Tree based functional expansions for Feynman-Kac particle models

Pierre Del Moral 1 Frédéric Patras 2 Sylvain Rubenthaler 2
1 ALEA - Advanced Learning Evolutionary Algorithms
UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251, Inria Bordeaux - Sud-Ouest
Abstract : We design exact polynomial expansions of a class of Feynman- Kac particle distributions. These expansions are finite and are parametrized by coalescent trees and other related combinatorial quantities. The accuracy of the expansions at any order is related naturally to the number of coalescences of the trees. Our results include an extension of the Wick product formula to interacting particle systems. They also provide refined nonasymptotic propagation of chaos-type properties, as well as sharp Lp-mean error bounds, and laws of large numbers for U-statistics.
Type de document :
Article dans une revue
The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2009, 19 (2), pp.778-825. <10.1214/08-AAP565>


https://hal.archives-ouvertes.fr/hal-00602363
Contributeur : Sylvain Rubenthaler <>
Soumis le : mercredi 22 juin 2011 - 10:42:23
Dernière modification le : mercredi 4 mai 2016 - 13:29:46

Identifiants

Collections

Citation

Pierre Del Moral, Frédéric Patras, Sylvain Rubenthaler. Tree based functional expansions for Feynman-Kac particle models. The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2009, 19 (2), pp.778-825. <10.1214/08-AAP565>. <hal-00602363>

Partager

Métriques

Consultations de la notice

145