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Abstract. Use case models are the specification medium of choice for functional requirements, while task models 

are employed to capture User Interface (UI) requirements and design information. In current practice, both entities 

are treated independently and are often developed by different teams, which have their own philosophies and 

lifecycles. This lack of integration is problematic and often results in inconsistent functional and UI design 

specifications causing duplication of effort while increasing the maintenance overhead. To address these 

shortcomings, we propose a formal semantic framework for the integrated development of use case and task models. 

The semantic mapping is defined in a two step manner from a particular use case or task model notation to the 

common semantic domain of sets of partially ordered sets. This two-step mapping results in a semantic framework 

that can be more easily reused and extended. The intermediate semantic domains have been carefully chosen by 

taking into consideration the intrinsic characteristics of use case and task models. As a concrete example, we provide 

a semantics for our own DSRG use case formalism and an extended version of ConcurTaskTrees, one of the most 

popular task model notations. Furthermore, we use the common semantic model to formally define a set of 

refinement relations for use case and task models. 
 

Keywords. Use Case Models; Task Models; Partially Ordered Sets; Semantics; Formal Framework 

 

1. Introduction 

Use case models are the artifact of choice for functional requirements specification [Coc01] while User Interface 

(UI) design typically starts with the creation of a task model [Pre05]. In current practice, UI design and the 

specification of functional requirements are generally carried out by different teams using different theories, models 

and lifecycles [SDM05]. As a consequence, interrelated artifacts, such as use cases and task models, are often 

created independently of each other. The following issues result directly from this lack of integration: 

 Possible conflicts during implementation; software engineering and UI design processes do not have the same 

reference specification and thus may result in inconsistent designs. 

 Duplication in effort during development and maintenance due to redundancies and overlaps in the (inde-

pendently) developed UI and software engineering models. 

A process allowing for UI design to follow as a logical progression from a functional requirements specification does 

not exist [SCK07]. Our primary research goal is to define an integrated methodology for the development of use 

cases and task models within an overall software process. Such an integrated development methodology could serve 
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to guide practitioners in the definition of iterative and incremental development processes according to which use 

case and task models are stepwise refined. A prerequisite of such an initiative, is the elaboration of a formal 

framework for use case models and task models, the definition of which is the main subject of this paper.   

To date, neither use case nor task models have a formal and agreed upon semantics and even less so a common 

semantics. The absence of a formal semantics hinders the effective verification of refinements and leaves little room 

for tool support. As a consequence, ambiguities and inconsistencies may go undetected, and are likely to propagate 

to subsequent development stages, resulting in higher costs to repair them. To address these shortcomings, we 

present a common formal semantics for use case and task models.  

Our semantic mapping is performed in two steps:  First, the source models are mapped to respective intermediate 

semantic domains, followed by mappings to the common semantic domain of sets of partially ordered sets (sets of 

posets). The notations we have chosen for source models are our own DSRG-style use case formalism and Extended 

ConcurTaskTree (ECTT) specifications (both are defined in the next section). These notations have been defined as 

improvements to their state-of-the-art counterparts, Cockburn-style use case models [Coc01] and ConcurTaskTrees 

(CTT) [PaS01], respectively. As intermediate semantic domains, we use use case labeled transition systems (UC-

LTS) and generic task expressions (GTE).  

This paper builds upon our earlier work [SCK07] in both the level of detail and coverage. In particular, we define 

a complete formal semantics for ECTT. Also, we discuss the abstraction and refinement mappings necessary to 

formally compare use case and task models for refinement. Both, the semantic mappings and the refinement 

relations, are illustrated by a non-trivial example. The remainder of this paper is organized as follows. In Section 2, 

we provide some background information on use case and task modeling.  Section 3 provides an overview of our 

formal framework. In Section 4, we formally specify an abstract syntax for DSRG-style use case models and an 

abstract syntax for ECTT task models. Section 5 defines the intermediate semantic domains and the associated 

semantic mappings. This is followed (Section 6) by a formalization of the second level mappings of GTEs and UC-

LTSs into the common semantic domain of sets of posets. Several refinement relations for use case and task models 

are formalized in Section 7. Section 8 discusses relevant related work. Finally, in Section 9 we conclude and provide 

an outlook of future work. 

2. Use case and task modeling 

In this section we provide the necessary background information on use case and task modeling. For each concept 

we present the main features, concrete notations (i.e., DSGR-style use case models and ECTT task models), and a 

comprehensive example. Finally, both concepts are compared and main commonalities and differences are 

contrasted. 

2.1. Use case models 

Use cases were introduced in the early 90s by Jacobson [Jac92]. He defined a use case as a “specific way of using 

the system by using some part of the functionality.” Use case modeling is making its way into mainstream practice 

as a key activity in the software development process (e.g. Rational Unified Process). There is accumulating 

evidence of significant benefits to customers and developers [MeB05]. The use case model captures the complete set 

of use cases for an application, where each use case specifies possible usage scenarios for a particular functionality 

offered by the system. As such, the use case model documents the majority of software and system requirements and 

serves as a contract between stakeholders about the envisioned system behavior [Coc01]. 

While some of the original concepts in use case modeling have evolved through the work of researchers and 

practitioners, the fundamental idea remains the same; that is, a use case describes the way a system is employed by 

its actors to achieve their goals [ArM01]. In other words, a use case captures the interaction between actors and the 

system under development. Actors represent users or entities (e.g., secondary systems) that interact with the system. 

By definition actors are outside of the system boundary. It is distinguished between primary and secondary actors. 

The primary actor, typically a user, initiates the use case in order to accomplish a pre-set goal. Secondary actors play the 

role of supporting the execution of the use case and may participate in the interaction later [Gom05]. 

Different notations for expressing use cases possessing different degrees of formality have been suggested. The 

extremes range from purely textual constructs written in prose [Coc01] to entirely formal specifications written in Z 

[BGK98], as Abstract State Machines (ASM) [GLS01; BGS03], or as graph structures [Miz07]. While the use of 

prose makes use case modeling an attractive tool for facilitating communication among stakeholders, its informal 
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nature makes it prone to ambiguities and thus leaves little room for tool support. In this article, we adopt an 

intermediate solution, called DSRG-style use case model,  which enforces a formal structure but also preserves the 

intuitive nature of use cases. I.e., we provide support for formalizing the sequencing of use case steps and their types, 

but the respective actions, as well as the associated conditions are specified informally. The property section of the 

use case, except for the discrete goal-level property is specified using narrative language.   

Fig. 1 portrays the structure of the DSRG-style use case notation first introduced in [SiC07]. Similar to Cockburn 

[Coc01], each use case starts with a header section containing the various properties. The “primary actor” property 

identifies the actor who initiates the interaction specified by the use case. The “goal” property captures the very 

intent the primary actor has in mind when executing the use case. “Level” indicates the goal-level of the use case. 

While different goal-levels exist, -the most important ones are summary, user goal and sub-function. The 

“precondition” property denotes a condition that must hold, in order to carry out the use case.  

The core part of a use case is its main success scenario, which follows immediately after the header. It indicates 

the most common way in which the primary actor can reach his/her goal by using the system. A use case is 

completed by specifying the use case extensions. These extensions define alternative scenarios which may or may 

not lead to the fulfillment of the use case goal. They represent exceptional and alternative behavior (relative to the 

main success scenario) and are indispensable to capturing full system behavior. Each extension starts with a 

condition (relative to one or more steps of the main success scenario), which makes the extension relevant and 

causes the main success scenario to branch to the alternative scenario. The condition is followed by a sequence of 

use case steps, which may lead to the fulfillment or the abandonment of the use-case goal and/or further extensions. 

From a requirements point of view, exhaustive modeling of use case extensions is an effective requirements 

elicitation device. 

The main success scenario as well as each extension consists of a sequence of use-case steps, which can be of 

seven different kinds. Atomic steps are performed either by the primary actor or the system and do not contain any 

sub-steps. Choice steps provide the primary actor with the choice between several interactions.  Each such 

interaction is (in turn) defined by a sequence of steps. Concurrent steps define a set of steps which may be performed 

in any order by the primary actor. Goto steps denote jumps to steps within the same use case.  Include steps define 

the inclusion of a sub-use case. Success and Failure denote the successful or unsuccessful termination of use case 

scenario, respectively.  

An example use case is given in Fig 2. The use case captures the interactions for the “Order Product” 

All Choice Sequence

Legend:

 
Fig. 1. DSRG-style use case structure 



4  D. Sinnig et al. 
 

functionality of an Invoice Management System (IMS). The main success scenario of the use case describes the 

situation in which the primary actor directly accomplishes his/her goal of ordering a product. The extensions specify 

alternative scenarios which lead to the abandonment of the use case goal. Since this “Order Product” use case is used 

as a running example for the subsequent syntax and semantics definitions, each use case step is further attributed an 

abbreviating label, which serves as a short-hand for the narrative action description.  

 

2.2. Task models 

Task modeling is a well accepted technique supporting user-centered UI design [Pat00]. In most UI development 

approaches, the task set is the primary input to the UI design stage. Task models capture the complete set of tasks 

that users perform using the application, as well as how the tasks are related to each other. The origin of most task 

modeling approaches can be traced back to activity theory [Kuu95], where a human operator carries out activities to 

change part of the environment in order to achieve a certain goal [DiF03]. Like use cases, task models describe the 

user‟s interaction with the system. Their primary purpose is to systematically capture the way users achieve a goal 

when interacting with the system [SLV02]. More precisely, a task model specifies how the user makes use of the 

system to achieve a goal but also indicates how the system supports the involved (sub)tasks. Various notations for 

task models exits. Among the most popular ones are ConcurTaskTrees (CTT) [Pat00], GOMS [CMN83], TaO Spec 

[DFS04], and HTA [AnD67]. Even though all notations differ in terms of presentation, level of formality, and ex-

Use case: Order Product 

Properties 

Goal: Customer places an order for a specific product. 

   Primary Actor: Customer 

   Goal-Level: User-goal 

   Precondition: Customer is logged into the system 

Main Success Scenario 

1. Customer specifies the desired product category.  (spCA) 

2. System displays  search results that match the Customer‟s supplied criteria. (diSR) 

3. Customer selects a product and identifies the desired quantity.  (slPQ) 

4. System validates that the product is available in the requested quantity. (vaPQ) 

5. System displays the purchase summary. (diPS) 

6. Customer chooses one of the following   
 

7A.1. Customer elects to pay by credit card and submits account information. (paCC) 
 

OR 

7B.1 Customer elects to pay by debit card and submits account information. (paDB) 
  

7. System interacts with the Payment authorization system to carry out the payment. (vaPA) 

8. System informs Customer that order is confirmed. (inCO) 

9. Use case ends successfully  

Extensions 

3a. Customer is not satisfied with the search results:  

  3a1. Customer indicates to cancel the use case. (inCA) 

3a2. Use case unsuccessfully.  

4a. The desired product is not available in sufficient quantities:  

4a1. System informs Customer that product unavailable in desired quantity. (inIQ) 

4a2. Use case ends unsuccessfully.  

6a. Customer decides to cancel the use case:  

6a1. Customer indicates to cancel the use case. (inCA) 

6a2. Use case ends unsuccessfully.  

7a. The payment was not authorized:  

7a1. System informs Customer that payment was not authorized. (inPF) 

7a2.  Use case ends unsuccessfully. 

Fig 2. “Order Product” use case 
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pressiveness they share the following common tenet: Tasks are hierarchically decomposed into sub-tasks until an 

atomic level has been reached. In what follows we describe in detail the task-modeling notation Extended CTT 

(ECTT). ECTT was first introduced in [SWF07] and extends ConcurTaskTrees (CTT) in two dimensions:  

1. ECTT defines two novel temporal operators Stop and Resume which allow modeling error and failure 

cases, and provide a mechanism to “catch” errors and prevent their propagation. Intuitively, Stop and Resume 

denote the deactivation and reactivation of the respective operand task. As such their interplay is similar to the 

throw and corresponding catch of an exception of programming languages like Java. A task which “throws” a 

Stop exception cannot enable any tasks. Stop denotes an exceptional case, which, “untreated”, leaves the super-

ordinate task incomplete and thus inevitably leads to the premature termination of a scenario. Resume is used to 

“catch” a Stop exception and as such counteracts and limits the effects of Stop. After Resume, the execution of 

the affected task returns back to “normal”; i.e. its execution will enable respective subsequent tasks.   

2. ECTT is defined in a modular fashion allowing task model to be developed in a true top-down manner while 

taking advantage of encapsulation. Each ECTT task model consists of a set of atomic tasks and task definitions, 

where each task definition denotes a high-level task. High-level tasks are further decomposed into so-called 

task expressions, which are compositions of lower-level task definitions or task references. Task references 

denote the inclusion of already existing task definitions. In contrast to CTT (which only allows the inclusion of 

tasks within the same task-tree hierarchy), an ECTT task definition allows the inclusion of any task definition 

which belongs to the ECTT task model, regardless of whether it is part of the same task hierarchy or not. 

Similar to CTT, tasks are arranged hierarchically, with more complex tasks decomposed into simpler sub-tasks. 

ECTT includes a set of binary and unary temporal operators. The former are used to temporally link sibling tasks, at 

the same level of decomposition, whereas the latter are used to identify optional and iterative tasks. A summary of 

ECTT operators together with their intuitive interpretation is given in Table 1. We note that most binary operators 

(except for suspend/resume) have similar (yet not semantically identical) counterparts in LOTOS [Int97].  

An example of an ECTT task model is given in Fig. 3. It corresponds to the “Order Product” use case defined in 

Table 1.  Temporal operators of ECTT 

Operator Syntax Interpretation 

Enabling t
1
 >> t

2
 Upon successful termination of t

1
, t

2
 becomes enabled. 

Choice t
1 
[] t

2
 Either  t

1
 or  t

2
 is executed. The execution of one task disables the other one. 

Order 
Independence 

t
1
  t

2
 Execution of  t

1
 and t

2 
in any order. 

Concurrency t
1
  t

2
 Interleaved execution of t

1
 and t

2
 and their subtasks. 

Disabling t
1
 [> t

2
 t

1
 becomes deactivated as soon as the first task of t

2
 is performed. 

Suspend-
resume 

t
1
 |> t

2
 At any time the execution of t

1
 may be interrupted by t

2
.  After t

2
 has finished its execution t

1
 

resumes.  

Iteration t* t may be executed repetitively (0 or many times). 

Optional Tasks [t] t may be executed or not. 

Stop stop(t) t cannot enable any tasks. 

Resume resume(t) Counteracts the effect of stop. 

   
  

[slCR] [sbCR] [diRS] [inCA]

[slPQ] [slQT] [sbPS]

[inIQ] [diPS] [inCA] [paCC]

[inPF] [inCO]

Legend:

Interaction Task

Application Task

Abstract Task  
Fig. 3. "Order Product" task model in ECTT 
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Fig 2. The task model is visualized as a task tree, which clearly portrays the hierarchical breakdown of high-level 

tasks into lower-level tasks. The execution order of tasks is determined by temporal operators that are defined 

between peer tasks. An indication of task types is given by the used symbol to represent tasks. ECTT distinguishes 

between three different task types: interaction tasks, application tasks, and abstract tasks. While interaction tasks are 

performed by the user (through the UI), application tasks are performed by the system and have an externally visible 

outcome to the user. Abstract tasks denote high-level tasks which can involve both interaction and application tasks. 

2.3. Use case vs. task models 

In the previous sections, the main characteristics of use case and task models were presented. In what follows, we 

will analyze and compare both kinds of artifacts and outline noteworthy differences and commonalities. Use case 

and task models are both scenario-based and as such capture sets of usage scenarios of the system. On one hand, a 

use case describes system functionality by means of a main success scenario and extensions. On the other hand, a 

task specification captures user-system interactions within a hierarchical task tree. At a certain level of abstraction, 

both models can be used to capture the same information. In current practice, however, use case models are 

employed to document functional requirements whereas task models are used to describe UI requirements and/or 

designs. We identify two main differences that are pertinent to their purpose of application: 

 In use case models, requirements are captured at a higher level of abstraction whereas task models are more 

detailed. Hence, the atomic actions of a task specification are often lower-level UI details that are irrelevant 

(actually contraindicated [Coc01]) in the context of a use case. 

 Task models concentrate on aspects that are relevant for UI design and as such, usage scenarios are strictly 

depicted as input-output relations between the user and the system. System interactions that are hidden from 

the end user (e.g. involvement of secondary actors or internal computations), as specified in use case models, 

are not captured. 

Ideally, the functional requirements captured in use cases are independent of a particular user interface [Coc01]. 

On the contrary, the requirements and design information captured in task models take into account the specifics of a 

particular type of user interface. In other words, the use case model captures the bare functional requirements of the 

system, which are then “instantiated” to a particular type of user interface by means of a task model specification. If 

the application supports multiple UIs (e.g. Web UI, GUI, Mobile, etc.) then one use case is refined by several task 

models; one for each “type” of user interface. If given the choice, a task model may only implement a subset of the 

scenarios specified in the use case model. Task models are geared to a particular user interface and as such must 

obey its limitations. E.g., a voice user interface will most likely support less functionality than a fully-fledged 

graphical user interface. Generally, refinement between the two models can take two different forms: (1) Structural 

(event) refinement, which consists of breaking previously atomic use case steps or tasks into sub-steps and sub-tasks 

respectively; and/or (2) Behavioral refinement, which restricts the set of possible scenarios.  

If we compare the “Order Product” use case (Fig 2) with the “Order Product” ECTT task model (Fig. 3) we note 

that the task model has more UI details. For example use case step 1 (“Specification of Product Category”) has been 

refined by two sequential tasks (“Selection Criteria” and “Submit Criteria”). Moreover,  the task model only 

implements a subset of the functionality of the use case. From a pure functionality point of view (use case) the 

system supports both payment by credit card and payment by debit card. The capabilities of the UI (task model), 

however only allows the user to pay by credit card. Finally it is noticeable that the task model does not specify 

corresponding tasks for use case steps 4 and 7. These steps denote internal system interactions which are irrelevant 

for UI design.  

3. Formal framework 

In this section we provide a general overview of our framework for formalizing use case and task models. Fig. 4 

illustrates how our framework promotes a two-step mapping from a particular use case or task model notation to the 

common semantic domain which is based on sets of partially ordered sets (sets of posets). The semantic mapping is 

performed in two steps:  First, the source models are mapped to respective intermediate semantic domains, followed 

by mappings to the common semantic domain. The main reason behind a two-step mapping, rather than a direct 

mapping, is to provide a semantic framework that can be more easily reused and extended. The intermediate 

semantic domains have been carefully chosen by taking into consideration the intrinsic characteristics of task models 

and use cases, respectively, so that the mappings to the intermediate semantic domains are straightforward and 
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intuitive: task models are mapped into what we call Generic Task Expressions (GTE); use cases are mapped to Use 

Case Labeled Transition Systems (UC-LTS). Since the second level mappings to sets of posets are more involved, 

the intermediate semantic domains have been chosen so as to be as simple as possible, containing only the necessary 

core constructs. As a consequence of this two-step semantic definition, we believe that our framework can be easily 

extended to incorporate new task model or use case notations by simply defining a new mapping to the intermediate 

semantic domain.  

In the next sections we define the various components of the framework. We start by providing an abstract syntax 

for a particular use case and task model notation, namely the before-mentioned DSRG-style use case models and 

Extended Concurrent Task Trees (ECTT). Then we introduce UC-LTS and GTE as intermediate semantic domains 

and define the involved mappings. Finally we provide formalizations of the semantic mapping to sets posets.  

4. Abstract syntax 

4.1. Abstract syntax for DSRG-style use case models 

We define a DSRG-style use case model as a collection of use cases with one use case designated as the root use 

case.  

Definition 1 (DSRG-style use case model). A DSRG-style use case model  is a pair  where, 

 is the name of the root use case and  is a map of use case definitions (with a 

finite domain) such that . If  then we shall write , sometimes omitting the 

subscript, when it is clear from the context. 

The abstract syntax for an individual use case is given in Fig. 5 as an Isabelle/HOL theory
1
 [NPW08]. Analogously 

to the informal definition discussed in Section 2.1, each use case is defined as a record consisting of a use case name, 

a set of properties, a main success scenario, and a set of extensions. The main success scenario consists of a list of 

use case steps among which we distinguish between seven different step kinds (datatype ). A use case extension 

is defined as a record consisting of an identifier, a condition, and a list of use case steps. The latter denote an 

alternative flow, relative to the main success scenario (or a super-ordinated extension). In case of atomic use case 

steps we further distinguish between three different step types: steps of type interaction are performed by the 

primary actor, whereas steps of types application and internal are carried out by the system, with the difference that 

the former have an externally visible effect (to the primary actor) while the effects of the latter are invisible. 

                                                           
1Expressing parts of our formal system in Isabelle allowed us to use the Isabelle theorem prover to verify basic well-formedness properties such as 
syntax and type checking 

CTT
…..

Generic Task 

Expression 

(GTE)

Sets of 

POSETS

Cockburn DSRG
Use Case 

Graph…..

UC-LTS

TaO 

Spec

Task Model Notations Use Case Notations

Intermediate 

Semantic Domain

Common 

Semantic Domain

ECTTWTM HTA

Legend:

Covered in this Paper

Not covered in this Paper

 
Fig. 4. Two-step semantic mapping 
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As well-formedness conditions, we required that (1) all use case steps and extension IDs be unique, (2) for every 

step or extension reference, there exist a corresponding use case step or use case extension within the same use case, 

respectively, (3) for every  we require that  and that there be no circular inclusions, and 

(4) the last element of every use case step sequence be either , , or . In order to illustrate the 

syntactic definition of a use case, let us reconsider the previously depicted “Order a Product” use case. Fig. 6 

portrays parts of its formalization in Isabelle/HOL.  For the sake of conciseness, for each atomic step, instead of the 

full description, the abbreviating label has been used.  

 

                                                           
2 Instead of a „list‟ it would be semantically more accurate to use a „set‟. However Isabelle/HOL does not support using „sets‟ within recursively 
defined datatypes.  

theory uc 
imports Main begin 
 
datatype GoalLevelProperty = SUMMARY | USERGOAL | SUBFUNCTION 
datatype StepType =  APPLICATION | INTERACTION | INTERNAL 
 
record UCProperties = Goal :: GoalProperty 
                      PrimaryActor :: ActorProperty 
                      GoalLevel :: GoalLevelProperty 
                      Precondition :: PreconditionProperty 
 
types PrimStep = Label 
 
datatype Step = Atom StepID StepType Label "ExtensionID set"|  
                Choice StepID "(Step list) list2"  "ExtensionID set" | 
                Concurrent StepID "PrimStep set" "ExtensionID set" | 
                Goto StepID StepID |  
                Include StepID UCName |  
                Success StepID | 
                Failure StepID 
 
record Extension = ID :: ExtensionID 
                   Condition :: Condition 
                   ExtensionScenario :: "Step list" 
 
record UseCase = Name :: UCName 
                 Properties :: UCProperties 
                 MainSuccessScenario :: "Step list" 
                 Extensions :: "Extension set" 

Fig. 5. DSRG-style use case syntax formalized in Isabelle. 

constdefs  
OrderProductUC :: UseCase 
 "OrderProductUC == (|  
   Name = ''Order Product'', 
   Properties = (| 
    Goal = ''Primary actor places an order for a specific product'', 
    PrimaryActor = ''Customer'', 
    GoalLevel = USERGOAL, 
    Precondition = ''Primary actor is logged into the system.'' 
   |), 
   MainSuccessScenario = [ 
      Atom ''s1'' INTERACTION ''spCA'' {}, 
      Atom ''s2'' APPLICATION ''diSR'' {}, 
      Atom ''s3'' INTERACTION ''slPQ'' {''e1''}, 
      Atom ''s4'' INTERNAL    ''vaPQ'' {''e2''}, 
      Atom ''s5'' APPLICATION ''diPS'' {}, 
      Choice ''s6'' [ 
       [Atom ''s6A1'' INTERACTION ''paCC'' {} ], 
       [Atom ''s6B1'' INTERACTION ''paDB'' {} ] 
       ] {''e3''}, 
      Atom ''s7'' INTERNAL    ''vaPA'' {''e4''}, 
      Atom ''s8'' APPLICATION ''inCO'' {}, 
      Success ''s9'' 
   ], 
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4.2. Abstract syntax for ECTT task models 

In this section, we define an abstract syntax for ECTT task models.  

Definition 2 (ECTT task model). An ECTT task model  is a triple  where,  is the 

name of the main task definition of the ECTT task model,  is a partial map of task 

definitions. (The set of task expressions ( ), is the smallest set closed under the following two rules: (1) 

 is a task expression. (2) Let  be ECTT task expressions then , , , , 

, , , , , ,  are also ECTT task expressions. Note that . If 

 then we shall write , sometimes omitting the subscript, when it is clear from the context. We 

say that a task name n denotes an atomic task if    or a task reference if ). 

 is a typing function that associates a task type with each task 

name in .  

   Extensions = {  
     
(|(*Extension 3a*) 
     ID = ''e1'', 
     Condition = ''Primary Actor is not satisfied with search results'', 
     ExtensionScenario =  
      [ Atom ''s3a1'' INTERACTION ''inCA'' {}, 
        Failure ''s3a2''] 
    |), 
    (|(*Extension 4a*) 
      ID = ''e2'', 
      Condition = ''The product is unavailable in sufficient quantities'', 
      ExtensionScenario =  
       [ Atom ''s4a1'' APPLICATION ''inIQ'' {}, 
         Failure ''s4a2'' ] 
    |),       
    (|(*Extension 6a*)  
      ID = ''e3'', 
      Condition = ''Primary Actor decides to cancel the use case'', 
      ExtensionScenario =  
       [ Atom ''s6a1'' INTERACTION ''inCA'' {}, 
         Failure ''s6a2'' ] 
     |),  
    (|(*Extension 7a*) 
      ID = ''e4'', 
      Condition = ''The payment was not authorized'', 
      ExtensionScenario =  
       [ Atom ''s7a1'' APPLICATION ''inPF'' {}, 
         Failure ''s7a2'' ] 
    |) } |)" 

Fig. 6. Formalized syntax of "Order Product" use case 

 

 

 

 

 

 

 

 

, with 

 inCO 

 

Fig. 7. Partial ECTT formalization of the IMS task model 
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In contrast to CTT, the various task definitions ( ) do not need to be connected by some task-subtask hierarchy. This 

allows for a more modular setup, enabling the UI designer to work on multiple task hierarchies concurrently and 

eventually connect them using references. The creation of a single monolithic task tree (as required by CTT) is not 

necessary. For an ECTT task model to be well-formed, we require that  contain only non-recursive task definitions, 

that the task type of atomic tasks be either  or  and that direct and indirect operands of ||, |>, 

[> be of type interaction. In order to illustrate the before-mentioned definitions let us reconsider the “Order Product” 

task model visualized by Fig. 3. The corresponding formalization as an ECTT task model is depicted in Fig. 7. Leaf 

task names are abbreviated by the label displayed underneath the respective task symbols.  

5. Intermediate semantic domains 

In this section we introduce use case labeled transition systems (UC-LTSs) and generic task expressions (GTEs) as 

intermediate semantics domains for use case and task models, respectively.  We also formally define the mappings 

from DSRG-style use case models and ECTT task models to their respective intermediate semantic domains.  

5.1. UC-LTS 

The intermediate semantic domain for use case models is UC-LTSs. Its definition is similar to the definition of an 

ordinary LTS [BaW90] with the exception that transitions are associated with sets of labels rather than single labels.  

Definition 3 (Use case labeled transition system). A Use case labeled transition system (UC-LTS) is a tuple 

, where  is the set of labels representing atomic use case steps,  is a set of states,  is the 

initial state,  is the set of final states and  is the (total) transition function.  

We believe that UC-LTSs are defined in a manner which easily and intuitively captures the nature of use cases, as 

we explain next. A use case primarily describes the possible execution order of user and system actions in the form 

of use case steps: from a given state, the execution of a step leads into another state. Accordingly, in UC-LTSs, the 

execution of a step (or set of steps, as we shall explain shortly) is denoted by a transition from a source state to a 

target state. Each transition is associated with a non-empty set of labels, where each label represents an atomic use 

case step. The execution order of use case steps is modeled using transition sequences, where the target state of a 

transition serves as the source state of the following transition. For a given transition, if the associated label set 

contains more than one label, then no specific execution order exists between the corresponding use case steps. I.e., a 

transition is triggered when all associated primitive steps are executed; the execution order, however, is arbitrary. 

The mapping from a DRSG-style use case model to a UC-LTS is defined in two steps:  

1. Generation: For each use case of the DSRG use case model, the main success scenario and extensions are 

mapped to UC-LTSs. Each such UC-LTS is a partial description of the respective use case, i.e., it represents 

either the main success scenario or an extension. Throughout generation, a global equivalence relation ( ) is 

successively populated, which identifies equivalent states among the various UC-LTSs.  

2. Merging: The various UC-LTSs are merged into a single UC-LTS. The merge is performed on the basis of the 

global equivalence relation ( ).  

Definitions of the mappings require: (1) An input use case model in canonical form, (2) proper initialization of a 

global environment ( ) and (3) the global equivalence relation ( ). In the following, details of each requirement 

will be given. 

Definition 4 (Canonical form of a use case model). A use case model is in a canonical form, if and only if: 

i. it is well formed, 

ii. each use case extension is associated with exactly one step, and  

iii. each use case (except for the root use case) is invoked by exactly one  step.   

While the “Order Product” use case (Fig. 6) is already in canonical form, an arbitrary well-formed use case model 

can be transformed into canonical form in a straight-forward manner. In order to satisfy condition (ii), instead of the 

original extension, use case steps are associated with distinct copies of the respective extensions. If steps of the 

original extension are referenced by means of a  step, the respective reference is to be updated accordingly. 

Similarly, in order to satisfy condition (iii) instead of the original sub-use case , each  step is associated 

with a distinct copy ( ) of . For example, if, throughout the use case model, use case  is included three times by 
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steps ,  and , then we create three copies of  ( , , ) and 

modify the inclusion steps as follows: ,  and . 

We also require the proper initialization of a global environment, . As defined by Fig. 8 (left hand side),  

has three fields, named ,  and , where:  is a function that maps use case names to  which, 

according to Fig. 8 (right hand side), defines for each use case the initial state ( ) of the UC-LTS representing the 

main success scenario and the set of states representing the successful  ( ) and unsuccessful ( ) termination of the 

use case.  and  are bijective functions that map a given step id or extension id to the initial state of the UC-

LTS representing the use case step and use case extension, respectively. Recall that according to the well-formedness 

conditions of a DSRG-style use case model, step and extension ids are unique within any given use case model.  

 is an equivalence relation (reflexive, symmetric, and transitive) defined over , the 

set of all states. During merging, all equivalent states will be merged to a single state denoting its respective 

equivalence class. In order to satisfy the reflexivity requirement,  is initialized as follows: 

.  

5.1.1. Generation 

Given a use case model in canonical form, the generation of a set of UC-LTSs is performed in a bottom-up manner.  

We start with the mapping of an individual use case step. As defined in the abstract use case syntax (Fig. 5), there are 

7 kinds of use case steps. Each step kind has its own specific mapping to a UC-LTS.  

As depicted in Fig. 9, depending on the step type (denoted by t) atomic steps are mapped into different UC-LTSs. 

The rationale behind each case is as follows: Each internal (a) use case step has  different outcomes, among 

which one is captured in the main success scenario and the remaining  outcomes are captured by the 

corresponding extensions. Hence, the resulting UC-LTS consists of  transitions; one transition for the main 

success scenario and  transitions for each defined extension. The former results in a final state, which will be used 

for the sequential composition of use case steps. The latter result in a set of non-final states. During merging, these 

states will be joined with the initial states of the UC-LTSs representing the various extensions. This is defined by 

adding the respective state pairs to the global equivalence relation (∼).  

In contrast to internal use case steps, which are performed by the system and are hidden from the user, steps of 

type interaction are performed by the user. As such, they do not have an alternative outcome per se, but may be 

associated (by virtue of one or more extensions) with alternative steps which are performed instead of the actual step. 

As a result, the corresponding UC-LTS consists of only one transition (from  to ), representing the use case step 

(b). Alternative steps are captured in the UC-LTSs representing the corresponding extensions. During “Merging” the 

initial states of each UC-LTS representing an extension are identified with . This is defined by updating ∼ 

accordingly. Steps of type application are performed by the system and have an externally visible effect to the user. 

They are performed in response to an internal or interaction step.  As a consequence, they are not associated with 

any extension, and the corresponding UC-LTS consists of only one transition (c).  

The mapping of the remaining step kinds is briefly outlined next. The full details can be found in [Sin08]. A 

Choice step is mapped to a UC-LTS which results from merging the initial states of the UC-LTSs representing the 

record Environment =  
   uc   :: "UCName => UCStateInfo" 
   ext  :: "ExtensionID => STATE"  
   step :: "StepID => STATE"  

record UCStateInfo =  
   q0 :: "STATE"       
   Fs :: "STATE set"   
   Ff :: "STATE set"    

Fig. 8. Definition of global environment and UCStateInfo 

la

q0

qF1 qF2 qFn

ex1 ex2 exn

la la la

qS

 

q0

ex1

ex2

exn

qS

la

 

q0

qS

la

 
(a) (b) (c) 

Fig. 9. UC-LTSs representing atomic use case steps 



12  D. Sinnig et al. 
 

involved step sequences. The mapping of a Concurrent step corresponds to the construction of the product machine 

of the involved UC-LTSs. Goto steps denote a branching to a use case step. The corresponding UC-LTS consists of a 

single state, which is defined equivalent (by means of ∼) with the initial state of the UC-LTS representing the target 

use case step. Include denotes the invocation of a sub-use case. The corresponding UC-LTS consists of two states 

(  and ) which are not (yet) connected by any transition. During “Merging” the initial state of the UC-LTS 

representing the main success scenario and all final states of the UC-LTSs representing the sub-use case will be 

merged with  and  , respectively.  Success and Failure steps denote the successful or unsuccessful termination of 

a use case scenario. In both cases the corresponding UC-LTS consists of only a single (final) state. 

M1 M2
 

Fig. 10. Sequential composition of nFSMs 

Having defined the mapping for individual UC steps, we continue with defining the mapping of step sequences to 

UC-LTS. The mapping of a list of use case steps corresponds to the binary sequential composition ( ) of the UC-

LTSs of the individual steps. As schematically depicted in Fig. 10, the sequential composition consists of unifying 

the final states of the first operand and the initial state of the second operand. 

Definition 5 (Mapping a step sequence to a UC-LTS). Given , a non-empty step sequence of  

steps, we define the mapping of step sequences to a UC-LTS as follows:  

. 

An entire use case is mapped into a set of UC-LTSs. The resulting set contains one UC-LTS for the main success 

scenario and one UC-LTS for each defined extension.  

Definition 6 (Mapping a use case to a set of UC-LTSs). Let  be a use case 

with e . We then obtain the corresponding set of UC-LTSs as follows:  

. 

Finally, we define the mapping of a set of use cases to a set of UC-LTSs as the union of the sets of UC-LTSs 

representing the various use cases.  

Definition 7 (Mapping a set of use cases to a set of UC-LTSs). Let  be a set of use cases. We 

then obtain the corresponding set of UC-LTSs as follows: . 

For illustrative purposes, Fig. 11 portrays the set of UC-LTSs of the “Order Product” use case model. As depicted, 

the set consists of five UC-LTSs; one for the main success scenario of “Order Product” and one for each of the four 

extensions. States that belong to the same equivalence class (by means of ∼) are circled by a dashed line. During 

“Merging”, these states will be combined to a single state to obtain a single consolidated UC-LTS. 
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Fig. 11. UC-LTSs of the “Order Product” use case  
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5.1.2. Merging 

A use case model is mapped to UC-LTS by merging the UC-LTSs representing the various entailed use cases. The 

merge is performed on basis of the global equivalence relation (~). 

Definition 8 (Mapping a use case model to UC-LTS). Let  be a well-formed use case model in 

canonical form,  be the range of , and   be the result of 

 with  and . The mapping to UC-LTS is then defined as 

follows:  with , , 

, , where  is the generalized canonical projection map 

defined as , and . 

The set of states of the resulting UC-LTS is the set of equivalence classes in (  ) with respect to . 

The initial and final states are the equivalence-class counterparts of the initial and final states of the root use case . 

Rather than on states, the transition function δ is defined on equivalence classes of states. For a given equivalence 

class and a set of labels, it denotes the set of equivalence classes of all states that are reachable from any member of 

 having accepted . 

Fig. 12 portrays the UC-LTS obtained by merging the various UC-LTSs given in Fig. 11. The resulting UC-LTS 

has five final states:  denoting the successful outcome of the use case (i.e., the customer succeeded to order the 

product),   and  denoting the case where the user cancels the use case,   denoting the case where the 

product is not available, and  denoting case where the payment was not authorized. Notice that the resulting 

UC-LTS has fewer states than the accumulated number of states of the involved UC-LTSs. This is because, during 

merging, two or more states are combined into a single state, representing the respective equivalence class. 
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Fig. 12. UC-LTS representing "Order Product" use case 

 

5.2. Generic task expressions 

In this section we define the intermediate semantic domain for task models called Generic Task Expressions (GTE). 

We also specify how well-formed ECTT task models are mapped into a corresponding GTE. 

Definition 9 (Generic task expression). Let  and  be generic task expressions and  be an atomic task, then 

the set of generic task expression  is the smallest set closed under following rules: (1)  is a generic task 

expression and (2) , , ,  , , ,  are also generic task expressions. 

In contrast to an ECTT task model (Definition 2), a generic task expression abstracts away from high-level task 

names (i.e. task definitions). Instead of using task definitions, the behavior of the task model is captured in a single 

generic task expression. While high-level task names are important at the modeling stage to foster the 

comprehension of the task model, they are irrelevant for capturing behavioral information. Compared to an ECTT 

task expression, a generic task expression may not contain high-level operators (e.g., order independency, disabling, 

or suspend / resume). These operators are important, as syntactic sugar, at the modeling stage to obtain a concise and 

comprehensible task model. However, they do not enrich the expressiveness of an ECTT task expression and can be 

rewriting using low-level operators. In what follows we present a mapping which transforms each ECTT task 

expression into a corresponding generic task expression.  
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Definition 10 (Mapping an ECTT task expression to a generic task expression). Let   be ECTT task 

expressions,  be a task name and  be a finite map of ECTT task definitions. We then define the mapping 

to generic task expressions, relative to a given task definition map , as follows:  

 

  

  

  

 

 

 

 

 

 

 

 

While most expressions (i.e., , , , , , ) are directly mapped to a corresponding GTE expression, 

ECTT task expressions of form  (disabling) or  (suspend / resume) are first rewritten into an ECTT 

task expressions without  and , before the semantic function is applied. For this purpose the auxiliary functions 

deep optionalization ( ) and interleaved insertion ( ) have been defined. The former is a function that defines every 

sub-task of its target task expression as optional. However, if the sub-tasks are executed, they have to be executed in 

their predefined order. The latter is a function that “injects” the task specified by its second operand at any possible 

position in between the (sub) tasks of the first operand. Formal definitions of  and  together with additional 

explanations why disabling and suspend / resume can be rewritten using lower-level operators, are given in 

Appendix A.  The GTE of the “Order Product” task model is given below. 

 

6. Common formal semantics 

In this section we define the second-level mappings (Fig. 4) to the semantic domain of Sets of Partial Order Sets (set 

of posets). We start by providing necessary definitions.  Then, we present a procedure that, given a UC-LTS, 

generates the corresponding set of posets. We also define a semantic function that maps a generic task expression 

(GTE) to a corresponding set of posets.  

6.1. Definitions 

Fundamental to our approach is a differentiation between events and event names as well as a formalization of the set 

operation disjoint union (+).  

6.1.1. Mathematical Definitions and Preliminaries 

Definition 11 (Events). Let  represent the set of all possible event names. We then define an event 

as a pair consisting of an event name  and an index . Correspondingly, the set of all events is defined as: 

 For all  we define the obvious projection function 

 and its generalization, applied to sets of 

events being applied to all elements of the set. We reserve the name ; its semantics will be 

given later. 
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In what follows, event names may be used to represent events with index ; i.e., as needed, we assume the implicit 

conversion from  We will use the symbol , possibly 

decorated with primes ( ) and/or subscripts ( ), to represent a subset of . Next we define the 

set operation disjoint union. It is used as an auxiliary function for the definition of composition operators for partially 

ordered sets, which are needed for the semantic mapping.  

Definition 12 (Disjoint union). Using standard notation, we represent the disjoint union ( ) of two event sets as: 

, where  for  with  

Our definition of the disjoint union is similar to what has been proposed by Blyth [Bly75]. In both cases an index set 

is used to distinguish between events that have the same name. In contrast to Blyth, however, we use a natural 

number instead of an n-ary tuple over . We generalize  and   to binary relations over ; i.e., given 

 we define  and . 

6.1.2. Semantic Domain: Sets of Posets 

The building blocks for the semantic domain presented in this section are partially ordered sets (posets).  

Definition 13 (Poset over events). A partially ordered set (poset) over events is a tuple , where  

is a set of events and  is a partial order relation (reflexive, anti-symmetric, transitive) defined over . This 

relation specifies the causal order of events. 

In order to be able to compose posets we define the operations sequential and parallel composition. 

Definition 14 (Sequential and parallel composition of posets). Let  and  be posets. We 

define the sequential composition ( ) and parallel composition ( ) as follows. 

  

 

 

Intuitively, if the event set of  does not contain , then the sequential composition  places all events of  

strictly after all the events of . Otherwise,  simplifies to  regardless of . In contrast to the sequential 

composition, the parallel composition does not make a case distinction between posets that contain or do not contain 

an event named . The insertion and the removal of STOP to/from a poset are the so-called closing and opening 

operations and are defined as follows:  

Definition 15 (Closing and opening of a poset). Let  be a poset. We define the closing operation 

 and the opening operation . 

In [Sin08], we have formally proven that posets are closed under the operations sequential composition, parallel 

composition, opening and closing. Also fundamental to our model is the notion of a trace. In general, a trace of a 

partial order set corresponds to a totally ordered event-name sequence such that the corresponding sequence of 

events is a linear extension of the partial order. It is important to note that events with event name  are not part 

of a trace.  Note that  holds true, if either  or   and  are unrelated (by means of ).  

 

Definition 16  (Set of all traces). Let  be a poset. We define the function  which yields the set of all 

traces of  as follows:  

 

The common semantic domain for use case and task models is sets of partially order sets and is defined as follows:  

Definition 17  (Set of partial order sets). A set of partial order sets  is a possibly infinite collection of posets 

 .  
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Sets of posets can be composed by the operators defined in Definition 18. In contrast to the operators defined on 

posets we additionally introduce alternative composition and closure. Both are needed for the semantic mappings 

defined in the next sections. Note that similar to the Kleene star operation for regular expressions [GMU07], closure 

returns the set of posets that are formed by computing the union of all possible (repeated) sequential compositions of 

a given set of posets.   

Definition 18  (Operators for sets of posets). Let  and  be sets of posets. We define the sequential composition 

( ), parallel composition ( ), alternative composition ( ), closing, opening, and closure ( ) as follows: 

 

 

 

 

 

 where  is defined as  

Finally, we define the set of all traces for a set of posets. It forms the essential basis for establishing refinement 

relations (Section 7) between use case and task models.  

Definition 19  (Set of all traces of a set of posets). The set of all traces of a set of posets  is defined as:  

 

 

Based on the definition of the set of all traces, we can derive certain trace properties for each defined set of poset 

operation. These are given in Appendix B.  

6.2. Semantic rules 

In this section we define the semantic mappings from the intermediate semantic domains (namely UC-LTS and 

GTE) to sets of posets.  

6.2.1. Mapping UC-LTSs to sets of posets 

Definition 20 (Mapping UC-LTS to a set of posets). Let  be a UC-LTS. We then define the 

mapping to a set of posets as follows:  

. For this purpose we have devised the algorithm . Fig. 13 

gives the corresponding pseudo code.  

Without loss of generality, the algorithm assumes that there are no outgoing transitions from any of the final states in 

the input UC-LTS. This is a valid assumption since, according to the well-formedness rules for DSRG-style use 

cases (Section 4.1), Failure and Success steps are always at the end of any step sequence and cannot have any 

extensions. We also note that the main idea for the algorithm stems from the well-known algorithm that transforms a 

deterministic finite automaton into an equivalent regular expression [GMU07]. Instead of stepwise composing 

regular expressions, we compose sets of posets.   

The procedure starts (1) with the creation of an initial generalized UC-LTS internally represented by a two-

dimensional array („SPO‟). The array is populated with all transitions of the given UC-LTS specification. Indexed by 

a source and a target state, an array cell contains a set of posets constructed from the label(s) associated to the 

representative transition. If the label is a singleton set, then the corresponding set of posets contains a single poset 

containing the respective event. If the label consists of multiple events, indicating the concurrent or unordered 

execution of use case steps, the set of posets will contain a poset which consists of several elements. Those elements, 

however, are not causally related. We note that the idea of a generalized UC-LTS is similar to the concept of a 

generalized finite state machine  [GMU07]. Instead of labeling the transitions with regular expressions, transitions 

are labeled with sets of posets.  
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The core part of the algorithm consists of two nested loops. The outer loop (2) iterates through all states of the 

generalized UC-LTS (except for the initial and the final states) whereas the inner loop (3) iterates through all pairs of 

incoming and outgoing transitions for a given state. For each found pair , we perform the following (4): 

Compute the alternative composition of:  

SPO[ ] The set of posets associated with the transition from  to . If such a transition does 

not exist we take the set of posets to be .  

and the result of the sequential composition of the following three sets of posets:  

SPO  Set of posets associated to the incoming transition 

SPO  The closure of the set of posets associated to a possible self-transition defined over the 

currently visited state. If such a self transition does not exist then the closure 

composition yields . 

SPO  Set of posets associated to the outgoing transition.  

Next (5) we add a new transition from the source state of the incoming transition to the target state of the 

outgoing transition. Note that the corresponding cell in  has already been populated with the result of (4). Back 

in the outer loop, we eliminate (6) the currently visited state from the generalized UC-LTS and proceed with the next 

state. Once the generalized UC-LTS consists of only the initial state and the final states we exit the outer loop and 

perform the following two computations, in order to obtain the final result. First (7) we perform an alternative 

composition of the sets of posets of all the transitions from the initial state to a final state. Second, if the initial state 

additionally contains a self loop (8) then we sequentially compose the result of the closure composition of the set of 

posets denoted by that self loop and the result of the before-mentioned alternative composition.  

If we apply the  algorithm to the “Order Product” UC-LTS we obtain the set of posets depicted in 

Fig. 14. For the sake of conciseness events are represented only by their name, while the index has been omitted. 

This simplification was possible because none of the entailed posets contains two or more events sharing the same 

name. The various parts of the resulting set of posets are interpreted as follows: Having indicated the desire to order 

a product, the primary actor searches for a product and as a result (1, 3) elects to quit the system, (2) the selected 

product is not available in the desired quantity or he/she decides to checkout and pay. In the latter case, the debit or 

credit card payment is either authorized (4b, 5b) or rejected (4a, 5a).  

(1) 

var SPO:SPOSET[][] with all array elements initialized to  

for each transition  in  do  

  SPO[ ] := , where  

od 

(2) for each state  in  do  

(3) 
 for each pair of states  and with  and   such that   and 

 do 

(4) 
  

SPO SPO[ ]  (SPO   SPO   SPO ) 

(5) 
  

 od 

(6) 
  

od 

(7) 

var :SPOSET  

for each  in  do 

       :=   SPO  

od 

(8) 

if  such that  then  

        SPO      

endif 

 return  

Fig. 13. LTS_to_SPO algorithm transforming a UC-LTS to a set of posets 



18  D. Sinnig et al. 
 

6.2.2. Mapping GTM to sets of posets 

This section specifies how a generic task expression is mapped into a corresponding set of posets. As given in 

Definition 21,  is defined in the common denotational style. An atomic generic task expression (denoted 

by ) is mapped to a set containing the corresponding singleton poset. Composite task expressions are represented 

by sets of posets, which are composed using the operators, defined in the Section 6.1.2.  

Definition 21 (Set of posets semantics of generic task expressions). Let  be generic task expressions and  be 

an atomic task. We then define the mapping  to sets of posets as follows:  

 

 

 

 

 

 

 

 

In what follows we illustrate the semantic rules by mapping the “Order Product” generic task expression to a set of 

posets.   

 

According to Definition 21 the application of  to the entire generic task expression is successively broken 

down into the application of  to sub-expressions and the corresponding set of posets operations. Fig. 15 

depicts the resulting set of posets expression, using the same shorthand notation as introduced in the previous 

section. It allows a subset of the traces allowed by the set of posets of the corresponding use case. Upon initiation, 

the user searches for a product until he/she either (1, 3) elects to quit, (2) the selected item is out of stock or the 

product is available and the attempt to pay by credit card is either rejected (4a) or authorized (4b). The option to pay 

by debit card (as specified in the use case) is not available. This may be due to restrictions of the supported user 

interface, which may not be equipped with a debit card reader.   

(1)  

(2)  

(3)  

(4a)  

(4b)  

(5a)  

(5b)  

Fig. 14. Set of posets representation of "Order Product" use case 
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7. Refinement between use case and task models 

In the spirit of modern software development, use case and task models are best developed iteratively through a 

series of refinement steps. For each refinement step it is important to verify that the resulting model is a valid 

refinement of its source specification. Having defined a common semantics for use case and task models we are now 

able to formalize refinement between these two kinds of artifact. 

In Section 2.3, we noted that use cases are used to capture functional requirements, whereas task models are used 

to capture UI interaction requirements and design details. While use case models are exclusively used at the 

requirements stage, task models may be used at the requirements and at the design stage. When the task model is 

used as a requirements artifact, this detailed specification of the UI is considered part of the contract between 

stakeholders about the envisioned interactive application, whereas when exclusively used as a design document it is 

not part of the requirements contract. Based on this observations, it becomes evident that two notions of refinement 

are necessary depending on the purpose of the refining model; i.e., whether the refining model is a requirements 

artifact or a design artifact. In the following, both cases are discussed in detail.  

At the requirements stage, a use case or task model may be refined by a more detailed artifact. In such a case, the 

refinement is deemed valid if the refining model does not allow more scenarios than its base model. The refining 

model, however, may further restrict the set of allowed scenarios. In practice, such a restriction may be the result of 

filtering the requirements in order to establish a base line. As a consequence, requirements with a low priority or that 

are considered too risky may be dropped in the refining model. In our semantics, the restriction of scenarios can be 

expressed in terms of trace inclusion.  

Definition 22  (Refinement at requirements stage). For , let  be (well formed) DSRG-style use case 

models,  be (well formed) requirements ECTT task models and and  be the respective sets of posets 

representations. We then define refinement between use case and task models as follows:  

 

 

 

The artifacts gathered during requirements specification are part of the contract between stakeholders about the 

envisioned application. When moving from a requirements model to a design model, it is important to ensure that the 

refining model truly implements the requirements. As a consequence, the refining model may only add information 

in terms of structural refinement (refinement of previously atomic use case steps or tasks), but must not restrict or 

extend the number of possible scenarios. For example, when moving from a use case model to a design-level task 

model we have to ensure that the task model adopts the entirety of the functional requirements specified in the use 

case model and integrates them into the UI design. Similarly, if a requirements task model is refined by a design-

level task model we require that each task of the requirements model be present in the design-level task model and 

that the execution orders of all “implemented” requirements-level tasks be preserved. In our semantics, scenario 

equivalence is expressed in terms of trace equivalence:  

Definition 23  (Refinement at design stage). Let  be a (well formed) DSRG-style use case model,  be 

a (well formed) requirements ECTT task model, ,   be (well formed) design ECTT task models and 

(1)  

(2)  

(3)  

(4a)  

(4b)  

Fig. 15. Set of posets representation of "Order Product" task model 
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, ,  and  be their respective sets of posets representations. We then define refinement 

between use case and task model as follows:  

 

 

 

A precondition for the application of the definition is that the involved sets of posets are defined over the same 

event-name alphabet. In what follows, we discuss two techniques to resolve alphabet conflicts, called refinement 

mapping and event hiding.   

1. A mapping from events of the base specification to events of the refining specification is referred to as 

refinement mapping. We distinguish between two main types:   

− Choice Mapping: An atomic element of the base specification may be refined by a set of atomic elements 

which are alternatively composed by either the ECTT choice ( ) operator or a Choice use case step.  

− Many-To-One mapping: An atomic element of the base specification may be refined into a set of sub-

elements. In contrast to choice refinement, the execution of the entirety of sub-elements resembles the 

execution of the base element. 

2. The second technique that can be used to unify the event-name alphabet of two specifications is event hiding. As 

already mentioned, use case models are used to document functional requirements while task models specify UI 

requirements and design details. As such, they abstract from internal system actions, which are irrelevant for UI 

design. Hence, in order to compare use case and task models for refinement, we have to abstract from all 

internal system steps in the use case model. This is achieved by removing all events that represent internal 

events in the set of posets representing the use case model.  

In order to illustrate the application of the introduced refinement definitions, let us recall the “Order Product” use 

case and the “Order Product” task model. In order to formally verify that the task model is a valid requirements-level 

refinement of the use case, we need to prove that the set of all traces of the set of posets representing the task model 

is a subset of the set of all traces of the set of posets representing the use case. After hiding, all events representing 

internal system steps (displayed in gray in Fig. 14) in the set of posets representing the use case, we obtain the 

following trace set.  

 

The set of posets representing the task model, after the refinement mapping, is given in Fig. 16. In particular we 

applied the many-to-one mapping from tasks “Select Criteria” (slCR) and “Submit Criteria” (sbCR) to use case step 

“Specify Product Category” (spCA) and the many-to-one mapping from tasks “Select Product” (slPD), “Select 

Quantity” (slQT) and “Submit” (sbPS) to use case step “Specify Product and Quantity” (slPQ). We then obtain the 

following set of traces:  

 

Clearly , and hence we conclude that at the requirements stage the “Order Product” task 

model is a valid refinement of the “Order Product” use case. Recall that each task model is geared to a particular user 

interface and as such is confined by its limitations. In this case, the user interface may not be equipped with a debit 

card reader and hence does not offer the user this payment option (even though from a pure functionality point of 

view a debit card payment could have been processed by the system (as specified by the use case). We conclude this 

section by noting that at the design stage, the “Order Product” task model is not a valid refinement of the use case. 

With  the requirements contract (as specified by the use case) is not fulfilled by the design 

which supports only a subset of the offered functionality.  
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(1)  

(2)  

(3)  

(4a)  

(4b)  

Fig. 16. Set of posets representation of "Order Product" task model after refinement mapping 

8. Related work 

In this paper, we have defined a common formal semantics for use cases and task models. Both are used to model 

behavioral aspects of the system. The formalization of behavioral specifications has been attempted by various 

researchers. Börger et al. [BCR00a; BCR00b] propose a formal framework for UML statecharts based on an multi-

agent ASM formalism. The behavior of the statechart is controlled by a set of ASM agents, which execute actions 

depending on the currently active state(s). The actions are formalized by a set of ASM rules. Reggio et al. [RAC00] 

define an operational semantics for UML statecharts based on algebraic specifications. Pursuing the goal statechart 

verification Kwon [Kwo00] proposes a formalizations in PROMELA/SPIN and SMV, respectively. Activity 

diagrams are used to describe the flow of behavior within a system. Similarly to use cases, activity diagrams are 

equipped with constructs to express sequences, choices and parallelism. Several attempts have been made to define 

formal semantics for activity diagrams. E.g., the research by Börger et al. [BCR00c] defines a semantics by 

translating activity diagrams to abstract state machines. Bolton and Davies [BoD00] provide a formalization of 

activity diagrams using CSP.  

UML interaction diagrams (e.g., collaboration/communication and sequence diagrams) are used to model system 

functionality and the control flow within a system. Engels et al. [EHS99] define a formal semantics for UML 

collaboration diagrams based on graph transformation rules.  Storrle [Sto03] and Haugen et al. [HHR05] define 

trace-based semantics for sequence diagrams. The semantics proposed by Grosu and Smolka [GrS05] employs safety 

and liveness properties to formally distinguish between valid and invalid behaviors. For the closely related message 

sequence charts (MSCs), Zheng [Zhe04], proposes a non-interleaving semantics based on timed labeled partial order 

sets (lposets). Partial order semantics for (regular, un-timed) MSCs have been proposed by Alur et al. [AHP96] and 

Katoen and Lambert [KaL98]. Alur et. al. propose a semantics for a subset of MSCs which only allow message 

events as possible MSC events types. In contrast, the semantics of Katoen and Lambert is more complete. They map 

MSCs to a set of partial order multi-sets (pomsets).  

The definition of formal semantics for use case models has been attempted by various researchers. Fröhlich and 

Link [FrL00] present a transformation algorithm that derives a UML state chart model from a given set of textual use 

cases. Similar to our approach, a distinction is made between use case steps that are performed by the system and 

steps performed by the primary actor. The former are represented by actions, whereas the latter are modeled as 

events, causing state transitions. Övergaard and Palmkvist [ÖvP98] propose an ODAL [MPW92] formalization of 

use cases and their relationships (uses and extends). It is assumed that use cases are pre-formalized in a proprietary 

methods / operations notation. The formalizations of uses roughly corresponds to our include step, the formalizations 

of extends corresponds to our notion of a use case extension. Stevens [Ste01] discusses how use cases and their 

relationships may be formalized using labeled transition systems (LTS). Use cases are interpreted as processes, 

which are internally represented by LTSs. Relationships between use cases are modeled by relating the 

corresponding LTSs.  

Rui et al. suggest a process algebraic semantics for use case models, with the overall goal of formalizing use case 

refactorings [Rui07]. In their approach, scenarios are represented as basic MSCs by partially adapting the ITU MSC 

semantics [Itu99]. Fernandes et al. [FTJ07] present an approach to translate use cases into Colored Petri net models. 

It is assumed that each use case is represented by a UML sequence diagram. The translation is performed in a top 

down manner: First, the use case model is mapped into a global Petri net which contains placeholders for each 

individual use case. Then, each placeholder is replaced by a sub-Petri net capturing the various scenarios of the use 

case. Probably the most comprehensive approach has been defined by Somé [Som07]. He proposes execution 

semantics for use cases by defining a set of mapping rules from well-formed use cases to basic Petri nets. A use case 

is deemed well-formed if it syntactically corresponds to a predefined meta-model and satisfies a set of consistency 
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and well-formedness rules. The mapping to Petri nets is defined over the various components of the use case (e.g. 

use case step, extension, control flow construct, etc.).  

Paternò and Santoro define formal semantics for a subset of the task modeling notation CTT (ConcurTaskTrees) 

based on LOTOS [PaS03]. Tasks and subtasks from the CTT task model are mapped in a one-to-one fashion to 

LOTOS process specifications. Temporal relations between tasks are mapped to LOTOS process composition 

operators. Ait-Ameur et al. [ABK05] specify a mapping from CTT to Event-B [Abr96]. Main motivation behind 

their work is the formal validation of whether a concrete implementation of a UI is consistent with its design 

specification. Klug & Kangasharju [KlK05] propose a formalization for task models where a task is not regarded as 

an atomic entity (like in CTT) but has a complex lifecycle, modeled by a so-called task-state machine. In the 

approach by van den Bergh and Coninx [BeC07] entire task expressions are translated into state charts, including 

high-level tasks. Bomsdorf [Bom07] defines an elaborated life cycle for tasks. The work is focused on the 

development of web applications and considers external events related to web technology (e.g. session timeouts and 

user aborts).  

The approach presented in this paper is inspired by the approach by Zheng [Zhe04], who proposed a non-

interleaving semantics for timed MSC 2000 [Itu99] based on timed labeled partial order sets (lposets). Compared to 

the poset definition introduced in this paper, a timed lposet additionally contains labeling and timing functions.  The 

labels serve as an indicator for the corresponding event type. Possible event types are: message input, message 

output, internal action, start timer, stop timer and timeout. Furthermore Zheng defines two functions which attach 

timing constraints to events in order to specify the time range within which an event could occur and to define delays 

between two events.  The semantic mapping is performed by associating an MSC with a set of timed lposets which 

capture the possible execution scenarios of the MSC.  

According to our integrated development methodology, use case and task models are successively refined into 

more detailed specifications. Refinement relations for event-based specifications have been investigated for decades 

and definitions have been proposed for various models [Den87; IYK90; But92; BuB06; SiC07; BSB02]. Khendek et. 

al [KBV01] propose a refinement relation for basic MSCs. It ensures that a scenario, described in the source MSC 

specification, is also available in the refined specification. In much the same vein, a scenario that is forbidden in the 

source specification must never occur (or be derivable) in the refined specification [Li00]. In other words, the 

behavior of the source MSC must be preserved in the target MSC. Events defined in the source MSC should also 

occur in the target MSC, and the relative order of these events needs to be preserved. The order of newly introduced 

events is not restricted. In our work, we used a similar approach by defining refinement through trace inclusion and 

trace equivalence. While the former is applied at the requirements level, the latter is used at the design-level to 

express the condition that the design shall faithfully fulfill the contract statement as laid out by the requirements.  

9. Conclusion 

The lack of a common formal semantics for use case and task models hinders the effective verification of well-

formedness properties, leaves little room for tool support, and hampers the definition of an integrated development 

methodology. As a consequence, ambiguities and inconsistencies may go undetected, and are likely to propagate in 

subsequent development stages, resulting in higher costs to repair them. To address these shortcomings, we have 

defined a common semantics for use case and task models. The formal framework defines a two-step mapping from 

use case or task model notations to the common semantic domain of sets of posets. Our two-step mapping results in a 

semantic framework that can be more easily reused and extended. The intermediate semantic domains have been 

carefully chosen by taking into consideration the intrinsic characteristics of task models and use cases. In particular, 

we defined a Use Case Labeled Transition System (UC-LTS) as an intermediate semantic domain for use cases. It 

was demonstrated that UC-LTSs allow for a natural representation of the order in which actions are to be performed. 

In the case of task models, we defined generic task expressions (GTE) as an intermediate semantic domain. Similar 

to task models, a generic task expression is hierarchically composed of sub-task expressions using a set of standard 

operators. Hence the mapping from a concrete task model to GTE remains straightforward and intuitive. 

As a concrete example, we demonstrated how our framework can be used to define a common semantics for 

DSRG-style use case models and ECTT task models. Both have been defined as improvements to their respective 

state-of-the-art counterparts, Cockburn-style use case models and CTT. Each improvement has been carefully 

selected to ensure that the intent and nature of each model is preserved. In the case of DSRG-style use case models, 

we introduced step kinds and step types as distinguishing factors for use case steps. In case of ECTT, as our main 

contribution, we defined two novel temporal operators: Stop and Resume, that allow the developer to model error and 

failure cases, and provide a mechanism to catch errors and prevent their propagation. Also, in order to overcome the 
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predominant, yet obsolete, monolithic task-tree structure, we defined ECTT in a modular fashion allowing task 

models to be developed in a true top-down manner while taking advantage of encapsulation.  

The common semantics presented here formally relates use cases and task models and allows for cross-artifact 

refinement checks. We have defined two refinement relations based on trace inclusion and trace equivalence. The 

former is used at the requirements level, whereas the latter is used when moving from the requirements to the design 

level. The presented refinement definitions are one possible utilization of the common formal semantics for use cases 

and task models. Depending on the usage context, more elaborate notions of refinement (other than trace inclusion or 

equivalence) can be defined as well. A set of prototypical tools were developed as proofs of concept for the syntactic 

and semantic definitions. We developed an Isabelle/HOL theory which allows for validating syntactic and well-

formedness properties of DSRG-style use cases. We also developed the tool Use Case – Task Model Verifier, which 

partly implements the semantic mappings to the intermediate semantic domains.  

Future avenues deal with the extension of the proposed semantics to capture state information. State information 

is often employed in use case or task models to express and evaluate conditions. For example, the precondition of a 

use case denotes the set of states in which the use case is to be executed. In addition, every use case extension is 

triggered by a condition that must hold before the steps defined in the extension are executed. To be able to evaluate 

conditions, the semantic model must provide a means to capture the system state and should be able to map state 

conditions to the occurrence of events. 
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A. Rewriting of disabling and suspend / resume 

In this section we give formal definitions of the auxiliary operators deep optionalization ( ) and interleaved 

insertion ( ). Both are needed in Definition 10  for the rewriting of the ECTT operators disabling und 

suspend/resume, respectively. Intuitively the meaning of the disabling operator is defined as follows: Both tasks 

specified by its operands are enabled concurrently. As soon as the first (sub-) task specified by the second operand is 

executed, the task specified by the first operand becomes disabled. If the execution of the task(s) specified by the 

first operand is completed (without interruption) the task(s) specified by the second operand are subsequently 

executed. In other words, none of the (sub-) tasks of the first operand must necessarily be executed, whereas the 

execution of the tasks of the second operand is mandatory. Hence, an ECTT task expression including the disabling 

operator can be rewritten as the optional execution of the deep optionalization ( ) of all tasks involved in the first 

operand, followed by the execution of the second operand ( ). We note that the definition of 

the CTT disabling operator has been inspired by the disabling operator of the LOTOS process algebra [Int97]. Yet, 

the interpretations of both operators are not identical. In particular, in LOTOS the subsequent execution of the 

second operand, after completion of the first one is not allowed. 

The interpretation of the suspend/resume operator is similar to the one of the disabling operator. Both tasks 

specified by its operands are enabled concurrently. At any time the execution of the first operand can be interrupted 

by the execution of the first (sub-) task of the second operand. An exception to this rule are tasks within the scope of 

the concurrency operator ( ). Such tasks, although interrupted, may (concurrently) continue their execution. Contrary 

to the disabling operator, the execution of the task specified by the first operand is only suspended and will (once the 

execution of the second operand is complete) be reactivated from the state reached before the interruption [Pat00]. 

At this point, the task specified by the first operand may continue its execution or may be interrupted again by the 

execution of the second operand. In order to model this behavior, we have defined the auxiliary binary operator 

interleaved insertion ( ). It “injects” the task specified by its second operand at any possible position in-between the 

(sub-) tasks of the first operand. Using the auxiliary operator it is now possible to rewrite a term containing the 

suspend/resume operator as follows: . 

Definition 24 (Deep optionalization and interleaved insertion). Let , be ECTT task expressions,  be a task 

identifier and  be a finite map of ECTT task definitions. We then define the operators deep optionalization ( ) and  

interleaved insertion ( ) inductively as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Trace properties 

Based on the definitions of Section 6.1.2, we derive the following trace properties for sets of posets operations. 

 

Proposition (Trace properties of sets of posets operations). The sets of posets operations: sequential composition 

( ), parallel composition ( ), alternative composition( ), closure (*), close and open have the following trace 

properties (Table 2):  
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Table 2.  Trace properties for sets of posets operations 

Operation Trace Property 

 , where  denotes the sequential composition of two event name 

sequences. 

 

, where  is defined as [Ros05]: 
 

   

  

  

  

 

, where  is defined as:  
 

 

  

  

 

The corresponding proof for the proposition is given in [Sin08]. 


