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Allée du Professeur Camille Soula, 31400 Toulouse, France.
cLaboratoire d’Astrophysique de Toulouse-Tarbes, CNRS et Université de Toulouse, 14
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Abstract

In this paper, we combine theoretical and experimental approaches to study

the tidal instability in planetary liquid cores and stars. We demonstrate that

numerous complex modes can be excited depending on the relative values of

the orbital angular velocity Ωorbit and of the spinning angular velocity Ωspin,

except in a stable range characterized by Ωspin/Ωorbit ∈ [−1; 1/3]. Even if

the tidal deformation is small, its subsequent instability - coming from a

resonance process - may induce motions with large amplitude, which play a

fundamental role at the planetary scale. This general conclusion is illustrated

in the case of Jupiter’s moon Io by a coupled model of synchronization,

demonstrating the importance of energy dissipation by elliptical instability.

Key words: tides, tidal/elliptical instability, synchronization, binary

systems

∗corresponding author
Email address: lebars@irphe.univ-mrs.fr (M. Le Bars)

Preprint submitted to PEPI May 20, 2009



Page 2 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

1. Introduction1

The fundamental role of tides in geo- and astrophysics has been the sub-2

ject of multiple studies for more than four centuries. Beyond the well-known3

quasi-periodic flow of ocean water on our shores, tides are also responsible for4

phenomena as varied as the intense volcanism on Io or the synchronization5

of the Moon on Earth. In stars and liquid planetary cores, tides may also6

excite an hydrodynamic ”elliptical” instability, whose consequences are not7

yet fully understood. The purpose of the present work is twofold: we shall8

first systematically characterize the excited modes of the elliptical (or tidal)9

instability in a rotating spheroid depending on its orbital and spinning veloc-10

ities, and then demonstrate the importance of this instability in stellar and11

planetary binary systems using a simplified but illustrative model of tidal12

synchronization.13

The elliptical instability, whose existence is related to a parametric reso-14

nance of inertial waves, is well-known in aeronautics, and more generally in15

the field of vortex dynamics: it actually affects any rotating fluid, as soon as16

its streamlines are elliptically deformed. Since its discovery in the mid-1970s,17

the elliptical instability has received considerable attention, theoretically, ex-18

perimentally and numerically (see for instance the review by Kerswell, 2002).19

Its presence in planetary and stellar systems, elliptically deformed by gravi-20

tational tides, has been suggested for several years. It could for instance be21

responsible for the surprising existence of a magnetic field in Io (Kerswell and22

Malkus, 1998; Lacaze et al., 2006; Herreman et al., 2009) and for fluctuations23

in the Earth’s magnetic field on a typical timescale of 10,000 years (Aldridge24

et al., 1997). It may also have a significant influence on the evolution of25
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binary stars (e.g. Rieutord, 2003).26

In all these studies, it is assumed that the tidal deformation is fixed and27

that the excited resonance is the so-called spin-over mode, which corresponds28

to a solid body rotation around an axis inclined compare to the spin axis of29

the system. This is indeed the only perfect resonance in spherical geometry30

in the absence of rotation of the elliptical deformation (Lacaze et al., 2004).31

But in all natural configurations such as binary stars, moon-planet systems32

or planet-star systems, orbital motions are also present, which means that33

the gravitational interaction responsible for the tidal deformation is rotating34

with an angular velocity and/or a direction different from the spin of the35

considered body. This significantly changes the conditions for resonance36

and the mode selection process, as recently demonstrated in the cylindrical37

geometry (Le Bars et al., 2007).38

The paper is organized as follow. In section 2, in complement to the39

trends presented in Le Bars et al. (2007), we systematically characterize the40

excited modes of the elliptical instability in a rotating spheroid depending on41

its orbital and spinning velocities, using both theoretical and experimental42

approaches. We then describe in section 3 a fully coupled simplified model of43

synchronization of stellar and planetary binary systems, demonstrating the44

importance of energy dissipation by elliptical instability. In the last section,45

the main results of the paper are summarized and general conclusions for46

geo- and astrophysical systems are briefly discussed.47

3
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2. Excited modes of the elliptical instability in an orbiting spinning48

spheroid49

Our study is based on the laboratory experiment shown in figure 1a.50

The set-up consists in a deformable and transparent hollow sphere of radius51

R = 2.175cm, set in rotation about its axis (Oz) with an angular velocity52

ΩF up to ±300rpm, simultaneously deformed elliptically by two fixed rollers53

parallel to (Oz). The container is filled with water seeded with anisotropic54

particles (Kalliroscope). For visualization, a light sheet is formed in a plane55

coinciding with the rotation axis, allowing the measurement of wavelengths56

and frequencies of excited modes. The whole set-up is placed on a 0.5m-57

diameter rotating table allowing rotation with an angular velocity Ωorbit up58

to 60rpm. Such a system is fully defined by three dimensionless numbers:59

ε, the eccentricity of the tidal deformation, Ω = Ωorbit/ΩF , the ratio be-60

tween the orbital and the fluid angular velocities, and E = ν/ΩFR
2, an61

Ekman number, where ν is the kinematic viscosity of the fluid. In geo- and62

astrophysical terms, this toy model mimics a tidally deformed fluid body63

spinning at Ωspin = ΩF + Ωorbit with a tidal deformation rotating at the or-64

bital velocity Ωorbit (see figure 1b). Note that in natural configurations, the65

gravitational interactions responsible for the boundary deformation of the66

considered planet or star also act over the whole depth of the system. This67

feature cannot be taken into account in our toy model. However, it touches68

another side of the problem, namely the role of compressibility and stratifica-69

tion which we leave for subsequent studies. We focus here on incompressible70

effects only, considering a fluid of uniform density.71
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2.1. Linear global analysis72

As previously mentioned, the elliptical instability is generated by the73

parametric resonance of two normal modes of the undistorted circular flow74

with the underlying strain field (e.g. Waleffe, 1990; Kerswell, 2002). We have75

thus performed a so-called ”global” analysis of the instability, which consists76

in (i) determining the normal modes of the sphere, (ii) calculating explicitly77

the conditions for resonance, which immediately provides information on the78

structure of the selected instability and (iii) determining the growth rate of79

this instability. In the following, we work in the frame rotating with the ro-80

tating table (i.e. in the frame where the elliptical deformation is stationary),81

and variables are nondimensionalized using the characteristic lengthscale R82

and the characteristic timescale 1/ΩF (i.e. the relevant timescale for the83

elliptical instability, corresponding to the differential rotation of the fluid84

compared to the elliptical deformation).85

As explained in Le Bars et al. (2007), inviscid normal modes in a rotating86

container submitted to a global rotation Ω are related to inviscid normal87

modes without global rotation through the relation88

{u, p}(ω,Ω,m, l) = { u

1 + Ω
, p}(ω̃, 0,m, l) (1)

where u and p stand for the velocity and the pressure respectively. Here,89

ω is the mode frequency in the frame rotating with the elliptical deforma-90

tion, ω̃ = (ω + mΩ)/(1 + Ω), and m and l are azimuthal and ”meridional”91

wavenumbers respectively (see Lacaze et al., 2004, for details). Due to this92

property, the dispersion relation solutions in the sphere with global rotation93

are the same as the ones given by Lacaze et al. (2004) without global rotation94

5
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when ω is replaced by ω̃. The linear analysis of the elliptical instability in95

the rotating frame can thus be expressed from the results obtained without96

global rotation. The condition for resonance between two waves is simply97

given by (m2, ω2) = (m1 + 2, ω1), and the corresponding excited resonance is98

labeled by (m1,m2). Note that as frequencies of normal modes are confined99

to the interval m−2 < ω̃ < m+2, resonances are only possible for Ω outside100

the range [−3/2;−1/2]. There, the growth rate σ1 = σ/ε is solution of the101

equation (see again Lacaze et al., 2004, for details)102 (
σ1J̃1|1 −

√
Eν1

s (1 + Ω)2/ε− C̃1|1

)(
σ1J̃2|2 −

√
Eν2

s (1 + Ω)2/ε− C̃2|2

)
=
(
Ñ1|2 − (1 + Ω)Ĩ1

)(
Ñ2|1 − (1 + Ω)Ĩ2

)
,

(2)

where J̃i|i corresponds to the norm of mode i, Ñi|j to the coupling coefficient103

between modes i and j, νis to the viscous damping induced by the no-slip104

boundary condition on each mode derived from the work of Kudlick (1966)1,105

and C̃i|i to the possible detuning of the instability when Ω is slightly off the106

perfect resonance condition. The exact expressions of all these coefficients107

are given in appendix A.108

Numerical resolution of equation (2) determines the growth rate of any109

given resonance depending on the dimensionless parameters (ε,Ω, E). Our110

computations demonstrate that only principal resonances characterized by111

the same meridional wavenumber (i.e. l1 = l2) lead to a significant posi-112

tive growth rate, as already noted for non-rotating cases by Kerswell (1993)113

1Note that only boundary layer effects are considered here, and that damping due to

inner shear layers are neglected. This assumption has been fully justified by numerical

computation for the spin-over mode (Hollerbach and Kerswell, 1995), and is supposed to

remain valid here.

6
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and Lacaze et al. (2004). An example of the resolution of equation (2) as a114

function of Ω is shown in figure 2(a) for the parameter range relevant to our115

experimental configuration. Each mode can be excited inside a resonance116

band in Ω where the growth rate is positive. When several resonances are117

possible at a given value of Ω, one expect the most unstable mode (i.e. the118

one with the largest growth rate) to be the first one excited. We also show119

in figures 2(b) and 2(c) the effects of eccentricity and Ekman number: de-120

creasing ε implies narrower resonance bands, whereas decreasing the Ekman121

number allows the excitation of more resonances. In the limit of small Ekman122

numbers relevant to planetary and stellar systems, we find that there always123

exists an excitable resonance, except in the stable range Ω ∈ [−3/2;−1/2],124

corresponding in astrophysical terms to Ωspin/Ωorbit ∈ [−1; 1/3]. Besides, as125

shown in figure 2(c), its growth rate is correctly approximated by126

σ1 =
(3 + 2Ω)2

16(1 + Ω)2
− c
√
E

ε
, (3)

where the first term on the right-hand side comes from the inviscid local127

analysis (Le Dizès, 2000) and where c is a constant of order 1, which can be128

explicitly computed for each resonance using equation (2).129

2.2. Experimental results130

A series of experiments was performed with a fixed eccentricity ε = 0.16131

and various Ekman numbers in the range [10−5; 10−4], systematically chang-132

ing Ωorbit and ΩF to excite various resonances. Starting from rest, we first133

set the table’s rotation to its assigned value Ωorbit. Once solid body rotation134

is reached, the second motor controlling the fluid rotation is turned on. We135

7
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then observe the potential development of an instability using a video cam-136

era embedded on the table. As illustrated in figure 2(a), good agreement137

with the global analysis is found regarding the selected resonance: outside138

the stable range Ω ∈ [−3/2;−1/2], stationary (−1, 1) mode with a sinusoidal139

rotation axis and various wavelengths as well as other more exotic modes rec-140

ognized by their complex radial structure and/or by their periodic behavior141

(see figures 3 and 4) can be selected by changing the dimensionless ratio Ω142

only, providing the Ekman number is small enough. For each selected value143

of Ω, the first observed mode of instability corresponds to the most unstable144

mode by the theory (i.e. the one with the largest growth rate). In the vicin-145

ity of the threshold, the excited resonance induces a flow whose saturation146

amplitude rapidly grows with ε and ΩF , until reaching a value comparable147

to the imposed rotation velocity ΩFR (see for instance figure 5). At slightly148

smaller Ekman numbers or slightly larger ε, we then observe disordered pat-149

terns superimposed on the selected main flow (figure 5c,d). These patterns150

may induce the collapse of the selected mode on a very rapid timescale com-151

parable to the rotation rate, and an intermittent behavior takes place. When152

several theoretical resonances are close to each other, we observed complex153

patterns originating from the superimposition or the succession in time of154

the different modes.155

Note again that in the absence of global rotation, the only perfect res-156

onance and the first destabilized mode in the vicinity of threshold is the157

spin-over mode. This is the first time that oscillatory modes such as the158

(0, 2) one shown in figures 3 and 4a and the (1, 3) one shown in figure 4b are159

experimentally observed in a sphere.160

8
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2.3. Estimates of power dissipation161

Energy dissipated by tides in a planet is traditionally related to the dis-162

sipation of the induced shear flow by viscosity in its fluid part(s) and by163

anelasticity in its solid part(s): it is thus typically proportional to the square164

of the (small) tidal deformation ε. With the exception of Earth, where the165

prevalent source of dissipation is due to viscous friction of water tides on166

ocean floor (estimated power 2 × 1012W ), the fluid component of tidal dis-167

sipation usually remains negligible. However, we observe in our experiments168

that even if the tidal deformation is very small, its subsequent instability169

induces a flow over the whole system with a typical velocity comparable to170

the imposed rotation velocity ΩFR, as soon as ε/
√
E is about 10 (see for171

instance figure 5 and the analytical model by Lacaze et al. (2004)). This is172

especially important when trying to estimate the energy dissipated by the173

elliptical instability.174

Schematically, the intermittent behavior observed at small Ekman num-175

bers in our experiment can be characterized by three stages. First, starting176

from the base flow (which can be either a laminar solid body rotation or a177

more turbulent state induced for instance by convection or differential ro-178

tation), the instability grows continuously on a typical time given by the179

growth rate, until it saturates to a typical velocity. Then, the selected mode180

breaks down into small scales in a very short timescale, comparable to some181

fluid’s rotations and significantly smaller than the typical growth time of the182

instability (see also Lacaze et al., 2004). A new cycle then begins. Note that183

the energy dissipation related to this collapse has already been evaluated by184

several authors (Malkus, 1968; Vanyo, 1991; Kerswell, 1996; Kerswell and185

9
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Malkus, 1998) and leads to the estimate Pdissip ∼ ρR5Ω3
F (this would corre-186

spond to an unrealistically huge amount of dissipation during the collapse187

breakdown, e.g. Pdissip ∼ 2 × 1024W in the Earth, but see the relevant dis-188

cussion in Kerswell and Malkus (1998)). In the context of this paper, we189

focus on the continuous viscous dissipation during growth and saturation of190

the instability.191

The energy necessary to excite and maintain the selected mode is supplied192

by the tidal deformation and by the relative angular velocity of the spherical193

container (i.e. the rigid mantle in the case of a planet) compared to tides.194

Following the model of Vanyo and Likins (1972) developed in the closely195

related case of precession, one may consider that this energy is transmitted196

to the fluid (i.e. the liquid core in the case of a planet) through a thin197

viscous boundary layer at the solid-liquid interface. In the absence of orbital198

velocity, the spin-over mode takes place, similarly to the case of precession,199

and we may consider the ”rigid sphere approximation” introduced in Vanyo200

and Likins (1972): the interior portion of the fluid is assumed to behave as201

a perfectly rigid sphere rotating at Ωspin + ΩSO, where ΩSO is the spin-over202

mode. The moment of the container acting on the fluid can then be expressed203

as204

Cm/c = −2Mν
R

h
ΩSO, (4)

where M is the mass of the fluid and h the size of the viscous boundary layer,205

taken as h =
√
ν/ΩSO. The power dissipated by the whole system (i.e. the206

container rotating at Ωspin plus the fluid rotating at Ωspin + ΩSO) is then207

simply given by208

Pell = ΩSO ·Cm/c = −2Mν
R

h
Ω2
SO, (5)

10
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Replacing ΩSO by ΩspinωSO, where ωSO is the dimensionless spin-over mode209

amplitude which typically ranges between 0 (below threshold of the tidal210

instability) and 1 (far from threshold of the tidal instability), the dissipated211

power is written212

Pell = −2MR
√
ν|Ωspin|5/2|ωSO|5/2. (6)

The non-linear evolution of ωSO as a function of time and its dependence213

on ε and E have been modeled theoretically by Lacaze et al. (2004) for the214

laminar mode, in close agreement with experimental results. We are thus in215

position to evaluate the energy dissipation Pell for the spin-over mode. In216

the more general case where orbital velocity is present, the energy necessary217

for the instability comes from the difference between the spin velocity and218

the rotation velocity of the tides (i.e. the orbital velocity) and one may219

reasonably expect the dissipated power to be220

Pell = −2M
√
ν|Ωspin − Ωorbit|5/2|ωell|5/2. (7)

Here, ωell is the dimensionless amplitude of the selected resonance, which221

should be comparable to the amplitude of the spin-over mode for the same222

values of eccentricity and Ekman number. Note that at large value of ε or223

small value of E, this calculation will represent a lower bound, since it does224

not take into account the additional turbulent dissipation coming from the225

chaotic motions superimposed on the large scale mode (see figure 5).226

Evaluation of Pell for the Earth is difficult because its core is just at the227

vicinity of the threshold for instability, where ωell rapidly changes from 0 to228

1 (Lacaze et al., 2006). Following Aldridge et al. (1997), if we suppose that229

the growth rate of the instability is correctly approximated by the classical230

11
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formula σ = 0.5ε−2.62
√
E and that the typical growth rate of the instability231

in the Earth ranges between 103 and 106 years, the dissipation due to the232

(laminar) tidal instability ranges between Pell ∼ 109W and Pell ∼ 2× 105W233

respectively. It thus remains relatively small compared to the viscous dissipa-234

tion by water tides on ocean floor (typically 2×1012W ), which is supposed to235

be the dominant effect in the case of the Earth. Let us now look at Jupiter’s236

moon Io. As explained for instance in Kerswell and Malkus (1998), Io is237

almost synchronized in its revolution around Jupiter, but orbital resonances238

with Europa and Ganymede force it to follow a slightly elliptical orbit of239

eccentricity β = 0.004. As a result, the tidal bulge raised by Jupiter, of240

magnitude ε ∼ 6 × 10−3, oscillates back and forth across Io’s body with a241

typical angular velocity Ωorbit = Ωspin(1 − 2β cos(Ωspint)). With the charac-242

teristic values for Io tides given by Kerswell and Malkus (1998), one then243

finds that the elliptical instability almost saturates at its maximum value244

(i.e. ωell = 0.99) and Pell ∼ 4 × 109W at saturation, i.e. a large dissipation245

for fluid motion, but negligible compared to the estimated tidal dissipation in246

Io’s mantle (i.e. O(1014)W ). However this value corresponds to the present247

state of Io (i.e. almost synchronized) and does not preclude that tidal dissi-248

pation may have had a first order influence in the past, especially during its249

evolution towards synchronization.250

3. A fully coupled model of synchronization of stellar and planetary251

binary systems252

Our theoretical study, confirmed by laboratory experiments, highlights253

several points directly relevant to synchronizing stellar and planetary binary254

12
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systems. Provided that
√
E/ε << 1 (which is usually the case for moons255

and close binary stars, and which may be the case for some planetary cores),256

we conclude from the previous section that (i) a mode of the elliptical insta-257

bility will always be excited, except when Ωspin/Ωorbit ∈ [−1; 1/3], that (ii)258

its growth rate is correctly approximated by equation (3) with a constant259

1 < c < 10, that (iii) the induced fluid motion may take various and complex260

forms, and that (iv) the tidal instability may generate first order motions.261

As opposed to our experiments where spinning and orbital angular velocities262

are imposed by two motors, the energy dissipation related to these motions263

in natural configuration implies an evolution of the binary system towards264

synchronization. To further illustrate and quantify this effect, we now exam-265

ine a fully coupled model of tidal synchronization based on our theoretical266

and experimental results. Note again that in the limit
√
E/ε << 1, reso-267

nance bands are dense in the Ωspin/Ωorbit space, except in the stable range268

Ωspin/Ωorbit ∈ [−1; 1/3]. We thus suppose that during the evolution, the in-269

stability jumps from one resonance band to the following one while always270

remaining at saturation. In particular, we do not consider any cyclic behav-271

ior with growing and breakdown phases of the instability, as observed in our272

experiments with unaltered forcing.273

We consider two spinning bodies of radius Ri and mass Mi orbiting on274

a circular trajectory of radius a. We note Ii and Ωspin,i the moment of275

inertia and the angular velocity of the mantle of body i, and Icore,i and276

Ωcore,i the moment of inertia and the angular velocity of the core of body i.277

The tidal deformation of body 1 by body 2 is given in the limit of hydrostatic278

equilibrium by ε = 3
2
M2

M1
(R1

a
)3. The evolution of this system is described by279

13
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two coupled equations, corresponding to the conservation of total angular280

momentum281

L =
M1M2

M1 +M2

a2Ωorbit+I1Ωspin,1 +Icore,1Ωcore,1 +I2Ωspin,2 +Icore,2Ωcore,2, (8)

and to the decrease of mechanical energy282

E = −GM1M2

2a
+

1

2
I1Ω2

spin,1 +
1

2
Icore,1Ω2

core,1 +
1

2
I2Ω2

spin,2 +
1

2
Icore,2Ω2

core,2 (9)

because of tidal dissipation (see for instance Rieutord, 2003). As opposed283

to our experiments, the synchronizing system evolves from one resonance to284

another as the spin and orbital velocities continuously change. We suppose285

that the mode remains at saturation during this evolution, and thus approx-286

imate the tidal dissipation in the core of each body by (7) at saturation. The287

amplitude of the mode is given by the corresponding value of the spin-over288

mode determined by Lacaze et al. (2004).289

Let’s now assume that body 1 corresponds to a typical moon with a290

50% core orbiting a large planet (for instance Io in the vicinity of Jupiter).291

Then, the much heavier body 2 evolves on a much longer timescale, and292

the spin and core velocities of body 2 in equations (8) and (9) can be taken293

as constant. Besides, the angular momentum of the moon core typically294

corresponds to 10% of the angular momentum of its mantle, and core terms295

can be neglected in equations (8) and (9) to keep the problem simple. Then,296

using equation (8) and the third Kepler law (i.e. Ω2
orbita

3 = G(M1 + M2),297

where G is the gravitational constant) to eliminate the orbital velocity and298

radius, the energy equation dE/dt = −Pell can easily be reduced to a single299

equation for the spin angular velocity300

dΩspin,1

dt
= −2Mcν

1/2

I1

|ωell|5/2|Ωspin,1 − Ωorbit|1/2(Ωspin,1 − Ωorbit), (10)

14
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(
a

1/2
0 +

I1(Ωinit
spin,1 − Ωspin,1)

M1(GM2)1/2

)2

, Ωorbit =
(GM2

a3

)1/2

, (11)

where Mc is the mass of the liquid core of body 1, Ωinit
spin,1 its initial spin-301

ning angular velocity and a0 the initial orbital radius. The (Ωspin,1 − Ωorbit)302

factor on the right-hand side of equation (10) implies that the system sys-303

tematically evolves towards the equilibrium state of synchronization (i.e.304

Ωspin,1 = Ωorbit).305

The evolution of a typical body equivalent to Jupiter’s moon Io is shown306

in figure 6 for three different initial conditions. When the tidal instability is307

present, the evolution takes place on very short time scales of 10000 years, and308

comes from energy dissipation as large as 100 times the present dissipation by309

Io’s mantle. Besides, figure 6 illustrates the following general rules. A slow or310

moderately fast prograde moon (i.e. Ωinit
spin,1/Ω

init
orbit > 1/3, solid line) always311

excites elliptical instability and thus evolves rapidly towards synchronization.312

A slow retrograde moon (i.e. Ωinit
spin,1/Ω

init
orbit < −1, dashed line) initially ex-313

cites a resonance and thus evolves rapidly towards antisynchronization (i.e.314

Ωspin,1 = −Ωorbit), where no resonance is possible anymore. Finally, a fast315

retrograde or very fast prograde moon (i.e. −1 < Ωinit
spin,1/Ω

init
orbit < 1/3, dotted316

line) cannot excite any resonance. Note that in the last two cases, the sys-317

tem should evolve because of other processes not considered here (e.g. solid318

dissipation, viscous diffusion of the tidal shear, ...) and will ultimately reach319

the domain of elliptical instability. However, it would be very interesting320

to perform a systematic analysis of the ratio Ωspin/Ωorbit for all moons and321

planets in planetary systems, in order to verify the potential impact of the322

zone of slow evolution Ωspin/Ωorbit ∈ [−1; 1/3].323

15



Page 16 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

4. Conclusion324

In this paper, combining theoretical and experimental approaches, we325

have systematically characterized the various and complex resonances excited326

by tidal instability in planetary liquid cores and stars, depending on their327

relative orbital and spinning angular velocities. We have also demonstrated328

that tidal instability may play a dominant role in the synchronization process329

of stellar and planetary binary systems. Of course, our approach is highly330

simplified, regarding both the structural model of the binary system as well331

as the estimated power dissipated by tides. Moreover, the elliptical insta-332

bility studied here will compete in natural configurations with various other333

phenomena, such as stable stratification and convection (see for instance the334

study of the interaction between the elliptical instability and thermal effects335

in Le Bars and Le Dizès, 2006), or solidification (a solid inner core ampli-336

fies the viscous dissipation by the generation of detached shear layers, e.g.337

Rieutord et al., 2001, but should appear on a longer time scale according338

to the orders of magnitude found here). One should also notice that our339

present study focus on hydrodynamical aspects of the tidal instability only,340

neglecting Lorentz forces related to planetary or stellar magnetic fields. This341

simplification is fully justified in the case of Io (see Herreman et al., 2009),342

but magnetic effects may be predominant in other situations. Anyway, the343

key point demonstrated here is that even if the tidal deformation is very344

small, its subsequent instability may have a velocity amplitude of first order345

over the whole domain and takes various and complex forms. As a result,346

it appears that its influence should not be neglected or oversimplified when347

describing the dynamics of planetary cores and stars, or when tackling other348
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problems relevant at the planetary and stellar scales, such as core cooling349

and dynamo process.350

351

Appendix A : notations.352

The operators appearing in equation (2) are defined as follows.353

Volume terms J̃i|i, Ñi|j and C̃i|i respectively correspond to the norm of354

mode i, to the coupling coefficient between modes i and j, and to the detuning355

of the instability when Ω is slightly off the perfect resonance condition. They356

are computed using the scalar product357

X̃i|j =

∫ ∫
ū0
i · X̃u0

jrdrdz

applied respectively to the operators358

J =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 N =


D − 1 0 0 0

−2I D + 1 0 0

0 0 D 0

0 0 0 0

 C =


0 2Ω 0 0

−2Ω 0 0 0

0 0 0 0

0 0 0 0

 .

Here, D = − ∂

∂r
− I ∂

∂θ
, I2 = −1, and the vectors u0 are defined as359

u0 =


u0

v0

w0

p0


and correspond to the configuration without global rotation (see Lacaze et al.,360

2004).361
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Surface terms νjs and Ĩj respectively correspond to the viscous dissipation362

close to the solid boundary estimated using the work of Kudlick (1966) and363

to surface effect induced by the elliptic shape of the boundary. They are364

given by365

Ĩ1 =

∫ 1

−1

p0
1

(
−I (1− z2)

4

∂u0
2

∂r
+

(1− z2)1/2

2
v0

2 − I
z(1− z2)

4

∂w0
2

∂r
− I z

4
w0

2

)
dz,

Ĩ2 =

∫ 1

−1

p0
2

(
I

(1− z2)

4

∂u0
1

∂r
+

(1− z2)1/2

2
v0

1 + I
z(1− z2)

4

∂w0
1

∂r
+ I

z

4
w0

1

)
dz,

366

and νjs =

∫
Sphere

∇∗p0
j · LdS,

where ∇∗ = (∂/∂r,−Im/r, ∂/∂z),367

L =


−1

2

(
Q+

−p+ + Q−
−p−

)
− I

2 cosφ

(
Q+

−p+ −
Q−
−p−

)
− tanφ

2

(
Q+

−p+ + Q−
−p−

)
 ,

368

p± =
1 + I sign

(
(1 + Ω)(−ω−m

1+Ω
± 2 cosφ)

)
√

2

√
|(1 + Ω)(−ω −m

1 + Ω
± 2 cosφ)|,

369

and Q± = u0 ± Iv0 cosφ.
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tFigure 1: (a) Sketch of the experimental set-up and (b) correspondence with the geophysical

configuration (top view).

Figure 2: (a) Viscous growth rate as a function of Ω, determined analytically for the

first 21 principal resonances of the (−1, 1) mode (continuous lines), of the (0, 2) mode

(dashed lines) and of the (1, 3) mode (dotted lines), for fixed values of eccentricity ε = 0.16

and Ekman number E = 1.7 × 10−4. Symbols stand for the location of experimentally

observed resonances, with triangles corresponding to (−1, 1) modes, stars to (0, 2) modes

and squares to (1, 3) modes. (b) The same for ε = 0.16, E = 1.7×10−8 and (c) ε = 0.016,

E = 1.7× 10−8. Also shown in (c) is the approximated growth rate given by equation (3),

using two extreme values c = 0 and c = 10. Note that in the limit
√
E/ε << 1, resonance

bands are dense in the Ω space, except in the stable range Ω ∈ [−3/2;−1/2]. The false

impression that holes without resonance could be created in (c) only comes from the fact

that we restrain our computations to the first 63 resonances.

Figure 3: Time sequence of the periodic (0, 2) mode excited in our experiment for ε = 0.16,

E = 4.5× 10−4 and Ω = −0.20 (i.e. ΩF = 4.7rad/s and Ωorbit = −0.94rad/s).

Figure 4: Spatiotemporal diagrams obtained by extracting the same line parallel to the

rotation axis in each image of a given video sequence: (a) (0, 2) mode excited in our

experiment for ε = 0.16, E = 4.5× 10−4 and Ω = −0.20 (i.e. ΩF = 4.7rad/s and Ωorbit =

−0.94rad/s) and (b) (1,3) mode excited in our experiment for ε = 0.16, E = 3.4×10−4 and

Ω = −0.11 (i.e. ΩF = 6.2rad/s and Ωorbit = −0.68rad/s). The measured mode pulsations

are respectively ω = 4.4rad/s and ω = 12.6rad/s, in good agreement with the theoretical

predictions.
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Figure 5: Kalliroscope visualization of the elliptical instability for a fixed Ekman number

E = 10−5 and increasing values of ε (note that these four pictures were obtained in a

20cm in diameter sphere). The effective rotation axis of the fluid is clearly visible, coming

from the superimposition of the imposed vertical rotation and the spin-over mode. Hence,

the inclination angle is an indication of the ratio between the mode amplitude and the

imposed rotation. It seems to saturate for ε/
√
E > 0(10), where the instability induces

velocity perturbations comparable to the imposed rotation velocity. Further increasing ε,

the flow becomes more and more complex at small scale where disordered motions take

place. However, the spin-over mode remains present at large scale. The same behavior

is observed when decreasing the Ekman number. Such an organization of the flow with

a large scale excited mode with first order velocities and superimposed three dimensional

turbulence is expected at the planetary scale, for instance in Io’s core.

Figure 6: Evolution of a typical moon corresponding to Io under the influence of Jupiter’s

tides (i.e. M1 = 8.93× 1022kg, M2 = 1.90× 1027kg, a0 = 421800km, R1 = 1840km with a

50% core, I1 = 1.2×1035kg.m2, ν = 10−6m2s−1) for three different initial spinning angular

velocities, corresponding to a slow prograde moon (Ωinit
spin,1/Ω

init
orbit = 4, solid line), to a slow

retrograde moon (Ωinit
spin,1/Ω

init
orbit = −4, dashed line) and to a rapid moon (Ωinit

spin,1/Ω
init
orbit =

1/4, dotted line): (a) evolution of the distance between Io and Jupiter in comparison with

the initial distance a0 = 421800km, (b) evolution of the ratio between the spin and orbital

angular velocities and (c) dissipated power by the elliptical instability.
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