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Introduction to stochastic variational
problems

Victor L. Berdichevsky
Mechanical Engineering, Wayne State University, Detroit MI 48202 USA

Abstract The lectures provide an introduction to the Chapters on

stochastic variational problems from the author’s book Variational

Principles of Continuum Mechanics, Springer, 2009.

0.1 Reminder from complex analysis

The major goal of these lectures is to explain how to compute probabili-
ties in some stochastic variational problems. The lecturers can be used as an
introduction to the Chapters of my book Variational Principles of Contin-
uum Mechanics, Springer-Verlag, 2009, which are concerned with stochastic
variational problems. Before proceeding to stochastic variational problems
we have to learn how to compute probability in much simpler cases, like,
for example, how to find probability distribution of a sum of independent
random variables. Unfortunately, these issues are discussed in engineer-
ing probability courses at the time when the students do not have enough
mathematical background, and a simple and beautiful nature of the clas-
sical results of probability theory, like the central limit theorem or Gauss
distribution, remain unrevealed. Therefore, I will spend the first part of the
course to cover these issues.

To do the calculations we will use complex analysis. I would assume
with a great deal of certainty, that not everyone in this room was exposed
to properly taught complex analysis. In high school you, perhaps, were
taught that the complex unity i is a square root from −1:

i =
√
−1.

What does that mean? Of course, you can solve the equation x2 +
1 = 0 in terms of i and write x = ±i. So what? Well, you can then
write the solution of any polynomial equation in the form α + iβ, where
α and β are real numbers, besides, the number of roots is equal to the
power of the polynom. This is nice indeed. This was the way in which the
complex numbers were introduced in XVI century by Italian mathematicians
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Cardano and Bombelli. This way penetrated in modern text books without
much change. Unfortunately, one key word is missing in such a treatment,
the word without which the real understanding of complex numbers is hardly
possible. I begin with an explanation of what the complex numbers are (note
that complex numbers are not numbers!) and why they are needed for the
problems under consideration. Besides, I will review the basics of complex
analysis. Then we spend two lectures for classical results of probability
theory, and then go on to stochastic variational problems.

Complex numbers. We know two basic operations with vectors: We can
multiply vector, ~a, by a number, λ; if ai (i = 1, ..., n) are the components of
a vector ~a in some basis êi

1,

~a = aiêi,

then vector λ~a has the components λai :

λ~a = λaiêi.

We also can sum vectors; if ai and bi are the components of vectors ~a and
~b, then vector ~a+~b has the components ai + bi :

~a+~b =
(
ai + bi

)
êi.

The latter definition corresponds to the parallelogram rule (Fig. 1).
Now we wish more. We wish to operate with vectors as we do with

numbers. We wish to introduce multiplication of vectors, ~a and ~b, in such
a way that the product of vectors is a vector, and, as for numbers,

~a ·~b = ~b · ~a,
(

~a+~b
)

· ~c = ~a · ~c+~b · ~c,
(

~a ·~b
)

· ~c = ~a ·
(

~b · ~c
)

.

Besides, we would like to be able to divide vectors, i.e., for each vectors ~a
and ~b, we should be able to compute their ratio, a vector ~c,

~c = ~a /~b.

For given ~a and ~b, vector ~c must be determined uniquely from the equation

~b · ~c = ~a.

1In all formulas summation over repeated indices is assumed, e.g.

aiêi ≡

n
∑

i=1

aiêi.
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Figure 1. The definition of a sum of two vectors and multiplication of a
vector by number.

Clearly, the products of vectors which are introduced in vector analysis,
the vector product, ~a×~b, and the dot product, ~a ·~b, do not fit: ~a×~b is anti-

symmetric
(

~a×~b = −~b× ~a
)

, the dot product is a scalar, not a vector. The

multiplication operation we are looking for must be a new one. It turns out
that such product can be introduced only in three spaces: two-dimensional,
four-dimensional and eight-dimensional. The vectors of the corresponding
two-dimensional space are called complex numbers, four-dimensional space
quaternions and eight-dimensional space octonions. Quaternions were first
conceived by W.R. Hamilton, octonions by A. Caley (Caley numbers). Only
vectors of two-dimensional space, complex numbers, possess all the features
of usual numbers; quaternions and octonions do not.

Now we have to define what is the product of two vectors in two-
dimensional space. To this end, it is enough to define the products of the
basic vectors. Then the product of any two vectors can be computed from
the relation
(
a1ê1 + a2ê2

)
·
(
b1ê1 + b2ê2

)
= a1b1ê1 · ê1+

(
a1b2 + a2b1

)
ê1 · ê2+a2b2ê2 · ê2.

Let us denote the two basic vectors by the symbols ê1 = 1̂, ê2 = ı̂. Then
any vector z has the form z = x · 1̂ + yı̂. The products of basic vectors are
defined by the following rule:

1̂ · 1̂ = 1̂, 1̂ · ı̂ = ı̂ · 1̂ = ı̂, ı̂ · ı̂ = −1̂.
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Figure 2. Notations in complex plane.

z1 = x1 · 1̂ + y1 ı̂, z2 = x2 · 1̂ + y2 ı̂,

their product is

z1 · z2 = (x1x2 − y1y2) 1̂ + (x1y2 + x2y1) ı̂.

One can prove that such a product has all the features of the product of
usual numbers.

The tradition is not to write the hat at the basic vector ı̂ : one writes
for this basic vector i ≡ ı̂. Moreover, without confusion the basic vector 1̂
in the expression x1̂+ iy can be dropped. So the complex number takes the
form

z = x+ iy.

Such form defines the components of vector z, x and y, uniquely. They
are called real and imaginary parts of z and denoted by Rez and Imz,
respectively. The complex numbers with zero imaginary part are called
real. The two-dimensional space with such defined vector product is called
complex plane. We arrive at the usual definition of complex numbers, which
you can find e.g. in Wikipedia: complex numbers are the numbers of the
form x+ iy, where x, y are real numbers while i2 = −1. What is missing in
this definition is the key word: vector. Complex numbers are not numbers,
they are vectors.

E x e r c i s e s. Complex conjugate of z = x + iy is, by definition, the
number z̄ = x − iy. Show that zz̄ is a real number equal to the squared
length of vector z; the length of z, |z| is defined as |z| =

√

x2 + y2 (see
Fig.2). Find the number 1/z.
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Functions of complex variables. An advantage we gain working in com-
plex plane is that we can operate with vectors in the same way we do with
numbers. In particular, all functions we used in calculus, make sense being
applied to vectors. For example, for numbers, function ex can be defined as
a sum

ex = 1 + x+
1

2
x2 +

1

6
x3 + ... =

∞∑

n=0

1

n!
xn.

In the same way it can be defined for vectors because the sum of vectors
and the powers zn = z...z

︸︷︷︸

n times

are well defined:

ez = 1 + z +
1

2
z2 + ... =

∞∑

n=0

1

n!
zn. (1)

Of course, one has to complement this by a notion of convergence, but this
is done in a natural way: sequence zn → 0 as n → ∞, if |zn| → 0 as n → ∞.
By multiplying two series,

∞∑

0

1

n!
zn1 and

∞∑

0

1

n!
zn2 ,

one can check that

ez1+z2 = ez1ez2 . (2)

An immediate consequence of (1) and (2) is Euler formula

eiy = cos y + i sin y. (3)

Indeed, plugging in (1) z = iy, and using that

in = {.(−1)
k
i if n = 2k + 1(−1)

k
if n = 2k,

we get

eiy =
∑

even n

1

n!
zn +

∑

odd n

1

n!
zn =

∞∑

k=0

(−1)
k

(2k)!
y2k + i

∞∑

k=0

(−1)
k

(2k + 1)!
yk. (4)

Euler formula follows from the Taylor expansion of sin and cos :

cos y =

∞∑

k=0

(−1)
k

(2k)!
y2k, sin y =

∞∑

k=0

(−1)
k

(2k + 1)!
yk.
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Denote by θ the angle between the vector z and positive real axis. We
use the convention, that angle θ increases in counter clockwise direction and
changes within the limits −π, π. According to Euler formula one can write
z in the polar form:

z = |z| eiθ. (5)

Another important function of complex variable to be encountered fur-
ther is ln z. It is defined as inversion of exponential function, i.e.

eln z = z. (6)

Since, according to (5),
z = eln|z|+iθ,

we can rewrite (6) as
eln z = eln|z|+iθ

from which
ln z = ln |z|+ iθ. (7)

Construction of functions by means of a series makes a class of functions
defined by a converging Taylor series especially important; they are called
analytic functions. More precisely, f(z) is an analytic function in a region
D if it can be presented in D by a converging series. We drop further all
mathematical details, they can be found in numerous sources, and focus
only on the basic ideas.

Derivative of a function of complex variable is defined in terms of its
Taylor series2

f(z) =
∞∑

k=0

akz
k,

as

f ′(z) =

∞∑

k=0

kakz
k−1.

This definition is equivalent to the usual one

f ′(z) = lim
∆z→0

f (z +∆z)− f(z)

∆z

2Here we consider a function which is analytical in a vicinity of the point z = 0. If
a function is analytical in a vicinity of some point z0, Taylor series is written with
respect to the shift z − z0 :

f(z) =
∞
∑

k=0

ak (z − z0)
k .
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provided the convergence of all series, which are involved.
Integral over a contour γ in z-plane,

∫

γ

f(z)dz,

is defined in the same way as for a contour in two-dimensional real plane.
Integral of an analytic function over a closed contour in a simply-connected

region3 is zero. Indeed, let a function be analytic in a vicinity of the point
z = 0. The integral over closed contour of zn is zero:

∮

γ

zndz =

∮

d
zn+1

n
= 0.

Thus, integrating the Taylor series of an analytic function we get zero for
any analytic function. Consideration of functions analytical in vicinity of
non-zero points is similar.

An example of non-analytic function in vicinity of z = 0 is the function
f(z) = 1/z; it is analytic in any region with excluded point z = 0 and
non-analytic in any vicinity of point z = 0.

E x e r c i s e s. 1. Write down polar forms for 1/z, z̄, 1/z̄, −1, zn.
2. Find (1 + i)5, (1 + i)100.
3. Derive from the definitions of trigonometric functions of complex

variables,

sin z =
1

2i

(
eiz − e−iz

)
, cos z =

1

2

(
eiz + e−iz

)
,

that
sin2 z + cos2 z = 1.

4. Hyperbolic sin and cos are defined by the formulas:

sinh z =
1

2

(
ez − e−z

)
, cosh z =

1

2

(
ez + e−z

)
.

Show that
cosh2 z − sinh2 z = 1.

5. Show that
sin 2z = 2 sin z cos z.

3A region is simply-connected if any closed contour can be shrunk by a continuous

transformation to a point.

7



Figure 3. To justification of formula (10).

6. Show that for functions f (z) with real coefficients of Taylor expansion

f (z) = f (z̄) .

7. Write Taylor series for the function (ez − 1)/z.
Step function. The only reason why we need complex numbers in what

follows is the presentation of the step function by means of an integral in
complex plane. By the step function, θ (t) , we mean the following function

θ (t) = {.1 t > 00 t < 0. (8)

Usually, the value of this function at t = 0 is not essential. We will set for
definiteness

θ (0) =
1

2
. (9)

We need the following integral presentation of θ (t) :

θ (t) =
1

2πi

a+i∞∫

a−i∞

etz

z
dz, a > 0, (10)

where the integration contour is a straight line in the right half-plane z.
Since formula (10) will play a central role in further calculations, we

outline here its derivation.
First of all we need to specify the meaning of the integral in (10). The

integral has infinite limits, and, in general, one can write

a+i∞∫

a−i∞

etz

z
dz = lim

b1,b2→∞

a+ib2∫

a−ib1

etz

z
dz. (11)
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Such a formula would be meaningful if the integral converges absolutely, i.e.
there exist an integral

a+i∞∫

a−i∞

∣
∣
∣
∣

etz

z

∣
∣
∣
∣
|dz| .

The role of absolute convergence follows from the inequality: for any contour
γ, ∣

∣
∣
∣
∣
∣

∫

γ

f(z)dz

∣
∣
∣
∣
∣
∣

6

∫

γ

|f(z)| |dz| .

This inequality is a consequence of the inequality

|z1 + ...+ zn| 6 |z1|+ ...+ |zn| ,

which obviously follows from the triangle inequality,

|z1 + z2| 6 |z1|+ |z2| .

If an integral with infinite limits converges absolutely, it does not matter in
which way the infinite limits are approached. The integral in (11) does not
converge absolutely. Indeed

a+i∞∫

a−i∞

∣
∣
∣
∣

etz

z

∣
∣
∣
∣
|dz| =

+∞∫

−∞

∣
∣et(a+iy)

∣
∣

|(a+ iy)|dy =

+∞∫

−∞

eta
√

a2 + y2
dy.

This integral diverges logarithmically. Therefore, we have to specify what
is meant by integral in (11). We set

a+i∞∫

a−i∞

etz

z
dz = lim

b→∞

a+ib∫

a−ib

etz

z
dz. (12)

Let us compute this limit. First of all, for t = 0

θ (0) =
1

2πi
lim
b→∞

a+ib∫

a−ib

1

a+ iy
idy =

1

2πi
lim
b→∞

(ln (a+ ib)− ln (a− ib)) .

From (7)

ln (a+ ib) = ln
√

a2 + b2 + i arctan
b

a
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ln (a− ib) = ln
√

a2 + b2 − i arctan
b

a
.

Since

lim
b→∞

arctan
b

a
=

π

2
,

we have

θ (0) =
1

2π

[π

2
−
(

−π

2

)]

=
1

2
.

This is in accord with (9).
Let now t < 0. We aim to show that the limit in (12) is zero. Function

etz/z is analytic in the shadowed region in Fig. 3a. Therefore, integral of
etz/z over the boundary of the shadowed region is zero. Hence, the integral
of etz/z over the straight segment [a− ib, a+ ib] is equal to the integral
over the contour γ. Let γ be an arc of a circle with radius R =

√
a2 + b2

and the center at z = 0. Then the integral is bounded from above:
∣
∣
∣
∣
∣
∣

∫

γ

etz

z
dz

∣
∣
∣
∣
∣
∣

6

∫ |etz|
|z| |dz| =

θ∫

−θ

etR cos θdθ.

Since t < 0, this integral does not exceed the integral,

J(R) =

π/2∫

−π/2

e−|t|R cos θdθ = 2

π/2∫

0

e−|t|R cos θdθ.

We are going to show that function J(R) tends to zero as R → +∞. This
is the first point in these lectures where we encounter the necessity to find
the asymptotics of an integral; we will have several such problems later on.
If the function in the exponent, cos θ, were strictly positive everywhere on
the integration interval, i.e. cos θ > min cos θ = c > 0, then the integrand
does not exceed e−|t|Rmin(cos θ), and the integral tends to zero as R → +∞.
In our case, however, min cos θ = 0, (see Fig. 4a), it is achieved at θ = π/2.

We have to study the contribution to the integral of the vicinity of the
point θ = π/2. Let us split the integral in two parts

1

2
J(R) =

π/2−α∫

0

e−|t|R cos θdθ +

π/2∫

π
2 −α

e−|t|R cos θdθ. (13)

The first integral in (13) does not exceed

e−|t|R cos(π
2 −α)

(π

2
− α

)
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Figure 4. Graph of cos θ.

and tends to zero as R → +∞. For sufficiently small α, in the second integral
we can replace cos θ by the first terms of Taylor expansion

cos θ = cos θ
∣
∣
θ=π/2 +

d cos θ

dθ

∣
∣
∣θ=π/2

(

θ − π

2

)

=
(π

2
− θ

)

.

Then the second integral takes the form

π/2∫

π
2 −α

e−|t|R(π
2 −θ)dθ =

α∫

0

e−|t|Rξdξ.

We can increase this integral replacing the upper limit by +∞. Then we get
the integral which is computed analytically

∞∫

0

e−|t|Rξdξ =
1

|t|R.

Hence, J(R) → 0 as R → +∞, and θ (t) = 0 for t < 0 indeed.
Consider now the case t > 0. In this case we introduce a region shadowed

in Fig. 3b. Function etz/z is analytic in a shadowed region, and integral over
the boundary of the shadowed region is zero. Therefore, the integral over
the segment [a− ib; a+ ib] is equal to the sum of integrals over contours γ
and γ′, γ being a circle of radius R. The integral over γ can be estimated
from above as

∣
∣
∣
∣
∣
∣

∫

γ

etz

z
dz

∣
∣
∣
∣
∣
∣

=

∫

γ

|etz|
|z| |dz| =

3π
2 +α
∫

π
2 −α

etR cos θdθ = 2

π∫

π
2 −α

etR cos θdθ. (14)
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Here α is the angle shown in Fig. 3b. The integral in the right hand side
of (14) can be written as a sum

π∫

π
2 −α

etR cos θdθ =

π∫

π
2

etR cos θdθ +

π
2∫

π
2 −α

etR cos θdθ.

Function cos θ on the segment [π/2− α, π] is shown in Fig. 4b. The first
member of the sum coincides with J(R) considered above and thus tends
to zero as R → ∞. The behavior of the second integral is not immediately
clear. Let us estimate this integral using that R cos θ 6 a :

π/2∫

π
2 −α

etR cos θdθ 6 eta
π/2∫

π
2 −α

dθ = αeta.

As follows from Fig. 3b, α → 0 as R → ∞. Hence, the second integral
tends to zero as well. So, as b → ∞, the integral of etz/z over the segment
[a− ib; a+ ib] tends to the integral over γ′, which, in turn, is equal to the
integral over a circle of small radius r,

1

2πi

∮
etz

z
dz =

1

2πi

∫
etre

iθ

reiθ
rieiθdθ

=
1

2π

∮

etre
iθ

dθ|.r→0 → 1

2π

∮

dθ = 1,

as claimed.
Sometimes, it is convenient to have in formula (10) the integral over a

line in the left half-plane. The corresponding relation is obtained from (10),
if we notice that the integral of etz/z over the boundary of the shadowed
region in Fig. 5 is zero.

Therefore, the integral of etz/z over the segment [a− ib; a+ ib] is equal
to the sum of integrals over [−a− ib; − a+ ib] , γ+, γ− and γ′. The integral
over γ+ tends to zero as b → ∞ :

∣
∣
∣
∣
∣
∣
∣

∫

γ+

etz

z
dz

∣
∣
∣
∣
∣
∣
∣

6

a∫

−a

|etz|
|z| dx =

a∫

−a

etx√
x2 + b2

dx 6 eta
1

b
· 2a.

Similarly, integral over γ− tends to zero. Integral over γ′ is equal to 1.
Hence,

θ (t) = 1 +
1

2πi

−a+i∞∫

−a−i∞

etz

z
dz, a > 0. (15)
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Figure 5. To the move of integration contour to the left half-plane.

It is known, that derivative of the step function is δ−function:

dθ (t)

dt
= δ (t) . (16)

Differentiating (10) over t we formally obtain a presentation of δ−function

δ (t) =
1

2πi

a+i∞∫

a−i∞

etzdz. (17)

This relation, strictly speaking, does not make sense, because the integral
in (17) does not converge. However, δ−function is used only in the form of
integrals with smooth functions. In such cases, one can write

∫

δ (t)ϕ (t) dt =
1

2πi

a+ib∫

a−ib

∫

ϕ (t) etzdtdz, (18)

and, if the function of z,
∫

ϕ (t) etzdt,

decays fast enough as |z| → ∞, (18) holds true.
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E x e r c i s e s. 1. Let f(z) be an analytic function in a region D. Show
that for a point z ∈ D and for any contour C, surrounding z,

f(z) =
1

2πi

∫

C

f(ζ)dζ

ζ − z
.

2. Let f(z) = u(x, y) + iv(x, y) be an analytic function. Show that real
and imaginary part of f , u and v, are linked by a system of equations
(Cauchy-Riemann equations)

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

3. Derive from Cauchy-Riemann equations that u(x, y) and v(x, y) are
harmonic functions, i.e.

∆u (x, y) = 0, ∆v (x, y) = 0,

where ∆ is Laplace’s operator

∆ =
∂2

∂x2
+

∂2

∂y2
.

0.2 Some facts about integrals

Gauss formula. Consider in some finite-dimensional space, Rn, a quadratic
form,

(Au, u) = Aiju
iuj , (19)

The form is assumed to be positive,

(Au, u) > 0 if u 6= 0.

Then the Gauss formula holds true:
∫

Rn

e−
1
2 (Au,u)du =

1√
detA

. (20)

Here

detA ≡ det ‖Aij‖ , du =
du1

√
2π

. . .
dun

√
2π

.
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The Gauss formula can be proved by changing the variables, u → ů,

ui = λi
j ů

j , det
∥
∥λi

j

∥
∥ = 1,

ůj being the coordinates in which the tensor Aij is diagonal,

(Au, u) = Aijλ
i
i′λ

j
j′ ů

′iů′j = A1

(
ů1

)2
+ . . .+An (̊u

n)
2
. (21)

In the new variables,

∫

Rn

e−
1
2 (Au,u)du =

∫

Rn

e
− 1

2

(

A1(ů1)
2
+...+An(ů

n)2
)

dů

=
1√

A1 . . . An

=
1√
detA

Here we used that4
+∞∫

−∞

e−
1
2x

2

dx =
√
2π. (22)

The Gauss formula admits the following generalization: for any linear
function of u, (l, u) = liu

i,

√
detA

∫

Rn

e−
1
2 (Au,u)+(l,u)du = e

1
2 (A

−1l,l) (23)

where A−1 is the inverse matrix to the matrix A. Formula (23) follows from
(20) and the identity,

1

2
(Au, u)− (l, u) =

1

2

(
A
(
u−A−1l

)
,
(
u−A−1l

))
− 1

2

(
A−1l, l

)
. (24)

Plugging (24) in (23), changing the variables of integration, u → u+A−1l,
and using (20) we obtain the right hand side of (23).

4The integral (22) can be found by a witty trick suggested by Poisson:





+∞
∫

−∞

e−
1
2
x2

dx





2

=

+∞
∫

−∞

e−
1
2
x2

dx

+∞
∫

−∞

e−
1
2
y2

dy =

+∞
∫

−∞

+∞
∫

−∞

e−
1
2
x2

e−
1
2
y2

dxdy

=

+∞
∫

−∞

+∞
∫

−∞

e−
1
2
(x2+y2)dxdy =

+∞
∫

0

2π
∫

0

e−
1
2
r2rdrdθ = 2π

+∞
∫

0

e−
1
2
r2d

1

2
r2 = 2π.
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E x e r c i s e. Let (Au, u) be a positive quadratic form of variables
u = (u1, ..., un), and u be subject to s linear constraints,

(lα, u) = cα, α = 1, ..., s; s < n.

Consider an integral,

J =

∫

Rn

e−
1
2 (Au,u)

s∏

α=1

δ (cα − (lα, u)) du
1...dun.

Show that

J =

√

(2π)
n

detA

√

(2π)
s

detAe−
1
2 (A

−1c,c) (25)

where A is the matrix with components

Aαβ =
(
A−1lα, lβ

)
.

H i n t. Use the presentation of δ−function (17) and formula (20).
Laplace’s asymptotics. Consider an integral which depends on a param-

eter, λ, in the following way:

I(λ) =

∫

V

f(x)eλS(x)dV,

where V is a bounded region of n-dimensional space, f(x) and S(x) are
some smooth functions. We wish to find the asymptotics of this integral
as λ → ∞. Laplace suggested that the leading terms of the asymptotics of
I(λ) are the same as that of the integral over the vicinities of the points
where the function, S(x), has the maximum value. Then the asymptotics
can be easily found. Indeed, let S(x) achieve its maximum value only at one
point, x̂, this point is an internal point of V, and the matrix of the second
derivatives,

∥
∥∂2S(x̂)/∂xi∂xj

∥
∥ is non-degenerated, i.e. its determinant, ∆,

is non-zero. We can write,

I(λ) = f(x̂)eλS(x̂)

∫

V

f(x)

f(x̂)
e−λ[S(x̂)−S(x)]dV.

In a small vicinity of the point, x̂, we can replace S(x̂)− S(x) by the non-
degenerated quadratic form,

S(x̂)− S(x) ≈ −1

2
Sij(x

i − x̂i)(xj − x̂j), (26)
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where Sij = ∂2S(x̂)/∂xi∂xj . Note that the quadratic form (26) is positive
because x̂ is the point of maximum of S(x). In a small vicinity of x̂ we can
replace f(x)/f(x̂) by unity thus obtaining

I(λ) ≈ f(x̂)eλS(x̂)

∫

small vicinity of x̂

e−λ[− 1
2Sij(x

i−x̂i)(xj−x̂j)]dV. (27)

Since λ → ∞, the function, exp
[
−λ[− 1

2Sij(x
i − x̂i)(xj − x̂j)]

]
, decays very

fast away from x̂. We do not pause to justify that the expansion of the
integration region from a small vicinity of x̂ to the entire space, R,causes
only exponentially small corrections in (27). Thus, we can write:

I(λ) ≈ f(x̂)eλS(x̂)

∫

R

e−λ[− 1
2Sij(x

i−x̂i)(xj−x̂j)]dV.

The integral here, according to the Gauss formula (20), is equal to
√

(2π)n/λn |∆|.
Finally, the leading term of the asymptotics is

I(λ) ≈
√

(2π)n

λn |∆|f(x̂)e
λS(x̂). (28)

As a more elaborated derivation shows, the error of the formula (28) is on the
order of (eλS(x̂)/λn/2)/λ. If S(x) achieves its maximum at several internal
points, one should sum the contributions (28) of all points. One can check
that in the cases of the point of maximum lying on the boundary and/or
degeneration of the quadratic form − 1

2Sij(x
i− x̂i)(xj − x̂j) the asymptotics

remains qualitatively the same,

I(λ) ≈ prefactor(λ)eλS(x̂), (29)

with the prefactor being a decaying power function of λ.
The prefactor is a constant independent on λ, if S(x) has maximum

value on a set with non-zero volume. By Laplace’s asymptotics we mean
further the asymptotics of the form (29) where the prefactor changes slower
than the exponential function of λ:

1

λ
ln prefactor(λ) → 0 as λ → ∞.

Changing in the previous consideration S(x) by −S(x) we obtain the
asymptotics,

∫

V

f(x)e−λS(x)dV ≈ prefactor(λ)e−λS(x̌), (30)
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where x̌ is the point of minimum of S(x).
In applications to the variational problems, we need also to know the

asymptotics of integrals of the form (30) for complex values of λ. In this
case we denote the parameter by z,

I(z) =

∫

V

f(x)ezS(x)dV,

and consider the asymptotics of I(z) as |z| → ∞. Note first of all that I(z)
is an analytical function of z at any finite point, z, if the integral, as we
accept, converges absolutely, i.e.

∫

V

|f(x)| eRezS(x)dV < ∞.

The point z = ∞ can be, however, the singular point of I(z). Usually, the
singularity is essential, i.e. the asymptotics of I(z) along different paths,
z → ∞, are different. It turns out that Laplace’s asymptotics,

I(z) ≈
√

(2π)n

zn |∆|f(x̂)e
zS(x̂)

(

1 +O

(
1

z

))

, (31)

holds true for all paths, z → ∞, such that |Arg z| ≤ π/2−ε, for some small ε.
For other paths, this asymptotics does not hold. This is seen from studying
the asymptotics when z → ∞ along the imaginary axis, z = iy, |y| → ∞.
It turns out that in this case the leading contribution to the asymptotics is
provided by not only the point of maximum of S(x), but by all stationary
points of S(x), in particularly, by all points of local maxima and minima.
This asymptotics is called the stationary phase asymptotics; we do not dwell
on it here since it will not be used further.

0.3 Reminder from probability theory

The random variables which we will be dealing with are the points, x, of
some finite-dimensional region, V . Probability of the event that x belongs
to a set A, A ⊂ V , is, by definition,

p(A) =

∫

A

f(x)dx.

Non-negative function f(x) is called the probability density. Since p(V ) = 1,
∫

V

f(x)dx = 1.
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Average value of function ϕ(x) is defined as

Mϕ =

∫

V

ϕ(x)f(x)dx.

Here M stands for ”mathematical expectation”. This operation is often
denoted by the symbol E (for expectation), but we reserve E to be the
symbol of energy.

For any function ϕ, ϕ(x) is a random variable. Probability density of
ϕ(x), fϕ, is defined in terms of probability of the event {ξ 6 ϕ(x) 6 ξ +∆ξ}
for small ∆ξ :

fϕ(ξ)∆ξ = Prob {ξ 6 ϕ(x) 6 ξ +∆ξ} .

It is convenient to introduce the distribution function,

F (ξ) = Prob {ϕ(x) 6 ξ} .

If the distribution function is smooth, then

fϕ (ξ) =
dF (ξ)

dξ
.

It is convenient to write the distribution function in terms of the step func-
tion

F (ξ) = Mθ (ξ − ϕ (x)) =

∫

θ (ξ − ϕ (x)) f(x)dx. (32)

This formula explains how the step function, to which we have paid already
much attention, enters our consideration.

Consider a random variable, which is a couple (x, y). Its probability
density is a function of x and y, f(x, y). Let y take values only in some
region B. What would be a probability density of x? It is natural to define
probability density of x under condition that y ∈ B as

f(x) =

∫

B

f (x, y) dy

/
∫

V

∫

B

f (x, y) dxdy.

Obviously, ∫

f(x)dx = 1.

In general, the conditional probability density of x depends on the choice of
B. By definition the random variables x and y are statistically independent,
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if the conditional probability does not depend on B. This is possible only
if f (x, y) is the product of two functions

f (x, y) = f (x)g(y) ,

∫

V

f(x)dx = 1,

∫

V

g(y)dy = 1. (33)

The notion of statistical independence is the central one in probabil-
ity theory. All most important facts of probability theory are concerned
with the sets of independent events. The major applications of probability
theory are based to the possibility to identify the independent (or slightly
dependent) events5.

We prepared everything to solve the central for applications problem
of probability theory. Let x1, ..., xn be independent identically distributed
random variables. Find probability distribution of the sum

ϕ (x1) + ...+ ϕ (xN )

where ϕ is a given function. Of course, we expect to get an analytical answer
only in the limit of large N .

Let us find the probability distribution of the arithmetic average

E =
1

N
(ϕ (x1) + ...+ ϕ (xN )) .

We have

FN (E) = Mθ

(

E − 1

N
(ϕ (x1) + ...+ ϕ (xN ))

)

.

We use for the sum the symbol E because in similar problems to be consid-
ered later, it has the meaning of energy. Using the presentation of the step
function (10) we have

FN (E) = M
1

2πi

a+i∞∫

a−∞

dz

z
eEz−z 1

N
ϕ(x1)−...−z 1

N
ϕ(xN ). (34)

5By the way, the recent financial crisis was caused in part by a wrong identification of

independent events. The hedge fund traders believed that combining mortgage loans

into large packages for sale to banks and pension funds reduces the risk of default.

This is true if the defaults of individual loans were independent. However, as we

have experienced, this is not always the case: there are rare catastrophic events when

probabilities of defaults become strongly correlated. This is what happened in the

recent economic crisis: simultaneous default of many mortgage loans along with other

negative events drove the economy down, which, in turn, resulted in more mortgage

defaults and bankruptcy of financial institutions.
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It is convenient to change variable z by zN . Then

FN (E) = M
1

2πi

a+i∞∫

a−i∞

dz

z
eNEz−zϕ(x1)−...−zϕ(xN ).

In such change, the constant a in the integral limit must be replaced by
Na, but, since this constant is arbitrary, we keep the some notations for the
integral limit. The operation of mathematical expectation is, in essence,
integration. The order of integrals can be changed almost always; we do
not pay attention to degenerated cases. Since the variables x1, ..., xN are
statistically independent and identically distributed,

Me−zϕ(x1)−...−zϕ(xN ) =
(

Me−zϕ(x)
)N

,

and we get

FN (E) =
1

2πi

a+i∞∫

a−i∞

dz

z
eNEz

(

Me−zϕ(x)
)N

=
1

2πi

a+i∞∫

a−i∞

dz

z
eNEz+N lnMe−zϕ(x)

=
1

2πi

a+i∞∫

a−i∞

dz

z
eNS(E,z) (35)

where we introduced a function of E and z

S (E, z) = Ez + lnQ (z) , Q (z) ≡
∫

e−zϕ(x)f (x) dx. (36)

In physical applications, functions S has the meaning of entropy, and we
will call S the entropy of the problem.

The integral (35) contains a large parameter, N . Therefore, probability
distribution FN (E) for large N can be found by studying the asymptotics of
the integral (35) as N → ∞. This idea is in the core of all further examples
considered.

Usually, the integral in (35) can be differentiated over E. After differen-
tiation we obtain formula for probability density of the normalized sum,

fN (E) =
N

2πi

a+i∞∫

a−i∞

eNS(E,z)dz. (37)

Note that the integrand, which is equal to

eNEz

(∫

e−zϕ(x)f (x) dx

)N

,
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Figure 6. Plot of Q(z).

does not have singularities for finite z, and, if it decays as |Imz| → ∞, the
line of integration can be moved to the left half-plane. Therefore, a in (37)
can take both positive and negative values.

We consider examples in the next lecture.

0.4 The central limit theorem and the law of large numbers

We begin with the following example. Let x be a random number on
the segment [0,1], which is homogeneously distributed, i.e. f (x) ≡ 1. Then
Q (z) is computed analytically:

Q (z) =

1∫

0

e−zxdx =
1

z

(
1− e−z

)
.

Graph of Q (z) is shown in Fig. 6.
Function S (E, z) is shown in Fig. 7.
Function lnQ (z) is a convex function of z (we will prove it in a more

general case later). Therefore, S = Ez + lnQ is also convex and has a
minimum. To find the minimizer we have to solve the equation

∂S (E, z)

∂z
= E +

Q′ (z)

Q (z)
= 0.

It can be written as

−Q′ (z)

Q (z)
=

1

z
− e−z

1− e−z
= E. (38)

Function −Q′ (z) /Q (z) takes the values between 0 and 1 (again, we show
this later in a general case). Therefore, for 0 6 E 6 1, equation (38) has a
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Figure 7. Plot of lnQ(z), Ez and S(E, z) for E = 0.3.

Figure 8. Dependence of inverse temperature β on energy E.

unique solution, which we denote β (E) . This notation is motivated again by
physical problems: in similar physical problems β plays the role of inverse
temperature. Function β (E) is shown in Fig. 8.

If we tend z to zero in (38), we find

1

z
− 1− z + 1

2z
2

1−
(
1− z + 1

2z
2
) → 1

2
.

Therefore, the value of E at which β = 0, is 1/2. If E < 0, then S (E, z) has
the minimum at z = +∞, if E > 1, S (E, z) has the minimum at z = −∞
(Fig. 9).

Denote by S (E) the value of S (E, z) at the point of minimum over z,

S (E) = S (E, β (E)) .

The graph of function S (E) is shown in Fig. 10.
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Figure 9. A qualitative graph of S(E, z) as a function of z for E > 1 and
E < 0.

Figure 10. Dependence of S(E) on E.

E x e r c i s e. Show that

β (E) =
dS(E)

dE
.

In the sum, x1 + ...+ xN , each member takes the values between 0 and
1. Therefore, the admissible values of the sum lie between 0 and N , while
the values of E are between 0 and 1. Probability that E < 0 or E > 1 is
zero. This fact can be derived directly from (35), (36), but we do not pause
on this derivation and focus on the values of E from 0 to 1. We set a in
(37) equal to β (E) . Formula (37) takes the form

fN (E) =
N

2π

+∞∫

−∞

eNS(E,β+iy)dy (39)
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S (E, z) = Ez + ln

[
1− e−z

z

]

.

Since fN (E) is real, the imaginary part of the integral (39) is zero.
Consider function S (E, β + iy) for small y. Since ∂S (E, z) /∂z = 0 at

y = 0, we have

S (E, z) = S (E) +
1

2
S′′ (E) (iy)

2
= S (E)− 1

2
S′′ (E) y2, (40)

S′′ (E) ≡ ∂2S (E, z)

∂z2

∣
∣
∣
∣
z=β(E)

=
∂2 lnQ (z)

∂z2

∣
∣
∣
∣
z=β(E)

.

Function S (E, z) is strictly convex on real axis, thus S′′ (E) > 0, and
S (E, β + iy) has a local maximum on y−axis at y = 0. For finite y,
ReS (E, β + iy) decays. Indeed,

∣
∣
∣
∣
ln

[
1− e−β−iy

β + iy

]∣
∣
∣
∣
= ln

∣
∣1− e−β−iy

∣
∣

√

β2 + y2

= ln
(
e−β

∣
∣eβ − e−iy

∣
∣
)
− ln

√

β2 + y2.

The first term here is bounded, while the second one goes to −∞. So, the
major contribution to this integral as N → ∞ is provided by a vicinity of
the point y = 0. Replacing S (E, z) by (40) we have

fN (E) = eNS(E) N

2π

+∞∫

−∞

e−
N
2 S′′(E)y2

dy =

√

N

2πS′′ (E)
eNS(E). (41)

Here we made the change of variable y → y
/√

NS′′ and used (22).

Formula (41) is an asymptotic formula as N → ∞. The normalization
condition

+∞∫

−∞

fN (E) dE =

1∫

0

fN (E) dE = 1 (42)

is satisfied asymptotically. Indeed, in the integral

1∫

−1

1
√

S′′ (E)
eNS(E)dE
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the major contribution is provided by the vicinity of the point of maximum
of S (E) , which is Ê = 1

2 . At this point S = 0; thus

1∫

−1

1
√

S′′ (E)
eNS(E)dE ≃

+∞∫

−∞

1
√

S′′ (E)
e

1
2NSEE(Ê)(E−Ê)

2

dE. (43)

Here we denoted by SEE(E) the second derivative of S(E) :

SEE(E) =
d2S(E)

dE2
.

The derivative SEE(E) is negative, because S(E) is a concave function. For
the integral (43) we have in the leading approximation,

√

2π/N
√

−SEE(Ê)

1
√

S′′
(

Ê
) . (44)

From (38) and (40)

S′′
(

Ê
)

=
d2S (E, z)

dz2

∣
∣
∣
∣
z=β(Ê)

=
d2 lnQ

dz2

∣
∣
∣
∣
z=β(Ê)

= −dE

dβ

∣
∣
∣
∣
z=β(Ê)

.

Hence

S′′
(

Ê
)

· SEE(Ê) = S′′
(

Ê
) dβ

dE

∣
∣
∣
∣
Ê

= −1. (45)

Combining (44), (45) and (41) we obtain (42).
Our asymptotic result converges to the exact one very fast. For N = 10,

the exact and asymptotic results are shown in Fig. 11.
For N = 100 the exact and asymptotic results are practically indistin-

guishable.
As N increases, probability density converges to δ−function, concen-

trated at the point E = 1
2 . This value, E = 1

2 , is the mathematical ex-
pectation of each of the members of the sum. We obtain the law of large

numbers:
1

N
(x1 + ...+ xN ) → Mx =

1

2
as N → ∞. (46)

Equation (46) can be interpreted in the following way. Let we do some
experiments and the outcome of the experiment is a number, x, 0 6 x 6 1.
All values of x on the segment [0, 1] are equiprobable. The outcomes of the
experiments are independent. Then the arithmetic average of all outcomes
for large N is approximately equal to the mathematical expectation of x.
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Figure 11. Exact probability density of E compared with the asymptotic
formula when N = 10; the exact and asymptotic results are hardly distin-
guishable.

Figure 12. Exact probability densities of E for N = 5, 10 and 100.
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It is interesting to characterize the deviations of the arithmetic average
from the mathematical expectation,

1

N
(x1 + ...+ xN )−Mx = E′.

To estimate the order of deviations, let us find the mathematical expectation
of E

′2. We can do that using the probability density of E (41). From (41)
we have

ME
′2 = M

(

E − 1

2

)2

=

1∫

0

(

E − 1

2

)2
√

N

2πS′′ (E)
eNS(E)dE

=

√

N

2πS′′
(
1
2

)

+∞∫

−∞

E
′2eNSEE( 1

2 )E
′2

dE′ =
1

N

S′′
(
1
2

)

√
2π

+∞∫

−∞

x2e−
1
2x

2

dx.

Here we used that S(E) has maximum at E = 1
2 and equal to zero at this

point, besides, equation (45) was also employed.
We see that ME

′2 is of the order 1/N. Hence, E′ is of the order 1/
√
N.

This suggests that the scaled deviations,

ξ =
√
NE′,

are of the order of unity and can have a non-singular probability distribu-
tion. Let us find it. Denote the probability density function of ξ by g(ξ).
Since,

E =
1

2
+

ξ√
N

and
fN (E) dE = g(ξ)dξ,

we have

g(ξ) =
1√
N

fN

(
1

2
+

ξ√
N

)

.

Plugging here (41) we find for large N

g(ξ) =
1

√

2πS′′
(
1
2

)e
1
2SEE( 1

2 )ξ
2

.

Denoting S′′
(
1
2

)
by σ2 and using (45) we obtain

g(ξ) =
1√
2πσ

e−
1

2σ2 ξ2 . (47)
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This is Gaussian distribution. The constant σ has the meaning of variance
of ξ,

Mξ2 = σ2.

Formula (47) expresses the so-called central limit theorem. The law of
large numbers and the central limit theorem are simple consequences of
(41). Formula (41) provides much more information: it determines the
probability of large deviations of the arithmetical average from the average
value. This probability is exponentially small because S(E) is negative.

E x e r c i s e s. 1. Let ua be non-negative numbers, a = 1, ..., N .
All points of the space {u1, ..., uN} are equiprobable. Note that we cannot
introduce probability in a usual sense because the volume of the admissible
values is infinite. Let ua be constrained by the condition

1

N

N∑

a=1

ua = 1.

This condition makes the volume of the admissible values finite. Show that
in the limit N → ∞ the values of any two numbers (say, u1 and u2) become
statistically independent, and each number has the probability distribution

f(u) = e−u.

2. Let a1, ..., an, ... be an infinite sequence of numbers and x1, ..., xn, ...
a sequence of independent identically distributed variables with mathemat-
ical expectation Mx, variance Mx2 and probability density function f(x).
Consider a random number

ξ = a1x1 + ...+ anxn + ...

show that

Mξ = Mx

∞∑

k=1

ak

Mξ2 = Mx2
∞∑

k=1

a2k

while the probability density function of ξ, fξ (y) is given by the integral

fξ (y) =
1

2πi

a+i∞∫

a−i∞

ezy−g(y)dz,
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g (y) =

∞∑

k=1

ln

∫

e−yakxf (x) dx.

It is assumed that the sums and integrals in these formulas exist. A neces-
sary condition for convergence of series is the decay ak as k → ∞.

0.5 Poisson distribution

Now we return to a more general case we have started with, when x was
a point of some region distributed with some probability density f(x). As
we will see all results we obtained for numbers are extended to this case.
We have obtained already the formulas for probability density (37), (36).
Consider the properties of S (E, z) on real axis. This function is a convex
function of z. Indeed,

∂S (E, z)

∂z
= E −

∫
ϕe−zϕfdx

∫
e−zϕfdx

(48)

∂2S (E, z)

∂z2
=

∫
ϕ2e−zϕfdx

∫
e−zϕfdx−

(∫
ϕe−zϕfdx

)2

(∫
e−zϕfdx

)2 . (49)

Using Cauchy inequality,

(∫

f · gdx
)2

6

∫

f2dx

∫

g2dx,

we have

(∫

ϕe−zϕfdx

)2

=

(∫

ϕe−
1
2 zϕf

1
2 · e− 1

2 zϕf
1
2 dx

)2

6

∫

ϕ2e−zϕfdx

∫

e−zϕfdx.

Therefore,
∂2S (E, z)

∂z2
> 0,

and S (E, z) is a convex function of z. Hence, it may have only one local
minimum at a finite z. It may have also minimum at z = +∞ or z = −∞.
Consider the case when minimum is achieved at a finite point, ž. According
to (48), z is the solution of the equation

∫
ϕe−zϕfdx

∫
e−zϕfdx

= E. (50)
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We assume that function ϕ (x) is piecewise continuous and bounded in V
and has the minimum and maximum values, ϕ− and ϕ+. Since

ϕ−

∫

e−zϕfdx 6

∫

ϕe−zϕfdx 6 ϕ+

∫

e−zϕfdx,

the left hand side of (50) is within the limits

ϕ− 6

∫
ϕe−zϕfdx

∫
e−zϕfdx

6 ϕ+.

Therefore, the solution of equation (50) exists only for the values of E
belonging to the segment

ϕ− 6 E 6 ϕ+.

According to Laplace asymptotics, the left hand side of (50) tends to ϕ− as
z → +∞ and ϕ+ as z → −∞. So, the picture is completely similar to that
of the case of random numbers.

Consider one special case which has a lot of applications. Let us choose
ϕ (x) to be a characteristic function of some subregion B of volume V , i.e.

ϕ (x) = {.1 if x ∈ B0 otherwise.

Then the sum,

N = ϕ (x1) + ...+ ϕ (xN ) ,

has the meaning of the number of points which are in the region B. This
number is random and takes the values 0, 1, ...N. We wish to find the prob-
abilities that N has values 0, 1, .... To this end, we have to rewrite formula
(35) in terms of probability distribution of the non-scaled sum, N = NE.
Denotes its values by k. Repeating the derivation from (34) to (35) we have

FN (k) = M
1

2πi

a+∞∫

a−∞

dz

z
ekz−zϕ(x1)−...−zϕ(xN )

=
1

2πi

a+∞∫

a−∞

dz

z
ekz

(∫

e−zϕ(x)f (x) dx

)N

. (51)

Let all points be homogeneously distributed over V , i.e.

f (x) =
1

|V | = const.
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Then ∫

e−zϕ(x)f (x) dx =
1

|V |
(
|V | − |B|+ |B| e−z

)
. (52)

Note that region B is not necessarily simply connected and may consist of
many pieces, but formula (52) contains only the volume of region B. We
consider the ”thermodynamic limit”, when |V | → ∞, N → ∞, while the
number of points per unit volume,

n =
N

|V | ,

remains finite. We have

(∫

e−zϕ(x)f (x) dx

)N

=

(

1− |B|n
N

(
1− e−z

)
)N

.

In the limit N → ∞
(∫

e−zϕ(x)f (x) dx

)N

= e−|B|n(1−e−z).

Hence, (51) takes the form

F∞ (k) =
1

2πi

a+i∞∫

a−i∞

dz

z
ekz−|B|n(1−e−z). (53)

We replace N by ∞ in notation of distribution function because the right
hand side of (53) is the limit as N → ∞. One can show that (53) can be
differentiated over k. We get for probability density

dF∞ (k)

dk
= f∞ (k) = e−|B|n 1

2πi

a+i∞∫

a−i∞

ekz+|B|ne−z

dz.

This integral can be computed analytically. Indeed, let us present exp (|B|ne−z)
as the series

e|B|ne−z

= 1 + |B|ne−z +
1

2
(|B|n)2 e−2z + ...

1

s!
(|B|n)s e−sz + ...

According to (17),

1

2πi

∫

ekz
1

s!
(|B|n)s e−szdz = δ (k − s)

1

s!
(|B|n)s .
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So,

f∞ (k) = e−|B|n

(

δ (k) + |B|nδ (k − 1) +
1

2
(|B|n)2 δ (k − 2) + ...

)

,

i.e. f∞ (k) is a sum of δ−functions, concentrated at the points k = 0, 1, 2....
This means that the region B contains k points with probability

pk =
1

k!
(|B|n)k e−|B|n.

The sum of all probabilities is equal to 1,

∞∑

0

pk = 1,

as follows from Taylor expansion of exponential function

e|B|n =

∞∑

k=0

1

k!
(|B|n)k .

We arrived at the so-called Poisson distribution.

0.6 Stochastic variational problems

Many problems of physics and mechanics can be formulated as varia-
tional problems, i.e. as problems of minimization of some functional, I(u),
on a set of elements, u. We will consider the simplest case, when I(u) is a
quadratic functional, i.e. the functional of the form

I(u) =
1

2
(Au, u)− (l, u) . (54)

By u one can mean a point of a multidimensional space, u =
(
u1, ..., un

)
,

(l, u) a linear function

(l, u) = liu
i, (55)

and (Au, u) a quadratic function

(Au, u) = Aiju
iuj . (56)

In continuum mechanics problems, one considers the limit n → ∞, but a
finite-dimensional truncation of continuum mechanics problems (for exam-
ple, by the finite-element method) returns us to the finite-dimensional case

33



Figure 13. Minimum value of I(u) is negative; it has the meaning of neg-
ative energy.

(55), (56). The minimum value of I(u) is always negative; in 1D case this
is seen from Fig. 13.

In physical problems the minimum value has the meaning of negative
energy of the system.

If the properties of the system are random, so are the matrix (operator)
A = (Aij) and the vector (linear functional) l = (li) . We consider the
simplest ”probabilistic” question: What is the probability distribution of
minimum values of I(u) (i.e. probability distribution of energy)? It is
enough to discuss the finite-dimensional case; the results for continuum
mechanics are obtained in the limit n → ∞.

If the matrix A does not depend on the event, ω, the problem is called
weakly stochastic, otherwise the variational problem is called strongly stochas-
tic. Many physical theories provide examples of such type of problems. The
analytical results can be obtained mostly for weakly stochastic problems.

As is usual in the probabilistic approach, the probabilistic modeling is
especially effective, if one can identify in the phenomenon to be modeled
the statistically independent (or slightly dependent) events. Analytical in-
vestigation can be advanced considerably, if there are many statistically
independent events involved. We focus here on a special case when (l, u)
is a sum of small independent linear functionals. More precisely, there is a
large number, N, of independent identically distributed random variables,
r1, ..., rN , and a given random linear functional, (l0(r), u). Then the lin-
ear functional of the variational problem, (l, u) , is defined as an ”empirical
average” of N values of (l0(r), u):
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(l, u) =
1

N

N∑

a=1

(l0(ra), u) . (57)

Consider a quadratic function of a finite number of variables (54). The
minimum value of this function is

Ǐ = −1

2

(
A−1l, l

)
(58)

where A−1 is the inverse matrix for the matrix A. We wish to find proba-
bility distribution of energy,

f (E) = Mδ
(

E +min
u

I (u)
)

. (59)

Following the same path as for a sum of independent random variables we
plug in (59) the presentation of δ−function (17),

f (E) = M
1

2πi

i∞∫

−i∞

e
Ez+zmin

u
I(u)

dz =
1

2πi

i∞∫

−i∞

eEzMe
zmin

u
I(u)

dz. (60)

It would be desirable to change somehow the operations of mathematical
expectation and minimization: then we would arrive to some deterministic
problem. This can be achieved by presenting exp [−zmin I(u)] by an in-
tegral of some function of u over u. Since mathematical expectation is, in
fact, also integration, the order of integrals can be changed, and we obtain
an integral of the mathematical expectation of the function of u, which can
be found explicitly in some cases. Now let us discuss precisely what this
trick means.

According to (58) formula (23) can be also written as

e
−min

u
I(u)

=
√
detA

∫

e−I(u)du (61)

We see that this relation reduces the computation of the minimum value to
integration indeed. Since any quadratic functional in variational problems of
continuum mechanics admits a finite-dimensional truncation, one can write
formula (61) for a finite-dimensional truncation, and then consider the limit
when the dimension of the truncation tends to infinity. In the limit, in the
right hand side of (61) we obtain what is called the functional integral. We
include

√
detA in the definition of the “volume element” in the functional

space,
DAu =

√
detAdu (62)
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and write (61) as

e
min
u

I(u)
=

∫

e−I(u)DAu. (63)

The notation, DAu, emphasizes that the volume element depends on the
operator A.

E x e r c i s e. Consider a variational problem with a set of constraints:
minimize a quadratic functional,

I(u) =
1

2
(Au, u)

on all u obeying to linear constraints

(lα, u) = cα, α = 1, ..., s.

Show that

e−min I(u) =

∫

e−I(u)
∏

α

δ (cα − (lα, u))Du

where

Du =

√

(2π)
n

detA

√

(2π)
s

detAdu1...dun

and A is a matrix with the components

Aαβ =
(
A−1lα, lβ

)
.

H i n t. Use (25).
In Section 5.12 of the above-cited book Variational Principles of Con-

tinuum Mechanics one can find various generalizations of (63) involving
non-positive quadratic functionals and complex-valued functionals. We il-
lustrate the idea using one of such generalizations,

e
zmin

u
I(u)

=

i∞∫

−i∞

ez[
1
2 (Au,u)−(l,u)]DzAu, for Rez > 0. (64)

In (64) the parameter, z, is also included in the volume element: for
m−dimensional truncation, DzAu =

√
zm detAdu.

If we plug in (64) the linear functional (57), we get

Me
zmin

u
I(u)

=

i∞∫

−i∞

Mez[
1
2 (Au,u)−(l,u)]DzAu
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=

i∞∫

−i∞

ez
1
2 (Au,u)Me−z 1

N

∑N
a=1(l0(ra),u)DzAu

=

i∞∫

−i∞

ez
1
2 (Au,u)

(

Me−z 1
N

(l0(r),u)
)N

DzAu.

If we change variable z → Nz, then probability density f (E) (60) takes the
form

f (E) =
N

2πi

i∞∫

−i∞

eNS(E,z,u)DNzAudz, (65)

where S(E, z, u) is a function that is independent on N,

S(E, z, u) = Ez +
z

2
(Au, u) + lnMe−z(l0,u). (66)

The functional integral (65) depends on a large parameter N. In many
cases the asymptotics of this integral can be studied. It is determined by
the stationary points of the entropy functional (66). Examples and further
details can be found in the above-cited book.
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