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Abstract. A database is only usefull if it is associated a set of proce- dures allowing 
to retrieve relevant elements for the users' needs. A lot of IR techniques have been 
developed for automatic indexing and retrieval in document databases. Most of 
these use indexes depending on the tex- tual content of documents, and very few are 
able to handle graphical or image content without human annotation. 

This paper describes an approach similar to the bag of words tech- 
nique for automatic indexing of graphical document image databases and diferent 
ways to consequently query these databases. In an unsupervised manner, this 
approach proposes a set of automatically discovered sym- bols that can be 
combined with logical operators to build queries. 

1 Introduction 

A document image analysis (DIA) system transforms a document image into a 
description of the set of objects that constitutes the information on the document in a way 
that can be processed and interpreted by a computer [1]. Documents can be classified in 
mostly graphical or mostly textual documents [2]. The mostly textual documents also 
known as structured documents respect a certain layout and powerful relations exist 
between components. Examples of such documents are technical papers, simple text, 
newspapers, program, listing, forms. . . Mostly graphical documents do not have strong 
layout restrictions but usually relations exist between diferent document parts. Examples 
of this type of documents are maps, electronic schemas, architectural plans. . . 

For both categories of documents, graph based representations can be used to describe 
the image content (e.g. region adjacency graph [3] for graphical and Voronoi-based 
neighbourhood graph [4] for textual document images). 

This paper presents an approach similar with the "bag of words" method from 
Information Retrieval (IR) field applied to graphical document images. A ocument 
representation is built based on a bag of symbols found automatically using graph mining 
[5] techniques. In other words, we consider as "symbols", the frequent subgraphs of a 
graph-based document representation and we investigate if the description of a document 
as a bag of "symbols" can be profitably used in an indexing and retrieval task. 



The approach has the ability to process document images without knowledge of 
models for document content. Frequent items are used in clustering of textual documents 
[6], or in describing XML documents [7], but we do not know any similar approach in the 
DIA field. 

In the area of research for document image indexing, approaches based on partial 
document interpretation exist [8]. The images are automatically indexed using textual and 
graphical cues. The textual cues are obtained from the results proposed by an OCR 
system. The graphical indices are obtained by user anno- tation, or by an automatic 
procedure. In [9], Lorenz and Monagan present an automatic procedure. Junctions of 
adjacent lines, parallel lines, collinear lines and closed polygons are used as image 
features for indexing. Then, a weighting schema is used to reflect the descriptive power of 
a feature. In our paper, we also use term weighting but on a representation from a higher 
semantic level than the simple features used in [9]. 

The outline of this paper is as follows. Section 2 presents the graph represen- tation 
used and shows how we create this representation from a document image. Section 3 
presents the graph-mining method used. In Sect. 4, we describe how we search 
documents based on dissimilarities between bags of objects. Section 5 shows experimental 
results. We conclude the paper and outline perspectives in Sect. 6. 

2 Graph Representation 

Eight levels of representation for document images are proposed in [10]. These levels are 
ordered according to their aggregation relations. Data array, primitive, lexical, primitive 
region, functional region, page, document, and corpus level are the representation levels 
proposed. 

Without loosing generality, in the following paragraphs we focus on a graph- based 
representation build from the primitive level. The primitive level contains objects such as 
connected components (set of adjacent pixels with the same color) and relations between 
them. From a binary (black and white) document image we extract connected 
components. The connected components are represented by graph nodes. On each 
connected component we extract features. In the cur- rent implementation, the extracted 
characteristics are rotation and translation invariant features based on Zernike moments 
[11]. These invariants represent the magnitudes of a set of orthogonal complex moments 
of a normalized image. 

Let I be an image and C(I) the connected components from I, if c ∈ C(I) , c 
is described as c = (id, P ), where id is a unique identifier and P the set of pixels 
the component contains. Based on this set P , we can compute the center for the 
connected component bounding box and we can also associate a feature vector 
to it. Based on that, c = (id, x, y, v), v ∈ Rn. Subsequently, using a clustering 
procedure on the feature vectors, we can label the connected component and 
reach the description C = (id, x, y, l) where l is a nominal label. The graph G(I) 
representing the image is G = G(V (I), E(I)). Vertices V (I) correspond to connected 
components and are labelled with component labels. An edge between 

vertex u and vertex w exists if and only if (u.x − w.x)2 + (u.y − w.y)2 < t, 



where t is a threshold that depends on the global characteristics of image I (size, number 
of connected components,. . . ). 

The following paragraph presents the clustering procedure used to associate a label to 
each connected component. 

Clustering methods can by categorized into partitional and hierarchical tech- niques. 
Partitional methods can deal with large sets of objects ("small" in this context means less 
than 300) but needs the expected number of clusters in input. Hierarchical methods can 
overcome the problem of number of clusters by using a stopping criterion [12] but are not 
applicable on large sets due to their time and memory consumption. 

In our case the number of connected components that are to be labelled can be larger 
than the limit of applicability for hierarchical clustering methods. On the other hand, we 
cannot use a partitional method because we do not know the expected number of clusters. 
Based on the hypothesis that a "small" sample can be informative for the geometry of 
data, we obtain in a first step an estimation for the number of clusters in data. This 
estimation is obtained using an ascendant clustering algorithm with a stopping criterion. 
The number of clusters found in the sample is used as input for a partitional clustering 
algorithm applied on all data. 

We tested this "number of cluster estimation" approach using a hierarchical ascendant 
clustering algorithm [13] that employs Euclidean distance to com- pute the dissimilarity 
matrix, complete-linkage to compute between-clusters dis- tances, and Calinsky-
Harabasz index [12] as a stopping criterion. The datasets 
(T1, T2, T3) (see Table 1) are synthetically generated and contain well separated 
(not necessary convex) clusters. 

Table 1. Data sets description 

T |T | number of clusters 

T1 

24830 5
T2 

32882 15 
T3 

37346 24 

Considering S the sample extracted at random from a test set, in Table 2, we present 
predicted cluster numbers obtained for diferent sample sizes. After repeating the 
sampling procedure several times, we obtain a set of estimations for the number of 
clusters. We can see that by using a majority voting decision rule we can find the good 
number of clusters in most of the cases and even when the sample size is very small (50 or 
100) compared to the data set size. 

We used our sampling approach combined with the k-medoids clustering algo- rithm 
[14] on the connected components data set from images in our corpus (see Sect. 5). The 
k-medoids clustering algorithm is a more robust version of the well known k-means 
algorithm. The images from our corpus contain 6730 connected components. The 
proposed number of clusters using ten samples of size 600 is 
[16,14,17,16,16,19,7,17,15,16] and by considering the majority voting, we use 16 clusters 
as input to the partitional clustering algorithm. 



Table 2. Proposed cluster numbers 

|S| 50 
100 
300 
500 
600 
700 

T1 [6, 8, 

7, [5, 7, 

9, [7, 5, 

7, [8, 7, 

5, [5, 5, 

5, [5, 5, 

7, 
6, 5, 6, 7, 5, 5, 

8, 7, 5, 
5, 5, 5, 
5, 5, 7, 
5, 7, 5, 

6, 6, 5, 7, 5, 5, 
5, 5, 7, 
5, 5, 5, 
7, 7, 7, 
5, 7, 5, 

5] 6 7] 5 
7] 7 
5] 5 
5] 5 
5] 5 

T2 [9, 15, 15, 
[15, 15, 13, 
[15, 15, 15, 
[15, 15, 15, 
[15, 15, 15, 
[15, 15, 15, 

14, 13, 15, 15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15, 15, 15, 

13, 13, 14, 15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15, 15, 15, 
15, 15, 14, 

15] 15 15] 15 
14] 15 
15] 15 
15] 15 
15] 15 

T3 [11, 7, 9, 
[6, 14, 23, 
[22, 24, 23, 
[21, 25, 25, 
[20, 25, 21, 
[23, 20, 21, 

18, 7, 7, 21, 7, 17, 
19, 23, 24, 



24, 22, 24, 
24, 19, 23, 
20, 25, 24, 

6, 4, 14, 23, 16, 12, 
21, 21, 24, 
23, 24, 24, 
24, 25, 24, 
24, 21, 25, 

8] 7 11] 23 
24] 24 
24] 24 
22] 24 
24] 24 

After labelling the connected components (nodes in the graph), we now de- scribe the 
way these nodes are linked. The edges can be labelled or not (if unla- beled, the 
significance is Boolean: we have or don't have a relation between two 

(a) Initial image (b) Connected components labelling 

(c) Graph construction (d) Graph transaction 

Fig. 1. An image and its associated graph transaction 



connected components) and there can be relations of spatial proximity, based on "forces" 
[15], orientation or another criterion. In our current implementation the distance between 
centers of connected components is used (see Fig. 1). If the distance between two 
connected component centers is smaller than a threshold, then an edge will link the two 
components (nodes). 

3 Graph Mining 

"The main objective of graph mining is to provide new principles and efcient algorithms 
to mine topological substructures embedded in graph data" [5]. 

Mining frequent patterns in a set of transaction graphs is the problem of finding in 
this set of graphs those subgraphs that occur more times in the trans- actions than a 
threshold (minimum support). Because the number of patterns can be exponential, the 
complexity of this problem can also be exponential. An approach to solve this problem is 
to start with finding all frequent patterns with one element. Then, these patterns are the 
only candidates among which we search for frequent pattens with two elements, etc. in a 
level-by-level setting. In order to reduce the complexity, diferent constraints are used: the 
minimum support, the subgraphs are connected, and do not overlap. 

The first systems emerged from this field are SUBDUE and GBI [5]. These 
approaches use greedy techniques and hence can overlook some patterns. The SUBDUE 
system searches for subgraphs in a single graph using a minimum de- scription length-
based criterion. Complete search for frequent subgraphs is made in an ILP framework by 
WARMR [5]. An important concept is that of maximal subgraph. A graph is said to be 
maximal if it does not have a frequent super- graph [16]. The graph-mining systems 
were applied to scene analysis, chemical components databases and workflows. A system 
that is used to find frequent pat- terns in graphs is FSG (Frequent Subgraph Discovery) 
that "finds patterns cor- responding to connected undirected subgraphs in an undirected 
graph database" [17]. 

In our document image analysis context we are interested in finding maximal frequent 
subgraphs because we want to find symbols but to ignore their parts. 

The input for the FSG program is a list of graphs. Each graph represents a 
transaction. FSG is efective in finding all frequently occurring subgraphs in datasets  
containing over 200,000 graph transactions [17]. We present sub- sequently how we 
construct the transaction list starting from a set of document images. Using the procedure 
presented in Sect. 2, we create for each document an undirected labelled graph. 

Every connected component of this graph represents a transaction. We can further 
simplify the graphs by removing vertices that cannot be frequent and their adjacent 
edges. Using FSG we extract the frequent subgraphs and we con- struct a bag of graphs 
occurring in each document. In the following paragraphs, we consider that the frequency 
condition is sufcient for a group of connected components to form a symbol and we will 
conventionally make an equivalence between the frequent subgraphs found and symbols. 
As we can see in the exam- 



ple (Fig. 2), the proposed symbols are far from being perfect due to the image noise, 
connected components clustering procedure imperfections. . . however we can notice the 
correlation between this artificial symbol and the domain symbols. 

Fig. 2. Occurences of a frequent subgraph in an image 

In conclusion, the subgraphs proposed as frequent are used to model a docu- ment as a 
bag of symbols. Because some documents may not contain any sym- bols, the document 
representation is based on two vectors containing connected components labels, and 
symbols labels. 

A : (c1, c2, . . . , cn) , (s1, s2, . . . ,  
sm) 

where ci is the number of connected components labelled as i and sj is the number of 
occurences of symbol j in document A. 

4 Dissimilarity Between Document Descriptions 

In this paragraph, we present the measure employed to qualify the dissimilarity between 
the descriptions of two document images. 

A collection of documents is represented by a symbol-by-document matrix A, where 
each entry represents the occurrences of a symbol in a document image, 
A = (aik), where aik is the weight of symbol i in document k. Let fik be the 
frequency of symbol i in document k, N the number of documents in the collec- 
tion, and ni the total number of times symbol i occurs in the whole collection. 
In this setting, according to [18], one of the most efective weighting scheme is 
entropy-weighting. The weight for symbol i in document k is given by: 



⎛ ⎞
n

1
aik  

= log (1 + fik). ⎝1 + log N fij log fij ⎠ 
j=1 ni  ni 

Now, considering two documents A and B with the associated weights A = (a1, 
a2, . . . , at), B = (b1, b2, . . . , bt) where t is the total number of symbols, then 

d(A, B) = 1 − 
t
i=1 ai.bi 

t
i=1 

a2 

. i
t
i
=1

 bi 2

represents a dissimilarity measure based on the cosine correlation. 

5 Experiments 

The corpus used for evaluation contains 60 images from 3 categories: electronic (25 
images) and architectural schemas (5 images) and engineering maps (30 images) (see 
Fig. 3). In order to present a corpus summary we employed a mul- tidimensional scaling 
algorithm to represent in a two dimensional plot the dissim- ilarities between documents 
(see Fig. 4). Each document image is described with one of the following types of 
features: simple density and surface based charac- teristics (a vector with 30 components) 
or the connected components and symbol lists described above. In Fig. 4(a) we present 
the dissimilarities between images represented using simple features. In Fig. 4(b) are 
plotted the dissimilarities be- tween the document images computed using the cosine 
correlation presented in Sect. 4. The engineering maps are plotted using '*' symbols, 
electronic schemas with '+' , and the architectural schemas with 'x'. 

We further test the two representations in a classification context. Using a 10 fold 
stratified cross validation procedure and John C. Platt's sequential minimal optimisation 
algorithm for training a support vector classifier [19], we obtained 
the following results given in Tab. 3 

Fig. 3. Corpus images 



Table 3. Classification results using the simple characteristics 

Features number of correctly classification 
classified instances rates 

only simple features 55 
91.67 

% only bag of symbol representation 57 
95 % 

simple features and 
bag of symbol 58 96.67 
% 

We can see in Fig. 4 and the classification results (3) that the bag of symbols 
representation allows a better separation beetween image classes. This fact has an 
important influence on the quality of the query results. 

A query can be an image, a list of symbols and connected components, or only one of 
the later lists. 

query: (c1, c2, . . . , cn) , (s1, s2, . . . ,  

sm) 

query: (s1, s2, . . . , sm) 

query: (c1, c2, . . . , cn) 

After using the graph mining algorithm on the presented corpus we obtain 52 
frequent subgraphs. This subgraphs are the symbols that will be used in queries, and are 
numbered from 1 to 52. The description of the first 4 documents (in terms of what 
symbols and what are their corresponding frequencies) is subsequently 
presented : 

(s1, 1)(s2, 2)(s3, 3)(s4, 1)(s5, 4)(s6, 3)(s7, 2)(s8, 2)(s9, 2)(s13, 1)(s14, 1)(s16, 3) 
d1 : (s17, 2)(s18, 1)(s19, 4)(s20, 6)(s21, 1)(s22, 4)(s23, 2)(s24, 4)(s25, 2)(s26, 2) 

(s35, 1)(s36, 1)(s37, 1)(s41, 1)(s45, 1)(s46, 1)(s49, 1)(s51, 1)(s52, 1) 

d2 : (s1, 1)(s2, 3)(s3s3),(s4,s2)(,s1),(2)(s,61)1)s(s7,,1)((ss16,,1) (s19, 1)(s20, 3)

(s22, 1) 
,

(s23, 2)(s25, 2)( 39 1)( 42 

5 ,
s43 ( 47 

1) 48 2) 

d3 : (s1, 1)(s2, 1)(s3s4),(s4,s1)(,s5),(1)

(s,81)1)s(s111)1)s(s121)1)s(s131)1)s(s161)1)(s19, 2) 
, 7

,
,
,
,
,

(s20, 4)(s21, 1)( 22 3)( 25 s35 ( 39, ( 47, ( 48, ( 52, 

(s1, 4)(s2, 4)(s3, 3)(s4, 2)(s5, 2)(s6, 3)(s7, 1)(s8, 2)(s9, 2)(s11, 3)(s12, 1)(s16, 1) 

d4 : (s18,, 1)(s19,, 4)(s20,, 4)(s21,, 2)(s22,, 1)(s23,, 3)(s24,, 4)(s25,, 2)(s26,, 2)



(s36,, 1) (s37 1)(s39 2)(s40 2)(s41 1)(s42 1)(s44 1)(s46 1)(s47 2)(s48 2)(s49 1) 

(s51, 2)(s52, 2) 

In order to extract the formal description of a given query image we label 
the connected components of the query image, construct the graph, and em- ploy graph 
matching to detect which symbols occur in the query image. At the end of this process 
the query image is described by the two lists of connected components and symbols. 



Fig. 4. Document representations presented in a two dimensional space with respect 
to their reciprocal dissimilarities 

In order to evaluate experimental results we used precision and recall mea- sures. If A 
is the set of relevant images for a given query, and B is the set of 
retrieved images then : 

precision = | A∩ B | 
|B | 

recall = | A∩ B | 
| A| 

As shown on Fig. 3, the corpus contains images that are scanned and contain 

real and artificial noise. 



Table 4. Examples of queries and results 

query 

(s1, 4) 

(s1, 4)(s2, 4)(s3, 3)(s4, 2) 

(s1, 1)(s2, 3)(s3, 3)(s4, 2)(s5, 2) 

answer to query 
d37 dissimilarity=0.6782 
d15 dissimilarity=0.7843 d4 

dissimilarity=0.8070 d13 

dissimilarity=0.8450 d27 

dissimilarity=0.8452 
d2 dissimilarity=0.4233 
d7 dissimilarity=0.4722 d22 

dissimilarity=0.4864 d25 

dissimilarity=0.5046 d14 

dissimilarity=0.5054 
d2 dissimilarity=0.0065 
d25 dissimilarity=0.1949 

d2 : (s6, 1)(s7, 1)(s16, 2)(s19, 1)(s20, 3)1) d22 dissimilarity=0.2136 (s22, 1)

(s23, 2)(s25, 2)(s39, 1)(s42, 
d26 dissimilarity=0.2241 

(s43, 1)(s47, 1)(s48, 1) 
d21 dissimilarity=0.2362 

Table 5. Queries recall and precision 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

recall 0.75 0.5 0.48 0.55 0.56 0.76 0.6 0.4 0.32 0.16 
precision 0.6 0.31 0.8 0.73 0.87 0.95 0.88 0.5 0.42 0.4 

Table 4 gives 5 most relevant documents relative to the query. 
Table 5 gives the recall and precision for 10 diferent queries. Queries Q1-4 

represents symbol queries, i.e. as input is a list of symbols. The other queries are document 
images. 

6 Conclusion 

The research undertaken represents a novel approach for indexing document images. 
Our approach uses data mining techniques for knowledge extraction. It aims at finding 
image parts that occur frequently in a given corpus. These frequent patterns are part of 
the document model and can be put in relation with the domain knowledge. 

Using the proposed method we reduce in an unsupervised manner the semantic gap 
between a user representation for a document image and the indexation system 
representation. 

The exposed method can be applied to other graph representations of a doc- ument. In 
the near future, we will apply this approach to layout structures of textual document 
images. 

Another follow up activity is to quantify the way noise afects the connected 
components labelling, and the manner in which an incorrect number of clusters can afect 
the graph mining procedure. Based on this error propagation study we 



can further improve our method. Other possible improvements can be obtained if we 
would use a graph-based technique that can deal with error tolerant graph matching. 
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