Event in Compositional Dynamic Semantics
Sai Qian, Maxime Amblard

To cite this version:

HAL Id: hal-00601620
https://hal.archives-ouvertes.fr/hal-00601620
Submitted on 24 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Event in Compositional Dynamic Semantics

Sai Qian
Maxime Amblard

Semagramme, LORIA & INRIA Nancy Grand-Est
Logical Aspects of Computational Linguistics, LACL 2011

June 30, 2011
Outline

1. Background
 - Dynamic Semantics
 - Discourse Structure

2. Event in Dynamic Semantics
 - Event in Sentential Semantics
 - Event in Discourse Semantics

3. Conclusion & Future Work
Overview

Key Words
Event, Dynamics, Montague Semantics, DRT, Discourse Structure, Accessibility, λ-calculus

Questions to be tackled:
1. Combining event semantics with dynamic discourse semantics compositionally
2. Embedding rhetorical relation in the above framework, thus obtaining the desired variable accessibility constraint
Why Dynamics?

- Montague Grammar (MG)
 - Thesis: no important theoretical difference between natural language and formal language
 - Foundation: type theory, λ-calculus, first-order logic (FOL), Frege’s principle/compositionality

- Dynamic Semantics
 - Motivation: MG’s inability in modeling discourse semantics (e.g., anaphoric links across multiple sentences)
 - Concept of Meaning:
 - Satisfactory Models \rightarrow Context Change Potential (CCP)
 - Representatives: Discourse Representation Theory (DRT), Dynamic Predicate Logic (DPL), File Change Semantics, and etc.
A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - $\iota(e)$, individuals/entities
 - $o(t)$, propositions/truth values
 - γ, left context

1

1Diagram illustration cited from [de Groote, 2006].
New Approach - Typing & Composition

Typing Rules

$$\begin{align*}
[s] & \quad \gamma \rightarrow (\gamma \rightarrow o) \rightarrow o & o \\
[n] & \quad \iota \rightarrow [s] & \iota \rightarrow o \\
[np] & \quad (\iota \rightarrow [s]) \rightarrow [s] & (\iota \rightarrow o) \rightarrow o
\end{align*}$$

Discourse Composition

$$\llbracket D.S \rrbracket = \lambda e.\llbracket D \rrbracket e(\lambda e'.\llbracket S \rrbracket e'\phi)$$
“::” adjoins accessible variables in the selection list, with type $\iota \rightarrow \gamma \rightarrow \gamma$

“sel_he” selects the correct variable from the list, with type $\gamma \rightarrow \iota$
New Approach - Example

(1) *John smiles. He is happy.*

\[
S_1 = \lambda e.((\text{smile}(j) \land \phi(j :: e))
\]

\[
\text{smile}(j)
\]

\[
\begin{align*}
\text{NP} & \quad \text{VP} \\
\lambda \psi e \phi. & \psi j e(\lambda e. \phi(j :: e)) & \lambda s. s(\lambda x e \phi. \text{smile}(x) \land \phi e) \\
\lambda \psi. & \psi j & \lambda s. s(\lambda x. \text{smile}(x))
\end{align*}
\]
New Approach - Example Continued

\[S_2 \]
\[\lambda e \phi. (is_happy(sel_he\ e) \land \phi e) \]
\[\exists x. (is_happy(x) \land x = ?) \]

NP
\[he \]
\[\lambda \psi \ e \phi. \psi (sel_he\ e) e \phi \]
\[\lambda P \exists x. (P(x) \land x = ?) \]

VP
\[is_happy \]
\[\lambda s. s(\lambda x \phi. is_happy(x) \land \phi e) \]
\[\lambda s. s(\lambda x. is_happy(x)) \]
New Approach - Example Continued

\[S = \lambda e. (\text{smile}(j) \land \text{is_happy}(sel_{he}(j :: e)) \land \phi(j :: e)) \]

\[\llbracket D \cdot S \rrbracket = \lambda e. [D]e(\lambda e'. [S]e' \phi) \]

\[S_1 = \lambda e. (\text{smile}(j) \land \phi(j :: e)) \]
\[S_2 = \lambda e. (\text{is_happy}(sel_{he}e) \land \phi e) \]
What is the Structure in Discourse?

- Discourse is a coherent sequence of propositional elements

(2) People are attending LACL Conference in Montpellier. All presentations are interesting. John loves Mary.

- Rhetorical Relation (RR)/Discourse Relation: various coherences within the discourse
- Discourse Structure: an internal hierarchy shaped by RRs, representing different levels in the discourse

- Linguistic Motivation
 - Anaphora Resolution
 - Temporal structure resolution
 - Word sense disambiguation
 -
Types of RRs

1. Subordinating Relation (↓)
 - Complete or further develop an ongoing topic
 - E.g., Elaboration, Explanation

 (3) People come into the hall. LACL 2011 is held there.

2. Coordinating Relation (→)
 - Opening a new page, starting a new topic in discourse
 - E.g., Narration, Background

 (4) People come into the hall. They find their seats and sit down.
The Right Frontier Constraint [Polanyi, 1985]

A clause must be attached on the right frontier of the ongoing discourse structure.
Anaphoric Link with Rhetorical Relations

(5) a. John had a great evening last night.
 b. He had a great meal.
 c. He ate salmon.
 d. He devoured lots of cheese.
 e. He won a dancing competition.
 f. *It was a beautiful pink.²

²Example cited from [Asher and Lascarides, 2003].
Why Event Semantics?

- Adverbial Modification
 - Permutation
 - Drop

(6) *Brutus stabbed Caesar in the back with a knife.*

- Multiple events in single proposition

(7) *John said he killed Bill. Mary did not believe it.*

- Other evidence
 - Perceptual verbs: *see, hear*, and etc.
 - Interaction with thematic roles
Constructing Event Interpretation

Aim
Compositionally compute event-style semantic representations!

Example

(8) \textit{John kissed Mary in the plaza.}

\[\exists e. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Pat}(e, \text{mary}) \land \text{Loc}(e, \text{plaza})) ^3 \]

\(^3\text{Ag stands for Agent, Pat for Patient and Loc for Location}\)
Interpretation Construction

- Two Approximations:
 - Basic Thematic Roles: Agent, Theme
 - Event variable “e” introduced in verb
- Proposed Lexical Entries

Lexicon

\[
\begin{align*}
[John] &= john \\
[Mary] &= mary \\
[kiss] &= \lambda ose.(Kiss(e) \land Ag(e, s) \land Th(e, o)) \\
[in_the_plaza] &= \lambda Pe.(P(e) \land Loc(e, plaza)) \\
[EOS] &= \lambda P. \exists e. P(e)
\end{align*}
\]
Interpretation Construction Step 1

\[S' \]
\[\lambda e. (\text{Kiss}(e) \land \text{Ag}(e, john) \land \text{Th}(e, mary)) \]

\[\lambda e. (\text{Kiss}(e) \land \text{Ag}(e, s) \land \text{Th}(e, mary)) \]

\[\lambda s. (\text{Kiss}(e) \land \text{Ag}(e, s) \land \text{Th}(e, o)) \]

\[\text{John} \]
\[john \]
\[\text{VP} \]
\[\text{NP} \]
\[\text{V} \]
\[\text{NP} \]
\[\text{Mary} \]
\[mary \]
Interpretation Construction Step 2

\[S'' \]
\[\lambda e. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Th}(e, \text{mary}) \land \text{Loc}(e, \text{plaza})) \]

\[S' \]
\[\lambda e. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Th}(e, \text{mary})) \]

\[\text{PP} \]
\[\text{in_the_plaza} \]
\[\lambda Pe. (P(e) \land \text{Loc}(e, \text{plaza})) \]
Interpretation Construction Step 3

\[S \]
\[\exists e. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Pat}(e, \text{mary}) \land \text{Loc}(e, \text{plaza})) \]

\[S' \]
\[\lambda e. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Th}(e, \text{mary}) \land \text{Loc}(e, \text{plaza})) \]

\[\text{EOS} \]
\[\lambda P. \exists e. P(e) \]
Making Things Dynamic

Inserting the left and right context!

Dynamic Lexicon

\[
\text{\texttt{\texttt{kiss}}} = \lambda \text{oseab}. (\text{Kiss}(e) \land \text{Ag}(e, s) \land \text{Th}(e, o) \land b(e :: a))^4 \\
\text{\texttt{\texttt{smile}}} = \lambda \text{seab}. (\text{Smile}(e) \land \text{Ag}(e, s) \land b(e :: a)) \\
\text{\texttt{\texttt{in_the_plaza}}} = \lambda \text{Peab}. (\text{Peab} \land \text{Loc}(e, \text{plaza})) \\
\text{\texttt{\texttt{she}}} = \lambda \text{Peab}. P(\text{Sel}(a))eab
\]

\footnote{\textit{\texttt{\texttt{a}}} denotes the left context, \textit{\texttt{\texttt{b}}} the right context.}
Dynamic Interpretations

(9) a. *John kisses Mary in the plaza.*

b. *She smiles.*

a. $\llbracket \text{in_the_plaza} \rrbracket \left(\left(\llbracket \text{kiss} \rrbracket \llbracket \text{Mary} \rrbracket \right) \llbracket \text{John} \rrbracket \right)$

$\Rightarrow_\beta \lambda e a b. (\text{Kiss}(e) \land \text{Ag}(e, \text{john}) \land \text{Th}(e, \text{mary}) \land \text{Loc}(e, \text{plaza}) \land b(e :: a))$

b. $\llbracket \text{she} \rrbracket \llbracket \text{smile} \rrbracket$

$\Rightarrow_\beta \lambda e a b. (\text{Smile}(e) \land \text{Ag}(e, \text{Sel}(a)) \land b(e :: a))$
Sentence & Discourse

Proposal

Sentence and Discourse are distinct semantic entities!

\[[S] = \lambda eab.(\text{Pred}(e) \land \ldots \land ba) \]

\[[D] = \lambda ab.\exists e_1 e_2 \ldots (\text{Pred}_1(e_1) \land \text{Pred}_2(e_2) \land \ldots \land \text{Rel}_1(e_i, e_j) \land \text{Rel}_2(e_m, e_n) \land \ldots \land ba') \]

\[^{5}\text{"}a\text{" is a complicated structure containing the event accessibility relation.} \]
Subordinating Composition Functions

\[
\begin{align*}
\text{Sub}_\text{Bas} & = \lambda DSab. Da(\lambda a'. \exists e. (Sea' b)) \\
\text{Sub}_\text{Adv} & = \lambda DSab. Da(\lambda a'. \exists e. ((Sea' b) \land Rel(Sel(a'), e))) \\
\text{Empty} & = \lambda ab. ba
\end{align*}
\]
Subordinating Examples

1. \[[Sub_{Bas}][Empty][9-a]\]
 \[\Rightarrow_{\beta} \lambda a_1 b_1.(\lambda a_3 b_3.b_3 a_3)a_1(\lambda a_2.\exists e.(\lambda e' a_4 b_4.(\text{Kiss}(e') \land \ldots \land b_4(e' :: a_4))ea_2 b_1))\]
 \[\Rightarrow_{\beta} \lambda a_1 b_1.\exists e.(\text{Kiss}(e) \land \ldots \land b_1(e :: a_1))\]

2. \[[Sub_{Adv}][Sub_{Bas}][Empty][9-a][9-b]\]
 \[\Rightarrow_{\beta} \lambda a_1 b_1.(\lambda a_3 b_3.\exists e_1.(\text{Kiss}(e_1) \land \ldots \land b_3(e_1 :: a_3)))a_1(\lambda a_2.\exists e.(((\lambda e_2 a_4 b_4.(\text{Smile}(e_2) \land \ldots \land b_4(e_2 :: a_4))ea_2 b_1) \land \text{Rel(Sel}(a_2), e)))\]
 \[= \lambda a_1 b_1.\exists e_1 e_2.(\text{Kiss}(e_1) \land \ldots \land \text{Smile}(e_2) \land \ldots \land b_1(e_2 :: e_1 :: a_1) \land \text{Rel(Sel}(e_1 :: a_1), e_2))\]
Coordinating Composition Functions

\[\text{\text{\text{Coor}_{Bas}}} = \lambda DSab. Da(\lambda a'. \exists e. (Sea' b)) \]

\[\text{\text{\text{Coor}_{Adv}}} = \lambda DSab. \exists e_c. Da(\lambda a'. \exists e. (Se(e_c :: (Del(a'))) b) \land Rel(Sel(a'), e, e_c)) \]
Event in Compositional Dynamic Semantics

Event in Dynamic Semantics

Event in Discourse Semantics

Coordinating Examples

1. \[[Coor_{Bas}] [Empty] [[(9-a)]] = [Sub_{Bas}] [Empty] [[(9-a)]]
 \[\Rightarrow \beta \lambda a_1 b_1. \exists e. (Kiss(e) \land \ldots \land b_1(e :: a_1))\]

2. \[[Coor_{Adv}] ([[Coor_{Bas}] [Empty] [[(9-a)]]] [[(9-b)]]
 \[\Rightarrow \beta \lambda Sa_1 b_1. \exists e_c. (\lambda a_3 b_3. \exists e_1. (Kiss(e_1) \land \ldots \land b_3(e_1 :: a_3))) a_1(\lambda a_2. \exists e. ((\lambda e_2 a_4 b_4. (Smile(e_2) \land \ldots \land b_4(e_2 :: a_4))) e(e_c :: (Del(a_2))) b_1) \land Rel(Sel(a_2), e, e_c))\]
 \[\Rightarrow \beta \lambda Sa_1 b_1. \exists e_c e_1 e_2. (Kiss(e_1) \land \ldots \land Smile(e_2) \land \ldots \land b_1(e_2 :: e_c :: (Del(e_1 :: a_1))) \land Rel(Sel(e_1 :: a_1), e_2, e_c))\]
Summary

- **Conclusion**
 - Event structure implemented compositionally
 - Discourse dynamics expressed via left & right context
 - Rhetorical relation concerned and embedded
 - $\text{[Discourse]} \neq \text{[Sentence]}$

- **Future Work**
 - Linguistic coverage extension for event semantics
 - Rhetorical relation determination
 - Other constraints besides the RFC
References

