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Abstract

Abductive reasoning is an explanatory process in which potential causes of an ob-
servation are unearthed. In its classical – crisp – version it offers little lattitude for
discovery of new knowledge. Placed in a fuzzy context, abduction can explain obser-
vations which did not, originally, exactly match the expected conclusions. Studying
the effects of slight modifications through the use of linguistic modifiers was, there-
fore, of interest in order to describe the extent to which observations can be modified
yet still explained and, possibly, create new knowledge. We will concentrate on the
formal definition of fuzzy abduction given by Mellouli and Bouchon-Meunier. Our
results will be shown to be incompatible with established theories. We will show
where this incompatibility comes from and derive from it a selection of fuzzy impli-
cation, based on observable data.

Key words: Abductive reasoning, fuzzy inference, fuzzy implications, Generalised
Modus Ponens

1 Introduction

Abductive reasoning, or inference to the best explanation, constructs a set
of likely explanations for an observation, given the current knowledge of the
world. It has been used in various fields such as medical diagnosis [1,2], fault
diagnosis [3,4], query refinement [5], natural text comprehension [6,7] or even
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web browsing [8] where context relative hypotheses are required to interpret
observations.

These fields are generally imprecise and uncertain either because of human
intervention or because the data in question simply is not crisp. These impre-
cision and uncertainty of data or knowledge would justify the use of a fuzzy
formalism in themselves. The added benefit of a fuzzy formalism is that the
observed data need not necessarily match the knowledge exactly.

Therefore we think that the study of linguistic modifiers in abductive reasoning
is essential in preserving added information. For instance, if an appendicitis
implies a pain in the lower abdomen, shouldn’t an observed severe pain in the
abdomen lead to conclude to a peritonitis rather than, at best, the original
appendicitis?

We limit our study to the formal description of fuzzy abductive reasoning
given by Mellouli and Bouchon-Meunier in [9,10] which generalises classical
abduction by inversing the Generalised Modus Ponens (GMP). We will start
this paper with a reminder of these results and their origin in Section 2.3. In
Section 2.4 we briefly summarise the different types of rules, as specified by
Dubois and Prade [11,12], in particular those for which Mellouli and Bouchon-
Meunier have chosen to reverse the GMP. This initial segmentation of the
problem will set the context of our work.

This context is ‘fuzzy implication dependent’. Therefore, Sections 3 and 4
introduce our first results using different linguistic modifiers and Gödel’s and
 Lukasiewicz’s implications. One of these results is shown to be in contradiction
with GMP consequences.

Section 5 sets off with an explanation of the original inconsistency and moves
on to explain how we may use this result to classify rules and give them
an ‘a posteriori’ interpretation. To do this we introduce, in Section 5.2, the
implication and GMP operators we will focus on and revise some results on
the GMP.

We conclude this paper with our perspectives on future works on the GMP for
abductive reasoning, on a different semantic classification of fuzzy implications
and on our continuing study of the fuzzification of abductive reasoning, for
other operators, complex rules and hypotheses classification.
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2 Problem setting

2.1 Abduction

Suppose you know that ‘If it rains, then the ground is wet’ and you wake
up to find that the ground is indeed wet. What abduction suggests is that
it might have rained. Formally, a crisp abduction scheme is represented in
Table 1. What it says is that, given your knowledge of the world, p is a suitable
explanation for an observed event q. It also says that any rule which concludes
on the observation q offers a candidate explanation in its premise.

Rule: If p, then q

Observation: q

Explanation: p is a possible explanation for observation q

Table 1
General crisp abduction scheme

Suppose, now, you also knew that ‘If the automatic watering system goes
off, then the ground is wet’. Then you would have two possible explanations -
setting aside their conjunction, for the time being - with no way of establishing
which was more valid. This would be the case, as we have already seen, for any
rule concluding on wet ground. The problem of ranking candidate explanations
is a complicated and usually task specific problem in itself, and not one we
will address in this work. We will suppose, from here on out, that we have
one observation and study the construction of one explanation for it. Should
more than one rule match the observation, we would apply the same method
to generate all potential explanations and only then determine which, in our
context, was the most satisfactory.

We will also, at this time, set aside the problem of complex conclusions. Sup-
pose that ‘If it rains, then the ground is wet and there are clouds’ and you
observe, once again, the ground to be wet. You could either condition the
explanation of this observation to the observation of clouds (i.e. knowing the
ground is wet, if there are clouds, then it may have rained), or you could use
this ‘missing’ (often referred to as ‘abduced’) information to subsequently rank
generated explanations. The described crisp scheme for abduction obviously
offers little alternatives, since observable elements either match, do not match
or have not yet been observed. We will see that this is different in our studied
fuzzy abduction scheme.
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2.2 Fuzzy Abduction and Rule Types

In the crisp context abduction provides, for a given observation, the premises
of the rules to which it was a conclusion. This is relatively forthcoming from
the fact that if the premise were true, then the conclusion must be true. This
does not mean, obviously, that the premise is true, but that it qualifies as an
adequate hypothesis, as a sufficient condition for the observation to be true.

The adaptation of this process to approximate reasoning is complicated by
the fact that, in general, a rule does not entail a single, fixed conclusion. A
fuzzy conclusion is conditionned by, amongst other things, the shape of the
observation. This is also a benefit to abductive reasoning, as observations do
not need to match known conclusions exactly. However, identifying potential
explanations in a fuzzy context still needs to find premises whose truth would
maximise the chances of making the observation. One way of doing this is to
look at the fuzzy inference scheme. Just like crisp abduction tries to find a
hypothesis H such that the observation O follows from H ’s combination with
known facts or theory T (i.e. T ∪H |= O), the abduction scheme we will focus
on will build constraints on the rule’s original premise, so that the observation
is indeed a consequence of our hypothesis, as shown in Table 2.

Resrictions on studied rules

We will, in the rest of this paper, consider rules of the type ‘If u is A, then
v is B’, where A (respectively B) is a fuzzy label on variable u (respectively
v) defined on an universe of discourse U (respectively V ). The membership
functions for either label will be denoted fA(u) and fB(v), respectively. Ob-
servations in the abduction context will be denoted B′ and their explanations
either A′ or AG depending on the context and as specified. Conversely, in the
deductive context observations will be denoted A′ and their consequences B′.

Rule: If u is A, then v is B

Observation: v is B′

Explanation: What A′ would be a satisfactory explanation for this observation?

Table 2
General fuzzy abduction scheme

2.3 Reversing the Generalised Modus Ponens

Mellouli and Bouchon-Meunier’s approach of abduction [9,10] aims at find-
ing conditions on premise A so that observation B′ is satisfied. To do this,
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they choose to reverse the Generalised Modus Ponens (GMP), the fuzzy in-
ference model, firstly because it ensures that the conditions on A entail B′,
and secondly because it gives a mathematical expression of said conditions.
Obviously, due to the large number of fuzzy implication and GMP operators
at hand, one cannot consider such a task as a unique problem. Mellouli and
Bouchon-Meunier therefore considered the different classes of fuzzy implica-
tions as described by Dubois and Prade in [11,12], as well as by Mas et alii
in [13], and presented in Table 3. In their works they reversed the GMP for
two classes of implications: s-implications and r-implications. The results for
s-implications gave an expression of fA′(u) the conditionned premise’s mem-
bership function. They chose not to delve into an in-depth study of this result,
because it offered no immediate difficulty. On the other hand, the reversal of
the GMP for r-implications – denoted IR in Equation 1 – resulted in the def-
inition of a ‘maximal explanation AG’ such that any adequate explanation A′

should be included in AG.
This maximal explanation AG is given by:

∀u ∈ U, fAG
(u) = inf

v∈V
IR(IR(fA(u), fB(v)), fB′(v)) (1)

The authors, then studied the effects of linguistic modifiers on their maximal
explanation. They showed that some modifiers were preserved in the maxi-
mal explanation using Gödel’s implication and Zadeh’s GMP operator. The
interest of linguistic modifiers on abductive reasoning is rather similar to their
influence in conventional inference. Indeed, since in a fuzzy rule-base every rule
is triggered to the amount – possibly null – to which its premise matches an
observation, studying modifications of the observation offers an idea of what
conclusions can be drawn. Similarly, in an abduction context, one may gener-
alise from the effects of modified observations and thus build conditions on the
observations and on the hypotheses. Mellouli and Bouchon-Meunier studied
a particular class of modifiers (viz. uncertain expansive modifiers) and, then
only using Gödel’s implication. We wished to see if we could generalise their
results to other types of modifiers and other implication/t-norm pairs. This
article is an extension of our previous work [14].

2.4 Fuzzy rule classification

Table 3 gives an overview of the most usual fuzzy-implication classes, their
boolean origin and their expression as functions of membership functions,
where ⊤ represents a t-norm and ⊥ a t-conorm.

From these formally different classes of implications, Dubois and Prade define
semantic classes of operators. They give each class their interpretation of its
boolean counterpart. Mellouli and Bouchon-Meunier concentrate on two of
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Class Boolean equivalent General form

s-implication (strong im-

plication)
p → q ⇔ ¬p ∨ q I(a, b) = ⊥(¬a, b)

r-implication (residual im-

plication)

p ∧ (¬p ∨ q) = p ∧ q ⇒
p ∧ (p → q) 6 q

I(a, b) = sup{w ∈ [0, 1]|

⊤(a,w) 6 b}

ql-implication (quantum-

logic implication)

¬p∨ q = ¬p∨ (p∧ q) =
¬(p ∧ ¬(p ∧ q))

I(a, b) = ¬⊤(a,¬⊤(a, b))

t-implication (t-norm im-

plication)

none, doesn’t preserve
boolean implication

I(a, b) = ⊤(a, b)

Table 3
Common classes of fuzzy implications and their boolean counterparts

these semantic classes, namely: ‘certainty rules’ built from s-implications (‘The
more u is A the more certain v lies in B’, e.g. ‘The younger a man, the more
likely he is single’) and ‘gradual rules’ from r-implications (‘The more u is A

the more v is B’, e.g. ‘The more typical the symptoms, the more likely the
diagnosis’).

In [9], the authors study the effects of expansive modifiers on an observation,
given a gradual rule and Gödel’s implication. Mellouli and Bouchon-Meunier
use their definition of the membership function of the maximal solution to
this type of problem to prove that, in some cases, the original modifiers may
be preserved.

Our aim here is to generalise these results to other hedges and implications.
We have chosen to study classical power modifiers as defined by Zadeh [15,16],
and translation modifiers considered by Bouchon-Meunier and Yao [17]. We
will finally consider the particular cases, defined from these translations, of
reinforcement hedges which contract both supports and cores (i.e. fB′(v) =
min(fB(v+ε), fB(v−ε))) and their inverses which dilate them. These modifiers
are semantically consistent with Zadeh’s interpretation, yet their impact on
the support and kernel of the original labels implies a shift in precision, both
formally and intuitively.

Because we will, essentially, be studying gradual rules as did Bouchon-Meunier
and Mellouli, we would like to introduce an illustrative example, to which
we will refer throughout the paper. Suppose we have an expert built medical
diagnosis rule system. Among these rules we have one about chickenpox, which
states that ‘From fourteen days before the first eruption of vesicles to seven
days after, the subject is contagious’ and that the subject is most contagious
from two days before to five days after the breakout. Now, Figure 1 illustrates
this rule. Note that the time periods in the premise are before (T0), during (T1)
and after (T2) the outbreak of the illness and that the subject is either not sick,
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contagious or healing. The other labels are given to show how our observations
are ‘measured’. Our rule only links the during stage to the contagious state.
More importantly, the kernel of the ‘during’ (T1) period corresponds to the
maximally contagious stage. That is to say that, the more specifically in the
during period a patient, the more specifically contagious.

+5−2−14 +7

T0 T1 T2 Healthy Contagious Cured

Time Subject health

Fig. 1. Chickenpox contagiousness

2.5 Notation

In the rest of this document we will suppose that B ⊂ V is a trapezoidal
fuzzy subset of V , defined as B = 〈sBL

, kBL
, kBR

, sBR
〉 where sBL

6 kBL
6

kBR
6 sBR

and Support(B) = (sBL
, sBR

), Kernel(B) = [kBL
, kBR

]. We will
also suppose inf

v∈V
fB(v) = 0 and sup

v∈V
fB(v) = 1, and make similar assumptions

for A ⊂ U , A = 〈sAL
, kAL

, kAR
, sAR

〉.

3 Gödel Implication

We will start using Gödel’s implication, IG, the same way Mellouli and Bouchon-
Meunier have. The results we will present have, however, been constructed
using modifiers which introduce no uncertainty (i.e. inf

v∈V
fB′(v) = 0).

As a reminder, IG is given by: IG(a, b) =











1 if a 6 b

b otherwise

3.1 Inexplicable observations

Our first result is a generalisation on the ‘inexplicability’ of certain modified
observations. The original modifiers were shifting modifiers and Zadeh’s ‘very’.
We shall see that the latter does not comply with the hypothetical v0 intro-
duced in the condition of Proposition 1, since Support(B′) ≡ Support(B).
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However, we can still prove the same result because
infv∈V,fB′ (v)<fB (v)6fA(u) fB′(v) = 0.

Proposition 1 Given Gödel’s implication and the definition for the maximal

solution to a gradual rule abductive problem given in Formula 1, the gradual

rule ‘If u is A, then v is B’ and an observation B′ such that there exists a

v0 ∈ V with 0 = fB′(v0) < fB(v0), then AG = ∅, i.e. the maximal solution is

empty and no explanation can be derived.

Proof Suppose B′ is such that there exists some v0 ∈ V with 0 = fB′(v0) <

fB(v0). Let B− = {v ∈ V |fB′(v) < fB(v)} and B+ = V r B−. Then

fB′(v) > fB(v), ∀v ∈ B+ and fB′(v) < fB(v), ∀v ∈ B−

fAG
(u) = inf

v∈V
IG(IG(fA(u), fB(v)), fB′(v))

= min(M, N)

where

M = infv∈V,fB(v)>fA(u) IG(IG(fA(u), fB(v)), fB′(v))

= infv∈V,fB(v)>fA(u) IG(1, fB′(v))

= infv∈V,fB(v)>fA(u) fB′(v)

and

N = infv∈V,fB(v)6fA(u) IG(IG(fA(u), fB(v)), fB′(v))

= infv∈V,fB(v)6fA(u) IG(fB(v), fB′(v))

= min(N1, N2)

where

N1 = infv∈B+,fB(v)6fA(u) IG(fB(v), fB′(v))

= 1

and

N2 = infv∈B−,fB(v)6fA(u) IG(fB(v), fB′(v))

= infv∈B−,fB(v)6fA(u) fB′(v)

= 0

Thus, fAG
(u) = 0, ∀u ∈ U, and AG = ∅

This first result shows that inclusion, even partial, in the expected conclusion
renders an observation inexplicable. Indeed, since the maximal explanation
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is empty, all potential explanations are included in the empty-set and are
therefore empty. Therefore, if we have a patient whose condition is extremely
specific of the contagious stage of our illness (see Figure 2), we cannot explain
our observation.

Healthy Contagious Cured

Subject health

Fig. 2. Very specifically contagious subject

3.2 Zadeh’s original ‘approximately’ modifier

Our observed ‘approximately B’ is such that:

∀v ∈ V, fB′(v) = fB(v)α, 0 < α < 1

so

fB′(v) > fB(v), ∀v ∈ V

fAG
(u) = inf

v∈V
IG(IG(fA(u), fB(v)), fB(v)α)

= min(M, N)

where

M = infv∈V,fA(u)6fB(v) IG(1, fB(v)α)

= infv∈V,fA(u)6fB(v) fB(v)α

= fA(u)α

and

N = infv∈V,fA(u)>fB(v) IG(IG(fA(u), fB(v)), fB(v)α)

= infv∈V,fA(u)>fB(v) IG(fB(v), fB(v)α) = 1

Therefore, fAG
(u) = fA(u)α, ∀u ∈ U
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We interpret this as ‘If the observation is approximately B, then the explana-
tion is, at most, approximately A’.

3.3 An expansive modifier inflating Kernel and Support

Our observed categorisation B′ is such that:

∀v ∈ V, fB′(v) = max(fB(v + ε), fB(v − ε))

therefore we have:

fB′(v) > fB(v), ∀v ∈ V

∀v ∈ V , let fB+(v) =
v − sBL

kBL
− sBL

and fB−
(v) =

sBR
− v

sBR
− kBR

.

Let also ε1 =
ε

kBL
− sBL

and ε2 =
ε

sBR
− kBR

, then we may write, ∀v ∈ V :

fB(v) = max(0, min(1, min(fB+(v), fB−
(v))))

fB(v + ε) = max(0, min(1, min(fB+(v) + ε1, fB−
(v) − ε2)))

fB(v − ε) = max(0, min(1, min(fB+(v) − ε1, fB−
(v) + ε2)))

therefore, ∀v ∈ V :

max(fB(v − ε), fB(v + ε)) = max(0, min(1, min(fB+(v) + ε1, fB−
(v) + ε2)))

since ε1 > 0 and ε2 > 0

fAG
(u) = inf

v∈V
IG(IG(fA(u), fB(v)), fB′(v))

= min(M, N)

where

M = infv∈V,fA(u)>fB(v) IG(IG(fA(u), fB(v)), fB′(v))

= infv∈V,fA(u)>fB(v) IG(fB(v), fB′(v)) = 1
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and

N = infv∈V,fA(u)6fB(v) IG(IG(fA(u), fB(v)), fB′(v))

= infv∈V,fA(u)6fB(v) IG(1, fB′(v))

= infv∈V,fA(u)6fB(v) max(fB(v + ε), fB(v − ε))

= infv∈V,fA(u)6fB(v) max(0, min(1, min(fB+(v) + ε1, fB−
(v) + ε2)))

= max(0, min(1, min(fA(u) + ε1, fA(u) + ε2)))

= min(1, fA(u) + min(ε1, ε2))

Therefore, fAG
(u) = min(1, fA(u) + min(ε1, ε2)), ∀u ∈ U

Which we understand as ‘If the observation is around B, then it is relatively
certain that the explanation is, at most, around A’. Figure 3 shows an illus-
tration of the maximal explanation of this type of expansive modifier. If the
patient is probably contagious but possibly not ill, then he may be in the
outbreak stage.

+5−2−14 +7

T0 T1 T2 Healthy Contagious Cured

Time Subject health

Fig. 3. An expansive modifier inflating Kernel and Support and its maximal expla-
nation, using Gödel’s implication

Proposition 1 states that no observation which is locally more precise than
the original conclusion may be explained, in this context (i.e. gradual rule
based abductive reasoning using Gödel’s implication). Obviously, reinforce-
ment modifiers fall into this category when they contract Support(B) and we
have already discussed what happens when they do not. Shifting modifiers,
criticised by de Cock and Kerre in [18,19] because they don’t preserve the
‘semantic entailment 1 ’, are also inexplicable due to their partial inclusion in
the expected conclusion, even though the shift in their relative preciseness is
less obvious.

We have also shown, confirming Mellouli and Bouchon-Meunier’s results, that
an expansive modifier is nearly preserved through abduction.

1 By semantic entailment, de Cock and Kerre mean:
extremely(A) ⊆ very(A) ⊆ A ⊆ more or less(A) ⊆ about(A)
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4  Lukasiewicz Implication

We will now continue our study of modified observations using a different
implication operator, namely  Lukasiewicz’s implication given by:
I L(a, b) = min(1 − a + b, 1).

4.1 Expansive modifiers and  Lukasiewicz

Once again, Theorem 1 derives from the generalisation of results on expansive
modifiers presenting no uncertainty. We will see how this result affects our
view on fuzzy abduction.

Theorem 1 Given  Lukasiewicz’s implication, a gradual-rule abductive prob-

lem and an observation B′ such that fB′(v) > fB(v), ∀v ∈ V and supposing

∃v0 ∈ V such that fB′(v0) = fB(v0) = 0, then the maximal explanation is

AG = A.

Proof

fAG
(u) = inf

v∈V
I L(I L(fA(u), fB(v)), fB′(v))

= inf
v∈V

I L(min(1 − fA(u) + fB(v), 1), fB′(v))

= inf
v∈V

min(1 − min(1 − fA(u) + fB(v), 1) + fB′(v), 1)

= min(M, N)

where

M = infv∈V,fB(v)>fA(u) min(1 − min(1 − fA(u) + fB(v), 1) + fB′(v), 1)

= infv∈V,fB(v)>fA(u) min(fB′(v), 1)

= infv∈V,fB(v)>fA(u) fB′(v)

and

N = infv∈V,fB(v)6fA(u) min(1 − min(1 − fA(u) + fB(v), 1) + fB′(v), 1)

= infv∈V,fB(v)6fA(u) min(fA(u) − fB(v) + fB′(v), 1)

= infv∈V,fB(v)6fA(u)61+fB(v)−fB′ (v) fA(u) − fB(v) + fB′(v)

= fA(u) + infv∈V,fB(v)6fA(u)61+fB(v)−fB′ (v) fB′(v) − fB(v)

Since ∀v ∈ V, fB′(v)−fB(v) > 0 = fB′(v0)−fB(v0) and since ∀u ∈ U, fA(u) >

0 = fB(v0) we show that N = fA(u) + fB′(v0) − fB(v0) = fA(u). Also, M >

fA(u) because fB′(v) > fB(v) and infv∈V,fB(v)>fA(u) fB(v) = fA(u).
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Therefore we have proved that M > N and that:

fAG
(u) = fA(u), ∀u ∈ U

This particular result is problematic in that it is in obvious contradiction with
Mellouli and Bouchon-Meunier’s results on the general shape of explanations
with respect to the relative inclusion of the observation in the expected con-
clusion (i.e. if B1 ⊃ B2, then AG1 ⊃ AG2).

In addition to this, since AG is the maximal explanation of B′, any A′ which
adequately explains the observation should be included in AG. Studies on the
GMP have shown that, given the original rule ‘If u is A, then v is B’, no such
A′ ⊂ A can entail a B′ ⊃ B.

Section 5 of this paper will show why this is the case and how we may use this
result.

4.2 Zadeh’s ‘very’ modifier and the like

Our observed categorisation B′ is such that:

∀v ∈ V, fB′(v) = fB(v)α, α > 1

consequently we have:

fB′(v) 6 fB(v), ∀v ∈ V

fAG
(u) = inf

v∈V
I L(I L(fA(u), fB(v)), fB(v)α)

= inf
v∈V

I L(min(1 − fA(u) + fB(v), 1), fB(v)α)

= inf
v∈V

min(1 − min(1 − fA(u) + fB(v), 1) + fB(v)α, 1)

= min(M, N)

where

M = infv∈V,fB(v)>fA(u) min(fB(v)α, 1)

= infv∈V,fB(v)>fA(u) fB(v)α

= fA(u)α
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and

N = infv∈V,fB(v)<fA(u) min(fA(u) − fB(v) + fB(v)α, 1)

= infv∈V,fB(v)<fA(u) fA(u) − fB(v) + fB(v)α

= fA(u) + infv∈V,fB(v)<fA(u) fB(v)α − fB(v)

= min(N1, N2)

Let fα(v) = fB(v)α − fB(v), ∀v ∈ V . We know that fα(v) 6 0 everywhere,
and furthermore that fα(v) < 0, ∀v ∈ V such that 0 < fB(v) < 1. Therefore
there is a γ such that: γα − γ = inf

v∈V
fα(v) and fα(v) decreases for all v such

that fB(v) 6 γ and increases for all v such that fB(v) > γ. Therefore, we may
write:

N1 = fA(u) + infv∈V,fB(v)<fA(u)<γ fB(v)α − fB(v)

= fA(u)α

and

N2 = fA(u) + infv∈V,fB(v)<fA(u),fA(u)>γ fB(v)α − fB(v)

= fA(u) − γ + γα

therefore, fAG
(u) =















fA(u) − γ + γα if fA(u) > γ =
1

α1/(α−1)

fA(u)α otherwise

We observe, here, the introduction of an imprecision in the de-normalisation
of fAG

. We may interpret this as ‘if B′ is very B’, then it is ‘γ − γα unlikely
that AG be very A’.

In this case our initial intuition, though somewhat tamed down, seems to be
confirmed. Indeed, in our original example, if we were to observe a ‘very strong
pain in the lower abdomen’ we might conclude on a ‘1

4
uncertain serious case

of appendicitis’, or ‘three quarters of a chance of peritonitis’.

4.3 A translation modifier explained by  Lukasiewicz

Suppose we were to observe a B′ such that:

∀v ∈ V, fB′(v) = fB(v + ε)
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Let VB1 = (kBR
− ε, sBR

) and VB2 = V r VB1, then fB′(v) < fB(v), ∀v ∈ VB1

and fB′(v) > fB(v), ∀v ∈ VB2.

fAG
(u) = inf

v∈V
I L(I L(fA(u), fB(v)), fB(v + ε))

= inf
v∈V

I L(min(1 − fA(u) + fB(v), 1), fB(v + ε))

= inf
v∈V

min(1 − min(1 − fA(u) + fB(v), 1) + fB(v + ε), 1)

= min(M, N)

where

M = infv∈V,fB(v)>fA(u) fB(v + ε) = min(M1, M2)

with

M1 = infv∈VB1,fB(v)>fA(u) fB(v + ε)

= infv∈VB1,fB(v)>fA(u) max(0, min(1, min(fB+(v) + ε1, fB−
(v) − ε2))), see § 3.3

= max(fA(u) − ε2, 0)

and

M2 = infv∈VB2,fB(v)>fA(u) fB(v + ε) = fA(u) + γ > fA(u), since fB(v + ε) > fB(v)

and

N = infv∈V,fB(v)6fA(u) min(fA(u) − fB(v) + fB(v + ε), 1)

= infv∈V,fB(v)6fA(u)61+fB(v)−fB(v+ε) fA(u) − fB(v) + fB(v + ε)

= fA(u) + infv∈V,fB(v)6fA(u)61+fB(v)−fB(v+ε) fB(v + ε) − fB(v)

= max(fA(u) − ε2, 0)

therefore, fAG
(u) = max(fA(u) − ε2, 0), ∀u ∈ U

Similarly, we show that given an observation B′ shifted to the left, i.e. fB′(v) =
fB(v − ε), we conclude on the maximal hypothesis AG such that:

fAG
(u) = max(fA(u) − ε1, 0), ∀u ∈ U

15



Figure 4 shows that should the subject be somewhere between contagious and
cured, than she is in the second stage of her illness to a lesser degree than
expected and never fully. We understand this denormalisation as a doubt in
the membership.

+5−2−14 +7

δ

sBR
− kBR

ε

T0 T1 T2 Healthy Contagious Cured

Fig. 4. Introduction of some doubt by  Lukasiewicz and a translation, where
δ = ε

sBR
−kBR

4.4 Contraction of Support and Kernel using modifiers

Our observed categorisation B′ is such that:

∀v ∈ V, fB′(v) = min(fB(v + ε), fB(v − ε))

Consequently

fB′(v) 6 fB(v), ∀v ∈ V

fAG
(u) = inf

v∈V
I L(I L(fA(u), fB(v)), fB′(v))

= inf
v∈V

I L(min(1 − fA(u) + fB(v), 1), fB′(v))

= inf
v∈V

min(1 − min(1 − fA(u) + fB(v), 1) + min(fB(v + ε), fB(v − ε)), 1)

= min(M, N)

where

M = infv∈V,fB(v)>fA(u) min(fB(v + ε), fB(v − ε))

= min(infv∈V,fB(v)>fA(u) fB(v + ε), infv∈V,fB(v)>fA(u) fB(v − ε))

= min(max(fA(u) − ε2, 0), max(fA(u) − ε1, 0)), see § 4.3

= max(fA(u) − max(ε2, ε1), 0)
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and

N = infv∈V,fB(v)6fA(u) min(fA(u) − fB(v) + min(fB(v + ε), fB(v − ε)), 1)

= infv∈V,fB(v)6fA(u)61+fB(v)−fB′ (v) fA(u) − fB(v) + min(fB(v + ε), fB(v − ε))

= fA(u) + infv∈V,fB(v)6fA(u)61+fB(v)−fB′ (v) min(fB(v + ε), fB(v − ε)) − fB(v)

= max(fA(u) − max(ε2, ε1), 0)

Therefore, fAG
(u) = max(fA(u) − max(ε2, ε1), 0), ∀u ∈ U

Figure 5 shows how the denormalised maximal explanation of shifted obser-
vation persists in their combination. In this case, if the patient is definitely ill
and probably contagious, then he cannot be completely in the outbreak stage.

+5−2−14 +7

T0 T1 T2 Healthy Contagious Cured

Time Subject health

Fig. 5. The min(fB(v + ε), fB(v − ε)) reinforcement modifier and its de-normalised
explanation

We have seen how translation modifiers introduce a de-normalised maximal
solution, as does their combination, using  Lukasiewicz’s implication. We have
also proved that the extension of Mellouli and Bouchon-Meunier’s formal re-
sults on abduction sometimes generates incoherent results. Next section will
trace this incoherence’s origin and will introduce a way of using this to give a
semantically consistent interpretation of a rule set.

5 Classification with respect to observations

Theorem 1 concluded that, in extending Mellouli and Bouchon-Meunier’s re-
sults, we come upon an incoherence. This section will show why this is not
acceptable yet how we may still use it.
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5.1 Origin of inconsistency

We know that given a gradual-rule abductive problem,  Lukasiewicz’s implica-
tion and an observation such that B′ ⊃ B and inf

v∈V
fB′(v) = 0, then AG = A.

Our problem is that this result is:

• Inconsistent with general results on the Generalised Modus Ponens:
· if A′ ⊆ A, then B′ = B

· if A′ ⊃ A, then B′ ⊃ B

• Inconsistent with previous results on abduction
· if B′

1 ⊂ B′
2, then AG1 ⊂ AG2 , here if B′

1 = B, then AG1 = A

• Inconsistent with  Lukasiewicz as a residual and strong implication
· Any satisfactory explanation A′ is such that A′ ⊂ AG

· r-implication : AG = A

· s-implication : A′ = U

We must therefore reconsider our result in view of these observations. We
can trace the inconsistency back to our original observation. Indeed, since
given  Lukasiewicz’s implication the general expression of a GMP conclusion
B′ is fB′(v) = max(supu∈U,fA(u)6fB(v) fA′(u), fB(v)+supu∈U,fA(u)>fB(v) fA′(u)−
fA(u)), we can show that if B′ ⊃ B, then inf

v∈V
fB′(v) > 0.

Similarly, concerning Proposition 1, since using Gödel’s implication we get
fB′(v) = max(supu∈U,fB(v)>fA(u) fA′(u), fB(v)), we know that B′ ⊇ B and our
condition is impossible.

Even if the two implications we have studied cannot reach the observations we
suggest, these do not seem intuitively incoherent as such. It is therefore possi-
ble that there exists some implication which may generate one or the other via
Generalised Modus Ponens. If one or more rule’s expected conclusion differs
only slightly from this observation, the only coherent implication operators
will be amongst these.

Furthermore, we claim that, given a feasible observation and a set of rules, we
can categorise the set of implications to be used. Since a given observation will
match only part of the conclusions in the rule-set, we offer a categorisation of
a rule system coherent with observed data. Indeed, in most cases the semantic
interpretation of a rule will be given a priori, even if the rule is learnt, and
an implication operator chosen regardless of its potential inconsistency with
the data. Our approach aims at building entailment consistent rule-subsets,
interpreting these with respect to the observed data and giving them the
semantic interpretation of the corresponding implication-subset [11,12].
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To do this, we need to classify the shapes which may be reached via GMP for
each implication and consistent GMP-operator. This type of study has been
led in the past yet, since their use was to be different, the results are neither
sufficiently precise nor general. Classical studies of the GMP have typically
looked at what a precise observation in a given fuzzy premise will generate or
at very local modifications [20]. The problem here is that we need to rule out,
or accept, a given shape for an implication. So we need to extend the existing
results to be certain that no unexpected case is overlooked.

5.2 Examples of GMP conclusions

5.2.1 Foreword

Before we present our study of GMP conclusions with respect to the fuzzy sub-
sets they entail, we think it wise to remind the reader of the general expression
of the GMP conclusion and of the expressions of the fuzzy implications we will
study, and their classification.

For a fuzzy rule of the type ‘If u is A, then v is B’ and an observation A′, the
expected conclusion is given by:

fB′(v) = sup
u∈U

⊤(fA′(u), I(fA(u), fB(v)))

where A and A′ are fuzzy subsets of U , B and B′ fuzzy subsets of V , I some
fuzzy implication and ⊤ an adequate (i.e. the crisp limit cases are preserved
by the joint use of I and ⊤) Generalised Modus Ponens operator, or t-norm.

We will study the fuzzy implications and their respective GMP operators as
given by [20] outlined in Table 4, where the GMP operators are given in
Table 5.

5.2.2 Reichenbach

A rule used with Reichenbach’s implication and  Lukasiewicz’s GMP operator
will conclude on something of the form:

fB′(v) = sup
u∈U

max(0, fA′(u) + fA(u) × (fB(v) − 1))

from which we draw the following constraints on all conclusions B′:

• If Kernel(A′) ∩ Support(A) 6= ∅, then B′ = V

• If A′ ⊇ A, then B′ ⊇ B and inf
v∈V

fB′(v) > sup
u∈Support(A)

fA′(u)
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Implication Expression Class Compatible t-norm(s)

Reichenbach IR(a, b) = 1 − a + a × b s-implication  Lukasiewicz

Willmott IW (a, b) = max(1 − a, min(a, b)) Ql-implication  Lukasiewicz

Mamdani IM (a, b) = min(a, b) t-implication
Zadeh,  Lukasiewicz,
Goguen

Rescher-
Gaines

IRG(a, b) =

{

1 if a 6 b

0 otherwise
r-implication

Zadeh,  Lukasiewicz,
Goguen

Kleene-
Dienes

IKD(a, b) = max(1 − a, b) s-implication  Lukasiewicz

Gödel IG(a, b) =

{

1 if a 6 b

b otherwise
r-implication

Zadeh,  Lukasiewicz,
Goguen

Goguen IGn(a, b) =

{

min(b/a, 1) if a 6= 0

1 otherwise
r-implication  Lukasiewicz, Goguen

 Lukasiewicz I L(a, b) = min(1 − a + b, 1) r- & s-implication  Lukasiewicz

Table 4
Fuzzy implications, classes and assorted GMP operators

Operator Expression

 Lukasiewicz ⊤(a, b) = max(0, a + b − 1)

Zadeh ⊤(a, b) = min(a, b)

Goguen ⊤(a, b) = a × b

Table 5
Fuzzy GMP operators

• If A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅, then B′ = B

• Otherwise, if A′ ⊂ A, then B′ ⊂ B

A A

AA

A′

A′

A′

A′

B

BBB′

B′

B′

β = fB(v0)

δ = 1 − β

fA(u) × δ
Kernel(A′) ∩ Support(A) 6= ∅

A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅ A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅

B = B′

A′ ⊃ A

Fig. 6. GMP conclusions with Reichenbach’s implication
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5.2.3 Willmott

With  Lukasiewicz’s t-norm for GMP operator, the conclusion of a fuzzy infer-
ence given Willmott’s implication is:

fB′(v) = max(fB(v), sup
u∈U

fA′(u) − fA(u))

which gives us:

• fB′(v) > fB(v), ∀v ∈ V

• fB′(v) > sup
u∈U

fA′(u) − fA(u), ∀v ∈ V

• Therefore, inf
v∈V

fB′(v) > supu∈Support(A) fA′(u)

5.2.4 Mamdani

We have studied the conclusions of Mamdani rules with the min, product or
 Lukasiewicz GMP operators and their membership functions are:

with Zadeh’s min t-norm:

fB′(v) = fB(v)

with Goguen’s product t-norm:

fB′(v) = max







supu∈U,fA(u)6fB(v) fA′(u) × fA(u),

supu∈U,fA(u)>fB(v) fA′(u) × fB(v)







with  Lukasiewicz’s t-norm:

fB′(v) = max





0,
supu∈U,fA(u)6fB(v) fA′(u) + fA(u) − 1,

supu∈U,fA(u)>fB(v) fA′(u) + fB(v) − 1







which gives us:

• B′ ≡ B for Zadeh’s GMP operator
• fB′(v) 6 fB(v), ∀v ∈ V otherwise

5.2.5 Rescher-Gaines

Whatever the GMP operator (min, product or  Lukasiewicz’s t-norm), the
conclusion of a fuzzy inference given Rescher-Gaines’ implication is:

fB′(v) = supu∈U,fB(v)>fA(u) fA′(u)
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which gives us:

• inf
v∈V

fB′(v) = supu∈Support(A) fA′(u)

• sup
v∈V

fB′(v) = sup
u∈U

fA′(u)

• If Support(A′) = Support(A) and A′ = m(A), then B′ = m(B)

5.2.6 Kleene-Dienes

With  Lukasiewicz’s GMP operator conclusions are given by:

fB′(v) = max





0,
supu∈U,1−fA(u)6fB(v) fA′(u) + fB(v) − 1,

supu∈U,1−fA(u)>fB(v) fA′(u) − fA(u)







which gives us:

• inf
v∈V

fB′(v) = supu∈Support(A) fA′(u)

5.2.7 Gödel

The conclusion of a fuzzy inference given Gödel’s implication and the min
GMP operator is:

fB′(v) = max(supu∈U,fB(v)>fA(u) fA′(u), fB(v))

which means:

• B′ ⊇ B

• inf
v∈V

fB′(v) = supu∈Support(A) fA′(u)

With  Lukasiewicz’s t-norm we get:

fB′(v) = max







fB(v) + supu∈U,fA(u)>fB(v) fA′(u) − 1,

supu∈U,fA(u)6fB(v) fA′(u)







With Goguen’s GMP operator we have:

fB′(v) = max







supu∈U,fA(u)>fB(v) fA′(u) × fB(v),

supu∈U,fA(u)6fB(v) fA′(u)







which means that for both t-norms we have:

• inf
v∈V

fB′(v) > supu∈Support(A) fA′(u)
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• If Kernel(A′) ∩ Kernel(A) 6= ∅, then B′ ⊇ B

• Otherwise, if A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅

then sup
v∈V

fB′(v) = supu∈U fA′(u)

A

A

A′

A′

B

B′

B′ = B

B′ ⊇ B

inf
v∈V

fB′(v) = supu∈Support(A) fA′(u)

Fig. 7. Essential properties of conclusions with Gödel’s implication and Zadeh’s
t-norm

5.2.8 Goguen

Using  Lukasiewicz’s t-norm we get the following expression;

fB′(v) = max







supu∈U,fA(u)>fB(v),fA(u)>0 fA′(u) + fB(v)
fA(u)

− 1,

supu∈U,fA(u)6fB(v) fA′(u)







= supu∈U,fA(u)6fB(v) fA′(u)

which implies:

• inf
v∈V

fB′(v) > supu∈Support(A) fA′(u)

• sup
v∈V

fB′(v) = supu∈U fA′(u).

When combined to Goguen’s operator, we have:

fB′(v) = max







fB(v) × supu∈U,fA(u)>fB(v),fA(u)>0
fA′(u)

fA(u)
,

supu∈U,fA(u)6fB(v) fA′(u)







which means:

• inf
v∈V

fB′(v) > supu∈Support(A) fA′(u)

23



• If Kernel(A′) ∩ Kernel(A) 6= ∅, then B′ ⊇ B

• Otherwise, if A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅

then sup
v∈V

fB′(v) = supu∈U fA′(u)

5.2.9  Lukasiewicz

The general expression of the conclusion of a fuzzy rule given  Lukasiewicz’s
implication is:

fB′(v) = max







fB(v) + supu∈U,fA(u)>fB(v) fA′(u) − fA(u),

supu∈U,fA(u)6fB(v) fA′(u)







from which we see that:

• inf
v∈V

fB′(v) > supu∈Support(A) fA′(u)

• If A′ ⊃ A, then B′ ⊃ B

• If A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅, then B′ = B

• If A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅, then B′ ⊂ B

A A

A A

A′

A′ A′

A′

B

B B

B′
B′

B′

B′ = B

inf
v∈V

fB′(v) > supu∈Support(A) fA′(u) A′ ⊃ A

A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅

Fig. 8. Some properties of GMP conclusions given  Lukasiewicz’s implication

5.3 Summary

We will now review, in Table 6, the properties we have put forward in the
previous paragraph, in order to suggest possible links between implications.

Property 1 is very specific to Mamdani’s implication, whose claim to implica-
tion status is generally debatable and debated.

Similarly, Property 2 is only consistent with Rescher-Gaines’ implication which
is usually regarded as a crisp implication. However, it does show that all our
modifiers could, potentially, have been observed, if the associated rules were
interpreted with Rescher-Gaines.
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Property Implication t-norm(s)

1 B′ ≡ B Mamdani Zadeh

2 If A′ = m(A), then B′ = m(B) Rescher-Gaines Zadeh, Goguen,  Lukasiewicz

3 B′ ⊇ B Gödel Zadeh

4 B′ ⊇ B if Kernel(A′) ∩ Kernel(A) 6= ∅
Gödel  Lukasiewicz

 Lukasiewicz  Lukasiewicz

5 Persistent denormalisation

Rescher-Gaines Zadeh, Goguen,  Lukasiewicz

Gödel  Lukasiewicz

Goguen Goguen,  Lukasiewicz

 Lukasiewicz  Lukasiewicz

6 infv∈V fB′ (v) = sup
u∈Support(A)

fA′(u)

Rescher-Gaines Zadeh, Goguen,  Lukasiewicz

Kleene-Dienes  Lukasiewicz

Gödel Zadeh

7 infv∈V fB′ (v) > sup
u∈Support(A)

fA′(u)

Gödel  Lukasiewicz

Goguen  Lukasiewicz

 Lukasiewicz  Lukasiewicz

Table 6
General properties of GMP conclusions

Property 3 shows, in passing, that the condition we had in Proposition 1 (i.e.
B′ such that ∃v0 ∈ V with 0 = fB′(v0) < fB(v0)) was not possible, at least not
using Zadeh’s GMP operator. Similarly, note that none of our modifiers was
applicable to  Lukasiewicz’s implication, because they all preserved inf

v∈V
fB′(v)

which is true if and only if A′ ≡ A.

Property 5, named here ‘Persistent denormalisation’, means that if an obser-
vation is not normalised, then neither is the conclusion, e.g.
if fA′(u) = max(fA(u)− ε, 0), then fB′(v) = max(fB(v)− ε, 0). This property
is, for at least two implications, related to property 4 in that it is true only
under certain conditions. Note that it also gives conditions on A′ for B′ ⊂ B.

Properties 6 and 7, which are shared by most implication-t-norm couples,
mean that if an observation were such that Kernel(A′) ∩ Support(A) 6= ∅,
then B′ = V , i.e. fB′(v) = 1, ∀v ∈ V . In the general case, though, no ob-
servation whose typical values lay outside the premise’s support would be
considered. Yet these two properties are also responsible for the uncertainties
in the conclusions. Neither of these observations is ground-breaking but they
do show what the conditions for having an uncertain conclusion are, and ex-
plain why the second modifier we studied in Section 3 (i.e.∀v ∈ V, fB′(v) =
max(fB(v + ε), fB(v − ε))) was not compatible with Gödel’s implication.

To illustrate our point, we will come back to our running example and our
chickenpox rule. We will suppose this rule was given to us by an expert. To use
this rule, we need to give it an interpretation so as to choose an implication
operator. To do this, we try to undestand our expert’s interpretation of the
link between premise and conclusion. Suppose, now, we were to observe a
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denormalised class of specifically contagious patients, something like what we
observed in Section 4.4. For our rule to accept such an observation, the rule
would have to be attached to one of the implications exhibiting Property 5.
Obviously there would still be a choice of sorts, but at least we would know
that the implication was an r-implication and thus that the rule was a gradual
one. This is what we refer to as ‘data-driven’ classification of the rules. The
semantic interpretation of the rule may, of course, still be that given by Dubois
and Prade, but the choice is coherent with the observations.

Another example can be found in colorimetric works, such as [21]. In this ar-
ticle, the authors introduce a search engine for images using a fuzzy definition
of colours. The system defines basic colours and a toolbox of fuzzy modifiers.
Each resulting colour, ‘cornflower-blue’ for instance, is a specialisation of its
unmodified version. Therefore there is an implicit rule which states that ‘If
something is cornflower-blue, then it is blue’. The system also offers the user
the possibility of having her personnal definitions of the colours learnt. So
now, if the system learns a modified version of blue from the user, how does
this new information help us qualify the original implicit rule? Well, should we
suppose for a minute that the user has asked the system to learn her version
of both blue and cornflower-blue, and that the modifiers for both are the same
and introduce no uncertainty, then the only suitable implication operator is
Rescher-Gaines, an r-implication. Therefore the implicit rule is a gradual one.

6 Conclusion

This paper’s ambition was, originally, to extend formal fuzzy abductive results
to different classes of implications and linguistic modifiers. While working on
these results we noticed that the theory contradicted some established results.
The explanation of these incoherences lay in the ‘impossibility’ of observ-
ing certain shapes. Yet these shapes did not seem incoherent with the data
they were meant to represent. Tracing the incoherence of our results back to
the ‘observable’ shapes of the selected fuzzy implications, we saw that obser-
vations were bound by the implication operator. To allow suspected ‘data-
coherent’ observations we needed to find ‘deduction-coherent’ implications.
Available studies of the Generalised Modus Ponens offered information on
possible shapes, but did not allow us to definitely rule-out others. Therefore
we had to generalise these results to conclude. We would like to extend this
type of systematic analysis to other implications and their associated GMP
operators, or t-norm.

Selecting an implication from the data meant we could interpret our rule-based
knowledge using the semantic interpretation of the operators. We may well find
that different rules, even though they are used in the same context, given with
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the same interpretation by the expert, belong to different implication classes
and are therefore to be interpreted differently. Because the properties we use
to qualify rules essentially come at the implication class level, we sometimes
find it difficult to choose an implication. Indeed, we have seen that implica-
tions of different classes sometimes generate similar shapes. Conversely, some
r-implications, for instance, do not accept the same modifications. Therefore,
‘observation consistent’ implications, which we use to classify our rule-base
subsets according to the necessary properties, may have some semantic prox-
imity. If not, their differences could entail as many potential interpretations.
The properties we have laid out in this comparative study also seem con-
nected to the choice of GMP-operator. This should be taken into account in
the semantic interpretation processes. We plan to dedicate some time to these
studies in the near future.

Finally, we have ongoing efforts on the general subject of fuzzy abduction.
We are working on generalising the reversal of the Generalised Modus Ponens
to other classes of implication operators and for complex rules. Concerning
systems of potentially conflicting rules, the original method can be used for
each rule. In this case, the next step is to rank the simultaneous explanation
in order to choose the most satisfactory in the specific applicative context.
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