Renormalization and wandering continua of rational maps

Abstract : Renormalizations can be considered as building blocks of complex dynamical systems. This phenomenon has been widely studied for iterations of polynomials of one complex variable. Concerning non-polynomial hyperbolic rational maps, a recent work of Cui-Tan shows that these maps can be decomposed into postcritically fnite renormalization pieces. The main purpose of the present work is to perform the surgery one step deeper. Based on Thurston's idea of decompositions along multicurves, we introduce a key notion of Cantor multicurves (a stable multicurve generating infnitely many homotopic curves under pullback), and prove that any postcritically fnite piece having a Cantor multicurve can be further decomposed into smaller postcritically fnite renormalization pieces. As a byproduct, we establish the presence of separating wandering continua in the corresponding Julia sets. Contrary to the polynomial case, we exploit tools beyond the category of analytic and quasiconformal maps, such as Rees-Shishikura's semi-conjugacy for topological branched coverings that are Thurston-equivalent to rational maps.
Type de document :
Pré-publication, Document de travail
24 pages. 2011
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger
Contributeur : Lei Tan <>
Soumis le : mercredi 6 juillet 2011 - 15:09:38
Dernière modification le : mercredi 19 décembre 2018 - 14:08:04
Document(s) archivé(s) le : lundi 12 novembre 2012 - 10:11:45


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00601632, version 1


Guizhen Cui, Wenjuan Peng, Lei Tan. Renormalization and wandering continua of rational maps. 24 pages. 2011. 〈hal-00601632〉



Consultations de la notice


Téléchargements de fichiers