forced to move in just one direction and not allowing any flexibility. Hence, to provide
some freedom on the searcher movements, two best sectors from Sg,4 are selected for
computing the search effectiveness matrix. When the searchers are present in the same
cell there would be flexibility in allowing them to choose one or two different cells for the
next search step. So, it is necessary to allow for at least two sectors for the searchers to
select routes from. In the simulations, three sectors are selected when the searchers are
in the same cell and two sectors when the searchers are far apart.

Figure 9 shows the relative performance of all the strategies that are similar to those
shown in Figure 7. The variation in performance of the strategies with sector partitioning
to that of without sector partitioning can be seen in Figure 10. The figure shows the
percentage deviation between various strategies for look ahead steps of ¢ = 1 and ¢ =
2. The maximum deviation of the performance between non-partitioned scheme and
partitioned scheme is around 4.5%. Since the deviation is small, it can be claimed that
the partitioning schemes yield results that are close to non-partitioned schemes but with
reduced computational time.

The performance of all the strategies for ¢ = 1 and ¢ = 2, with and without sector
partition, is similar. Hence, to determine whether the results are persistent with larger
value of ¢, a different experiment is conducted with ten different random maps using two
searchers and two bases. The searchers need to perform five sorties and each sortie has
50 time units. The uncertainty reduction factors are 8; = 0.6 and f2 = 0.5 and the look-
ahead length is ¢ = 4. From earlier results, it is evident that the cooperative strategy and
non-cooperative strategies perform better than the rest of the strategies. Therefore, this
experiment was limited to these two strategies. The performance of the agents is shown
in Figure 11. It can be observed from the figure, that the non-cooperative Nash performs
similar to the cooperative strategy even for larger ¢ values. Thus sector partitioning is a
good strategy to reduce the computational complexity with almost similar performance
to that of without sector partition.

6.3. Variation in 3

To demonstrate the utility of the Nash strategies when the perceived uncertainty maps
of the agents are different from the actual uncertainty map, a set of experiments were
conducted. For this set of experiments, it was assumed that the uncertainty reduction
factors (0) of the agents fluctuate with time due to fluctuation in the performance of their
sensor suites due to environmental or other reasons. Each agent knows its own current
uncertainty reduction factor perfectly but assumes that the uncertainty reduction factors
of the other agents to be the same as their initial value. This produces disparity in the
uncertainty map between agents and from the actual uncertainty map which evolves
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according to the true § values as the search progresses.

The simulation was carried out for 10 different uncertainty maps with 30 x 30 cells.
The initial uncertainty reduction factors are 0.65 and 0.5. The variation in the value of
0 for the two agents is shown in Figure 12. Initially, the search mission is started with
both agents placed at the same base station. Figure 13 shows the performance of the two
strategies. The results shown that the average uncertainty reduction obtained using Nash
strategies that do not make any assumption about the other agents’ actions performs
better than the cooperative strategy which assumes cooperative behavior from the other
agents.

7. Conclusions

In this paper, a 2-person game model is proposed for agents with endurance time con-
straints performing a search operation in an unknown region. The UAVs need to refuel
at a base station after performing the mission. Hence, a dynamic base station algo-
rithm for UAVs is developed so that they can return to the base station in time. Several
game theoretical strategies namely, noncooperative Nash, security, and strategies, using
2-person game theory are proposed for the agents. The performance of each strategy for
one step and two step look ahead policies was evaluated through simulations and was
compared against greedy strategy. The simulation results show that the game theoretical
strategies outperform greedy strategy. In the game theoretical strategies, cooperative,
and noncooperative Nash strategies perform equally well and take almost the same order
of computational times, while security strategy performs quite close to cooperative and
noncooperative Nash strategies. The computational time results show that these strate-
gies can be used for real time search in a large unknown region. The effectiveness of
uncertainty reduction increases with increase in the look ahead step size but this also
causes an increase in the computational time considerably. For this purpose, a heuristic
based on partitioning the search space into sectors was developed, and it was found that
the performance with sectors is good as without sectors but with far less computational
time. In the case of imperfection in the information that causes disparity in the per-
ceived uncertainty map information of the agents, the non-cooperative game theoretical
strategies are shown to be more effective than the cooperative strategy.
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Appendix A. Dijkstra’s Shortest Path Algorithm:

Given a directed graph G = (V, E'), where V is the set of nodes and E is the set of arcs,
and a specified source node s € V', where each edge (i, j) € F has a specified non-negative
cost Cjj, the problem is to find, for each node ¢ € V, the shortest path from s to 7. The
algorithm created a directed shortest path tree T rooted at the source node s. When
(i,7) € T then pred(j) = i, where i is said to be the predecessor of j. The algorithm is
as follows:

Algorithm A1 Dijkstra shortest path algorithm

1: Initialization:

2: Set S=0and S=V

3: d(i) = oo (Actually a very large number) for each node ¢ € V' where d(i) is a label
that will ultimately store the distance of the shortest path from s to the node 3.

4: d(s) =0 and pred(s) = 0.

5. Main Loop:

6: while |S| <n do

7:  let i € S be a node such that d(i) = min{d(j) : j € 5}
8 S=SU1

9: S =05\i

10:  for each (i,j) € E do

11: if d(j) > d(i) + Cj; then

12: d(j) = d(i) + Cjj and pred(j) =i
13: end if

14:  end for

15: end while
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