

# Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments

Klaus Steenberg Larsen, Louise C. Andresen, Claus Beier, Sven Jonasson, Kristian R. Albert, Per Ambus, Karen Stevnbak, Marie Frost Arndal, Mette S. Carter, Soren Christensen, et al.

# ▶ To cite this version:

Klaus Steenberg Larsen, Louise C. Andresen, Claus Beier, Sven Jonasson, Kristian R. Albert, et al.. Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology, 2010, 17 (5), pp.1884. 10.1111/j.1365-2486.2010.02351.x. hal-00599531

# HAL Id: hal-00599531 https://hal.science/hal-00599531

Submitted on 10 Jun 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **Global Change Biology** 

Global Change Biology

# Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments

| Journal:                         | Global Change Biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Manuscript ID:                   | GCB-10-0587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Wiley - Manuscript type:         | Primary Research Articles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Date Submitted by the<br>Author: | 16-Jul-2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Complete List of Authors:        | Larsen, Klaus; Technical University of Denmark, Risø National<br>Laboratory for Sustainable Energy, Biosystems Division<br>Andresen, Louise; University of Copenhagen, Institute of Biology<br>Beier, Claus; Technical University of Denmark; Technical University<br>of Denmark, Risø National Laboratory for Sustainable Energy,<br>Biosystems Division<br>Jonasson, Sven; University of Copenhagen, Institute of Biology<br>Albert, Kristian; Risø National Laboratory for Sustainable Energy,<br>Technical University of Denmark, Biosystems Division; Technical<br>University of Denmark, Risø National Laboratory for Sustainable<br>Energy, Biosystems Division<br>Ambus, Per; Risø DTU, Biosystems; Technical University of<br>Denmark, Risø National Laboratory for Sustainable<br>Energy, Biosystems Division<br>Stevnbak, Karen; University of Copenhagen, Biology; University of<br>Copenhagen, Institute of Biology<br>Arndal, Marie; University of Copenhagen, Forest and Landscape<br>Carter, Mette; Risø National Laboratory for Sustainable Energy,<br>Technical University of Denmark, Biosystems Division; Technical<br>University of Denmark, Risø National Laboratory for Sustainable<br>Energy, Biosystems Division<br>Christensen, Soren; University of Copenhagen, Institute of Biology<br>Holmstrup, Martin; National Environmental Research Institute,<br>Terrestrial Ecology<br>Ibrom, Andreas; Technical University of Denmark, Risø National<br>Laboratory for Sustainable Energy, Biosystems Division; Risø National<br>Laboratory for Sustainable Energy, Biosystems Division<br>Kongstad, Jane; University of Copenhagen, Forest and Landscape<br>van der Linden, Leon; RISØ-DTU National Laboratory for<br>Sustainable Energy, Biosystems Division; Technical University of |  |

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20                                                                                                                                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3       10         11       12         13       14         15       16         17       18         19       20         21       22         23       24         25       26         27       28         29       30         31       32         33       34         35       36         37       38         39       40 |  |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                         |  |

|           | Denmark, Risø National Laboratory for Sustainable Energy,<br>Biosystems Division<br>Maraldo, Kristine; National Environmental Research Institute,<br>Department of Terrestrial Ecology; National Environmental<br>Research Institute, Terrestrial Ecology<br>Michelsen, Anders; Biology, Terrestrial Ecology; University of<br>Copenhagen, Institute of Biology<br>Mikkelsen, Teis; Technical University of Denmark, Risø National<br>Laboratory for Sustainable Energy, Biosystems Division<br>Pilegaard, Kim; Technical University of Denmark, Risø National<br>Laboratory for Sustainable Energy, Biosystems Division; Risø<br>National Laboratory for Sustainable Energy, Biosystems Division; Risø<br>National Laboratory for Sustainable Energy, Technical University of<br>Denmark, Biosystems Division<br>Prieme, Ambers; Copenhagen University, Dep. of Biology;<br>University of Copenhagen, Institute of Biology<br>Ro-Poulsen, Helge; University of Copenhagen, Forest & Landscape;<br>University of Copenhagen, Forest and Landscape<br>Selsted, Merete; Risø National Laboratory for Sustainable Energy,<br>DTU, Biosystems; Technical University of Denmark, Risø National<br>Laboratory for Sustainable Energy, Biosystems Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords: | Climate driver interactions, C/N ratio, multi-factor climate change experiment, nitrogen cycling, nitrogen mineralization, N2O, soil fauna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Abstract: | Field-scale experiments simulating realistic future climate scenarios<br>are important tools for investigating the effects of current and<br>future climate changes on ecosystem functioning and<br>biogeochemical cycling. We exposed a semi-natural Danish<br>heathland ecosystem to elevated atmospheric carbon dioxide<br>(CO2), warming, and extended summer drought in all<br>combinations. Here, we report on the short-term responses of the<br>nitrogen (N) cycle after two years of treatments.<br>Elevated CO2 significantly affected above-ground stoichiometry by<br>increasing the carbon to nitrogen (C/N) ratios in the leaves of both<br>co-dominant species (Calluna vulgaris and Deschampsia flexuosa),<br>as well as the C/N ratios of Calluna flowers and by reducing the N<br>concentration of Deschampsia litter. Below-ground, elevated CO2<br>had only minor effects, whereas warming increased N turnover, as<br>indicated by increased rates of microbial NH4+-N consumption,<br>gross mineralization, potential nitrification, denitrification and N2O<br>emissions. Drought reduced below-ground gross N mineralization<br>and decreased fauna N mass and N mineralization. Leaching was<br>unaffected by treatments but was significantly higher across all<br>treatments in the second year than in the much drier first year<br>indicating that ecosystem N loss is highly sensitive to changes and<br>variability in amount and timing of precipitation. Interactions<br>between treatments combinations, i.e. responses were smaller in<br>combinations than in single treatments. Nonetheless, increased C/N<br>ratios of photosynthetic tissue, decreased litter N production, and<br>decreased fauna N mineralization prevailed in the full treatment<br>combination indicating reduced N turnover in the simulated future<br>climate scenario, which could act to reduce the potential growth<br>response of plants to elevated atmospheric CO2 concentration.<br>In conclusion, effects observed in single-factor studies should be<br>evaluated with caution. Multi-factor climate experiments are needed<br>for improving realistic estimation of the combined ecosystem<br>responses |

| 2<br>3   |                                  |
|----------|----------------------------------|
| 3        |                                  |
| 5        |                                  |
| 6        |                                  |
| 7        |                                  |
| 8        |                                  |
| 9        |                                  |
| 10       | Scholarone<br>Manuscript Central |
| 11<br>12 | Manuscript Central               |
| 13       |                                  |
| 14       |                                  |
| 15       |                                  |
| 16       |                                  |
| 17       |                                  |
| 18       |                                  |
| 19       |                                  |
| 20<br>21 |                                  |
| 22       |                                  |
| 23       |                                  |
| 24       |                                  |
| 25       |                                  |
| 26       |                                  |
| 27<br>28 |                                  |
| 29       |                                  |
| 30       |                                  |
| 31       |                                  |
| 32       |                                  |
| 33       |                                  |
| 34<br>35 |                                  |
| 36       |                                  |
| 37       |                                  |
| 38       |                                  |
| 39       |                                  |
| 40       |                                  |
| 41<br>42 |                                  |
| 42 43    |                                  |
| 44       |                                  |
| 45       |                                  |
| 46       |                                  |
| 47       |                                  |
| 48<br>49 |                                  |
| 49<br>50 |                                  |
| 51       |                                  |
| 52       |                                  |
| 53       |                                  |
| 54       |                                  |
| 55<br>56 |                                  |
| 56<br>57 |                                  |
| 58       |                                  |
| 59       |                                  |
| 60       |                                  |
|          |                                  |

# **Global Change Biology**

| 2                                      |    |                                                                                                                                                            |  |  |  |
|----------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 3<br>4                                 | 1  | Title: Reduced N cycling in response to drought, warming, and elevated CO <sub>2</sub> in a Danish                                                         |  |  |  |
| 5<br>6<br>7                            | 2  | heathland: Synthesizing results of the CLIMAITE project after two years of treatments                                                                      |  |  |  |
| 7<br>8<br>9                            | 3  |                                                                                                                                                            |  |  |  |
| 10<br>11                               | 4  | Running title: Effects of climate change on N cycling                                                                                                      |  |  |  |
| 12<br>13                               | 5  |                                                                                                                                                            |  |  |  |
| 14<br>15<br>16                         | 6  | Authors: Klaus S. Larsen <sup>1</sup> , Louise C. Andresen <sup>2</sup> , Claus Beier <sup>1</sup> , Sven Jonasson <sup>2</sup> , Kristian R.              |  |  |  |
| 17<br>18                               | 7  | Albert <sup>1</sup> , Per Ambus <sup>1</sup> , Karen S. Andersen <sup>2</sup> , Marie F. Arndal <sup>3</sup> , Mette S. Carter <sup>1</sup> , Søren        |  |  |  |
| 19<br>20<br>21                         | 8  | Christensen <sup>2</sup> , Martin Holmstrup <sup>4</sup> , Andreas Ibrom <sup>1</sup> , Jane Kongstad <sup>3</sup> , Leon van der Linden <sup>1</sup> ,    |  |  |  |
| 21<br>22<br>23                         | 9  | Kristine Maraldo <sup>4</sup> , Anders Michelsen <sup>2</sup> , Teis N. Mikkelsen <sup>1</sup> , Kim Pilegaard <sup>1</sup> , Anders Priemé <sup>2</sup> , |  |  |  |
| 24<br>25                               | 10 | Helge Ro-Poulsen <sup>2</sup> , Inger K. Schmidt <sup>3</sup> , Merete B. Selsted <sup>1</sup>                                                             |  |  |  |
| 26<br>27<br>28                         | 11 |                                                                                                                                                            |  |  |  |
| 29<br>30<br>31<br>32<br>33<br>34<br>35 | 12 | <sup>1</sup> Technical University of Denmark, Risø DTU, Biosystems Division, Frederiksborgvej 399,                                                         |  |  |  |
|                                        | 13 | DK-4000 Roskilde, Denmark.                                                                                                                                 |  |  |  |
|                                        | 14 | <sup>2</sup> University of Copenhagen, Institute of Biology, Øster Farimagsgade 2D, DK-1353                                                                |  |  |  |
| 36<br>37                               | 15 | Copenhagen K, Denmark.                                                                                                                                     |  |  |  |
| 38<br>39<br>40                         | 16 | <sup>3</sup> University of Copenhagen, Forest and Landscape, Hørsholm Kongevej 11, DK-2970                                                                 |  |  |  |
| 40<br>41<br>42                         | 17 | Hørsholm, Denmark.                                                                                                                                         |  |  |  |
| 43<br>44                               | 18 | <sup>4</sup> National Environmental Research Institute, Department of Terrestrial Ecology, Aarhus                                                          |  |  |  |
| 45<br>46<br>47                         | 19 | University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.                                                                                                      |  |  |  |
| 48<br>49                               | 20 |                                                                                                                                                            |  |  |  |
| 50<br>51                               | 21 | Corresponding author: Klaus S. Larsen, <u>klas@risoe.dtu.dk</u> , phone: +45 4677 4157                                                                     |  |  |  |
| 52<br>53<br>54<br>55<br>56             | 22 |                                                                                                                                                            |  |  |  |
|                                        | 23 | Keywords: Climate driver interactions, C/N ratio, multi-factor climate change experiment,                                                                  |  |  |  |
| 57<br>58<br>59<br>60                   | 24 | nitrogen cycling, nitrogen mineralization, N <sub>2</sub> O, soil fauna                                                                                    |  |  |  |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 |                                                                                                              |
| 5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 | Abstract                                                                                                     |
| o<br>9<br>10<br>11<br>23<br>14<br>56<br>7<br>8<br>9<br>0<br>12<br>23<br>22<br>22<br>22<br>22<br>22<br>23<br>33<br>23<br>34<br>56<br>7<br>8<br>9<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>23<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>67<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>78<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>33<br>45<br>56<br>7<br>89<br>0<br>12<br>3<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>555<br>555<br>5555<br>5 | 27 | Field-scale experiments simulating realistic future climate scenarios are important tools for                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 | investigating the effects of current and future climate changes on ecosystem functioning and                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 | biogeochemical cycling. We exposed a semi-natural Danish heathland ecosystem to elevated                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 | atmospheric carbon dioxide (CO <sub>2</sub> ), warming, and extended summer drought in all                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31 | combinations. Here, we report on the short-term responses of the nitrogen (N) cycle after two                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 | years of treatments.                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33 | Elevated CO <sub>2</sub> significantly affected above-ground stoichiometry by increasing the                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34 | carbon to nitrogen (C/N) ratios in the leaves of both co-dominant species (Calluna vulgaris                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35 | and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36 | N concentration of <i>Deschampsia</i> litter. Below-ground, elevated CO <sub>2</sub> had only minor effects, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37 | whereas warming increased N turnover, as indicated by increased rates of microbial $NH_4^+$ -N               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 | consumption, gross mineralization, potential nitrification, denitrification and $N_2O$ emissions.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 | Drought reduced below-ground gross N mineralization and decreased fauna N mass and N                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 | mineralization. Leaching was unaffected by treatments but was significantly higher across all                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41 | treatments in the second year than in the much drier first year indicating that ecosystem N loss             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42 | is highly sensitive to changes and variability in amount and timing of precipitation.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43 | Interactions between treatments were common and although some synergistic effects were                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44 | observed, antagonism dominated the interactive responses in treatment combinations, <i>i.e.</i>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 | responses were smaller in combinations than in single treatments. Nonetheless, increased C/N                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46 | ratios of photosynthetic tissue, decreased litter N production, and decreased fauna N                        |
| 57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47 | mineralization prevailed in the full treatment combination indicating reduced N turnover in                  |

#### **Global Change Biology**

the simulated future climate scenario, which could act to reduce the potential growth response 

of plants to elevated atmospheric CO<sub>2</sub> concentration.

- In conclusion, effects observed in single-factor studies should be evaluated with
- caution. Multi-factor climate experiments are needed for improving realistic estimation of the
- combined ecosystem responses to future climate changes.

<text>

| 53 |                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------|
| 54 | Introduction                                                                                               |
| 55 | Climate change with elevated atmospheric CO <sub>2</sub> , increased temperature and altered               |
| 56 | precipitation will fundamentally affect key drivers for ecosystem functioning and lead to                  |
| 57 | adverse effects in terrestrial ecosystems across the globe (IPCC, 2007). These climate-driven              |
| 58 | changes may affect ecosystem functioning directly, e.g. through CO <sub>2</sub> -stimulated                |
| 59 | photosynthesis and growth (Luo et al. 2006; de Graaff et al. 2006), warming-induced                        |
| 60 | increased nutrient mineralization (Emmett et al. 2004) or drought-induced growth limitation                |
| 61 | (Penuelas et al. 2007). They may also act indirectly e.g. through impacts on species                       |
| 62 | composition (Penuelas <i>et al.</i> 2007).                                                                 |
| 63 | Growth in many natural and semi-natural terrestrial ecosystems is limited by nitrogen                      |
| 64 | and characterized by strong competition for nitrogen between plants and the soil communities               |
| 65 | of fungi and bacteria (Marion et al. 1989; Jonasson et al. 1996). Consequently, ecosystem N                |
| 66 | availability is an important factor controlling the carbon uptake in terrestrial ecosystems and            |
| 67 | therefore also plays a dominant role in controlling the feedback between the biosphere and the             |
| 68 | atmosphere in a warmer and more CO <sub>2</sub> enriched world. The theory of nitrogen as a limiting       |
| 69 | factor constraining the carbon uptake in terrestrial ecosystems in response to elevated CO <sub>2</sub> is |
| 70 | conceptualized in the PNL framework (Progressive Nitrogen Limitation) (Luo et al. 2004)                    |
| 71 | describing how increased carbon sequestration driven by elevated CO <sub>2</sub> requires increased        |
| 72 | access to nitrogen in order to balance the carbon input. Accordingly, without additional inputs            |
| 73 | of plant-available N, nitrogen will progressively limit further carbon uptake. But increased N             |
| 74 | availability has also been shown as a consequence of increased availability of labile soil                 |
| 75 | carbon substrate (Zak et al. 1993) and increased soil moisture content due to improved plant               |
| 76 | water use efficiency (WUE) (Zak et al. 1993; Hungate 1999), as well as increased N                         |
| 77 | mineralization in response to warming (Schmidt et al. 2004; Emmett et al. 2004). The                       |
|    |                                                                                                            |

In

Page 7 of 46

#### **Global Change Biology**

| 78  | interaction between the carbon and nitrogen cycles clearly illustrates how sensitive                    |
|-----|---------------------------------------------------------------------------------------------------------|
| 79  | ecosystems are to changes in nitrogen pools and turnover, current input of N, and other                 |
| 80  | nutrients, and changes in the water regime. This is particularly important for N limited                |
| 81  | systems, such as natural and semi-natural ecosystems with relatively low nitrogen inputs and            |
| 82  | internal N turnover rates of the mineral N pool as fast as a few days (Davidson et al. 1990;            |
| 83  | Lipson & Näsholm 2001; Schimel & Bennett 2004; Vervaet et al. 2004). In systems with very               |
| 84  | high internal turnover rates of nitrogen, the N turnover has also been shown to be very                 |
| 85  | sensitive to changes in natural climatic variations such as reduced water availability                  |
| 86  | (Jamieson et al. 1999), potentially leading to a high sensitivity of these systems to climate-          |
| 87  | driven changes in the internal processes regulating the demand or supply of nitrogen.                   |
| 88  | Most of the experimental evidence of PNL and the role of nitrogen in constraining                       |
| 89  | carbon uptake is based on modeling studies (Rastetter et al. 1997) or on experiments                    |
| 90  | involving elevated $CO_2$ alone or in combination with various levels of nitrogen addition to           |
| 91  | demonstrate the role of N in stimulating CO <sub>2</sub> sequestration responses (Lutze & Gifford 2000; |
| 92  | Lutze et al. 2000; van Heerwaarden et al. 2005; de Graaff et al. 2006; Reich et al. 2006).              |
| 93  | However, in a future $CO_2$ enriched world, the nitrogen limitation and the $CO_2$ response in N        |
| 94  | limited systems will to a large extent be regulated by the climate change-associated responses          |
| 95  | of the internal nitrogen cycle, which are not well captured in a $CO_2$ alone experiment. For           |
| 96  | instance, it has been demonstrated that warming can stimulate internal nitrogen                         |
| 97  | mineralization, leading to increased N availability (Emmett et al. 2004) and even increased N           |
| 98  | leaching (Lukewille & Wright 1997; Schmidt et al. 2004). Correspondingly, changes in water              |
| 99  | availability, such as water limitations by droughts, can reduce N mineralization and N                  |
| 100 | availability (Emmett et al. 2004). On the other hand, increased water availability due to               |
| 101 | increased precipitation or to CO <sub>2</sub> stimulated increase in WUE can increase N mineralization  |
| 102 | and N availability under water limited conditions (Hungate 1999). Since the future climate              |
|     |                                                                                                         |

103 change will involve changes in all of these factors, it is important to understand the possible104 interactions between different climate drivers on N availability and nitrogen limitation.

105 Therefore, studies involving all factors simultaneously are needed.

In the present study, we aim to synthesize the overall impacts of changes in the nitrogen cycle in response to warming, elevated atmospheric  $CO_2$  concentration and increased summer drought events after two years of treatments. We compare the responses of the three-factor treatment with responses to treatments including only one, or pair wise combinations of the factors.

In response to elevated CO<sub>2</sub>, we expected to observe increased plant tissue and litter C/N ratios (Paterson et al. 1999; Lutze & Gifford 2000; van Heerwaarden et al. 2005; Finzi et al. 2006; Chen et al. 2007; Hovenden et al. 2008). In the short term, we further expected that the increased water use efficiency under elevated CO<sub>2</sub> (Ainsworth & Long 2005; Leuzinger & Körner 2007; Ainsworth & Rogers 2007; Albert et al. 2010) would stimulate plant growth, and increase plant N demand and biomass, and that concomitant increased rhizodeposition would lead to increased microbial biomass activity and mineralization. Warming was expected to increase plant growth and increase mineralization (Rustad et al. 2001), whereas extended summer drought was expected to reduce plant N demand and decrease N mineralization and nitrification rates (Emmett et al. 2004; Schmidt et al. 2004; Sowerby et al. 2008) as a product of direct or indirect effects on microbial activity. Assuming simple addition of these single treatment effects, we expected that drought effects would be reduced in combination with both warming and elevated CO<sub>2</sub> and, consequently, that increased N mineralization and plant growth in response to both warming and elevated CO<sub>2</sub> would dominate over decreases caused by drought in the full combination of treatments. 

| 2                                                           |      |                                                                                                                              |  |  |  |  |
|-------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3<br>4                                                      | 126  |                                                                                                                              |  |  |  |  |
| 5<br>6                                                      | 127  | Materials and methods                                                                                                        |  |  |  |  |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 128  | Experimental site and climate change manipulations                                                                           |  |  |  |  |
|                                                             | 129  | The CLIMAITE experimental site is a dry, temperate heathland situated approximately 50 km                                    |  |  |  |  |
|                                                             | 130  | NW of Copenhagen, Denmark (55°53' N, 11°58'E). The vegetation is dominated by the                                            |  |  |  |  |
|                                                             | 131  | evergreen dwarf shrub Calluna vulgaris (L.), the perennial grass Deschampsia flexuosa (L.)                                   |  |  |  |  |
| 18<br>19                                                    | 132  | and various mosses and herbs. The soil is a well-drained, nutrient-poor sandy deposit with a                                 |  |  |  |  |
| 20<br>21<br>22                                              | 133  | pH of 4-5 and an organic top layer ranging from 2 to 5 cm in depth. Long-term annual mean                                    |  |  |  |  |
| 23<br>24                                                    | 134  | air temperature is 8.0 °C, annual mean precipitation is 613 mm (Danish Meteorological                                        |  |  |  |  |
| 25<br>26<br>27<br>28<br>29<br>30<br>31                      | 135  | Institute 2009) and the total N bulk deposition at the site was 1.27±0.07 and 1.35±0.04 g N m <sup>-</sup>                   |  |  |  |  |
|                                                             | 136  | <sup>2</sup> y <sup>-1</sup> in 2006 and 2007, respectively (Larsen KS, unpublished data). The experimental area             |  |  |  |  |
|                                                             | 137  | covers approximately 2 ha and consists of twelve 7m diameter octagons laid out pair-wise in 6                                |  |  |  |  |
| 32<br>33                                                    | 138  | blocks (= 6 replicates). Each block consists of two octagons, one with ambient (A)                                           |  |  |  |  |
| 34<br>35<br>36                                              | 139  | atmospheric CO <sub>2</sub> and one receiving elevated atmospheric CO <sub>2</sub> concentration (CO <sub>2</sub> ) (510 ppm |  |  |  |  |
| 37<br>38                                                    | 140  | in a free air CO <sub>2</sub> enrichment setup (FACE)). Each octagon is separated into 4 subplots                            |  |  |  |  |
| 39<br>40                                                    | 141  | receiving in addition to the ambient or elevated CO <sub>2</sub> 1) one month summer drought (D) by                          |  |  |  |  |
| 41<br>42<br>43                                              | 142  | rain-out shelters, 2) passive warming (T) of air and soil by night time warming curtains 50 cm                               |  |  |  |  |
| 44<br>45                                                    | 143  | above ground, 3) a combination of drought and warming (TD) or 4) no drought or                                               |  |  |  |  |
| 46<br>47                                                    | 144  | temperature treatment. In total, the experiment provides a full factorial design with all 7                                  |  |  |  |  |
| 48<br>49<br>50                                              | 145  | combinations of D, T and $CO_2$ and an untreated control for reference (A). Details on the                                   |  |  |  |  |
| 51<br>52                                                    | 146  | experimental setup are described by Mikkelsen et al. (2008).                                                                 |  |  |  |  |
| 53<br>54<br>55                                              | 147  | The treatments were initiated in October 2005 and the first summer drought was                                               |  |  |  |  |
| 56                                                          | 4.40 |                                                                                                                              |  |  |  |  |

147 The treatments were initiated in October 2005 and the first summer drought was
148 applied in July/August 2006. The warming treatment elevated temperature at 5 cm depth by
149 0.3 °C in the winter to 0.7 °C in the summer months, on average. The maximum mean daily
150 temperature elevation was 1.2, 2.1 and 2.8 °C in the 5 cm depth, soil surface and 20 cm height

sensors, respectively (4 October 2005 - 31 December 2007). The drought campaigns removed 52 mm and 94 mm of precipitation, resulting in peak reductions of soil water content of 11 and 13 % v/v over 0-20 cm soil depth in 2006 (3-20 July and 26 July-4 August) and 2007 (21 May-22 June), respectively. The drought campaigns were stopped when soil water content reached about 5 % v/v over 0-20 cm soil depth. 

*N* stocks in plants, litter, microbes and soil, C/N ratios, extractable N concentrations Above-ground biomasses N of Calluna and Deschampsia were estimated from non-

destructive point intercept measurements in two 50 x 50 cm subplots within each plot combined with a linear regression model linking point intercept measurements and biomass obtained from destructive harvesting of similar plots outside the treatment plots (Jonasson 1988; Kongstad et al. 2010; Riis-Nielsen & Schmidt 2010). To compensate for pre-treatment differences between the initial biomass values in individual sub-plots and the subsequent development during the experiment, treatment effects on above-ground plant biomasses were normalized and scaled to the average biomass development in the ambient plots while maintaining the observed relative variance. Briefly, a regression was fitted between the pretreatment plant biomass and the treatment biomass at a given time point, within each treatment. The slope of the regression in the ambient treatment defined the ambient or control response; the normalized treatment effect was determined as the difference between the predicted control response and the predicted treatment response for a given treatment. See van der Linden et al. (2010) for further description.

Calluna and Deschampsia plants as well as mosses from the experimental plots were harvested in August 2007. The C and N concentrations measured in green tissue, flowers, wood/stem and roots or whole plants (mosses) (Andresen et al. 2010a) were used to calculate 

#### **Global Change Biology**

C/N ratios. The N concentrations were used in combination with the non-destructive above-ground biomass estimates to calculate the total N stock of these pools. Concurrent with plant harvest, soil samples from each plot (0-10 cm soil depth) were taken to measure plant root biomasses, microbial biomass N and, soil organic matter N (SOM-N) and soil extractable NO<sub>3</sub>-N, NH<sub>4</sub>-N and dissolved organic nitrogen (DON) (Andresen et al. 2010a). Litter production by Deschampsia was estimated from point intercept-based difference between seasonal minimum and maximum biomass of live and dead fractions of *Deschampsia* leaves multiplied with N concentrations in the litter (Kongstad et al. 2010; Riis-Nielsen & Schmidt 2010). 

### 185 Soil fauna

Soil cores within each plot (0-10 cm soil depth) were sampled in October and November 2007 for biomass estimation of protozoa/nematodes and enchytraeids/microarthropodes, respectively. For estimation of protozoan biomass, a soil suspension was prepared by blending 5 g of soil with 100 ml of Amoeba Saline (AS, Page 1988) for 1 min. Three-fold dilution series of the soil suspension were prepared in microtiter plates being inspected for protozoa after one and three weeks of growth at 15°C with a modified version of the Most Probable Number method (Darbyshire et al. 1974; Rønn et al. 1995). Nematodes were extracted from between 10 and 11 g (fresh weight) of soil by a modified Baermann tray extraction method (Georgieva et al. 2005). Samples were extracted for 48 h, and nematodes were then counted at 40× magnification using a dissecting microscope. Biomass N of protozoa and bacterivorous nematodes were calculated according to Stout & Heal (1967) and Sohlenius & Sandor (1987), respectively. N mineralization (excretion and turnover) of microfauna was calculated assuming bacterivore turnover rate of 0.16 d<sup>-1</sup> (Zwart *et al.* 1994) 

for both nematodes and protozoans and setting yield ratios of protozoans and nematodes on bacteria to 0.4 and 0.04 (Coleman et al. 1978). The total biomass of enchytraeids was determined as described by Maraldo et al. (2008). The density of microarthropods was determined as described by Holmstrup et al. (2007), and the biomass of dominating taxonomic groups was estimated using representative values from Petersen & Luxton (1982). The pool of N contained in the biomass was calculated assuming nitrogen concentrations of 11.5 % and 10 % of dry weight in enchytraeids and microarthropods, respectively (Persson 1983). The yearly turnover rate of biomass N was assumed to be 1.2 for enchytraeids (Standen 1973), and 1.8 for microarthropods (De Ruiter et al. 1993). The annual mineralization (excretion and turnover) of NH<sub>4</sub><sup>+</sup>-N by enchytraeids and microarthropods was estimated based on biomass as described by Persson (1983). 

## $N_2O$ emissions and $N_2O$ reductase

Fluxes of N<sub>2</sub>O were measured with a static chamber method using white PVC chambers (height 15 or 45 cm depending on vegetation height) placed on metal collars  $(60 \times 60 \text{ cm})$ permanently installed in the soil. Enclosure times were 2 to 2.5 h, during which headspace air was sampled four times and later analyzed for N<sub>2</sub>O concentration by gas chromatography. The N<sub>2</sub>O flux was calculated using linear regression. Nine N<sub>2</sub>O measuring campaigns including all eight treatments were carried out from June 2006 to March 2007, and from April to June 2007 five campaigns were conducted in five of the treatments, viz. A, CO<sub>2</sub>, D, DCO<sub>2</sub> and TDCO<sub>2</sub>. Annual cumulative N<sub>2</sub>O fluxes were derived by interpolation between measurement days and by extrapolating the emission from the treatments T, TD and TCO<sub>2</sub> for the period March-June 2007. Further methodological description is found in Carter et al. (2010). 

#### **Global Change Biology**

To determine N<sub>2</sub>O reductase activity, nitrate was removed from sub samples of the soil cores taken in November 2007 for fauna biomass estimation by vortexing 10 g fresh soil and 30 ml of phosphate buffered saline (PBS) for 5 sec followed by centrifugation for 10 min at 3500 x G and 5 °C. The supernatant was discarded and the pellet resuspended in 30 ml PBS. After the third centrifugation the pellet was resuspended in 15 ml of 0.5 mM glucose, 0.5 mM sodium acetate, and 0.5 mM sodium succinate and transferred to a 100 ml incubation bottle. The bottle was sealed with a butyl rubber stopper, flushed with N<sub>2</sub> for 2 min, added 100 ppm N<sub>2</sub>O (final concentration), placed horizontally on a shaker (200 rpm), and incubated at 22 °C. After 0, 1, 3, 6 and 24 h, 3 ml of headspace was transferred to a pre-evacuated 3 ml Venoject vial before analysis of N<sub>2</sub>O by gas chromatography. The N<sub>2</sub>O reductase activity was calculated from the consumption of N<sub>2</sub>O during the incubation. 

## 235 Nitrogen mineralization and immobilization

Gross rates of N mineralization and immobilization were determined by the isotope pool-dilution approach applied in laboratory incubations. Soil cores within each plot were sampled in September 2007 (0-5 and 5-10 cm soil depth, respectively), sieved and stored at 5 °C for about one week until incubations were initiated. Fresh samples (10 g) were weighed in 250 ml poly-ethylene bottles and mixed thoroughly with 400 µl of a <sup>15</sup>N-NH<sub>4</sub>Cl solution (5 atm % <sup>15</sup>N) to provide 5 µg N g<sup>-1</sup> soil. One set of samples was analyzed immediately upon substrate application, and a second set was analyzed after 7 days of incubation at 20 °C. Contents of mineral N and the <sup>15</sup>N contents were determined upon extraction and micro-diffusion (Sørensen & Jensen 1991). Gross daily rates of mineralization and immobilization were calculated according to equations given by Kirkham & Bartholomew (1954). Upscaling to

annual rates was done using the mean annual soil temperatures in 5 cm depth (10 °C) at the experimental site and assuming a  $Q_{10}$  of 2.

## 249 Potential nitrification and denitrification

Subsamples from the soil cores taken in November 2007 were gently homogenized by hand and major roots were removed. Soil samples were stored at 4 °C until analysis (less than 24 h). Potential nitrification was determined in 3 g soil samples by a modification of the method described by Belser & Mays (1980) but without adding chlorate. Potential nitrification rates were estimated from the increase in nitrite+nitrate concentrations. Potential denitrification rates (Wolsing & Prieme 2004) in 10 g soil samples were estimated from linear regression of increase in headspace N<sub>2</sub>O concentration during 180 min incubation.

# 258 Water percolation and nitrogen leaching

Leachate water was collected monthly from passive PVC soil water draining collectors below the organic soil layer (approximately 5 cm depth) and polytetrafluoroethylene (PTFE) suction cups with continuous sub-atmospheric pressure (Prenart Super Quarz, Frederikberg, DK) below the main rooting zone (60 cm depth). Concentrations of NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>-</sup>-N, and total N (by UV-persulphate oxidation) were analyzed on an Autoanalyzer 3 (Bran+Luebbe Gmbh, Germany). DON was calculated as total N minus inorganic N. Precipitation was measured at the site and the volume of percolating water was estimated by simulation with the CoupModel model (Jansson & Moon 2001; Svensson et al. 2008) - a coupled ecosystem model with a balance of abiotic and biotic processes in the soil-plant-atmosphere system. The basic structure of the model is a depth profile of the soil, and calculations of water and heat flows 

#### **Global Change Biology**

are based on common soil properties. The model was parameterised using measured soil layer properties and against time series of soil temperature and moisture content, using on site measurements of radiation, precipitation and wind speed as driving data and a generalised likelihood uncertainty evaluation approach. Percolation of water below 60 cm was calculated as an output of the simulations and leaching of nitrogen at that depth was calculated as the product of the sum of water percolation and the concentration measured in the soil water for each water collection period (Schmidt *et al.* 2004).

## 277 Statistical analyses

Statistical analyses were conducted using the multiple linear regression procedure PROC MIXED of SAS (SAS Institute 2003). The statistical model included a random statement that accounted for the experimental design (Random Block octagon octagon\*D octagon\*T). The same model was used for all tested variables and included the three main factor effects (CO<sub>2</sub>, D, and T) as well as all possible interactions (D\*CO<sub>2</sub>, T\*CO<sub>2</sub>, T\*D, and T\*D\*CO<sub>2</sub>). P-values  $\leq 0.05$  were considered significant. Data were transformed when necessary to obtain normality and homogeneity of variance. Differences of Least Squares Means (DLSM) were used to interpret significant treatment interactions. During the DLSM evaluation, each significant interaction was categorized as either antagonistic, i.e. the combined effect led to a reduction of the observed individual effects or synergistic, i.e. the combined effect led to either a) an amplification of the observed individual effect(s) or b) to a significant effect only when treatments were combined. The DLSM evaluation also revealed if interactions were due to significant single treatment effects, *i.e.* effects observe in single treatment plots only, which disappear in combination with other treatments. Furthermore, DLSM evaluation of significant interactions revealed if significant main factor effects were effects observed only when in

| 4                                                                                            |
|----------------------------------------------------------------------------------------------|
| 5                                                                                            |
| 6                                                                                            |
| 7                                                                                            |
| 8                                                                                            |
| 0                                                                                            |
| 9<br>10<br>11                                                                                |
| 10                                                                                           |
| 11                                                                                           |
| 12                                                                                           |
| 13                                                                                           |
| 14                                                                                           |
| 15                                                                                           |
| 10                                                                                           |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                 |
| 17                                                                                           |
| 18                                                                                           |
| 19                                                                                           |
| 20                                                                                           |
| 21                                                                                           |
| 22                                                                                           |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>25 |
| 23                                                                                           |
| 24                                                                                           |
| 25                                                                                           |
| 26                                                                                           |
| 27                                                                                           |
| 28                                                                                           |
| 20                                                                                           |
| 20                                                                                           |
| 30                                                                                           |
| 31                                                                                           |
| 32<br>33<br>34<br>35                                                                         |
| 33                                                                                           |
| 34                                                                                           |
| 35                                                                                           |
| 36                                                                                           |
| 36<br>37                                                                                     |
| 31                                                                                           |
| 38                                                                                           |
| 39                                                                                           |
| 40                                                                                           |
| 41                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42                                                             |
| 43                                                                                           |
| 44                                                                                           |
| 44<br>45                                                                                     |
|                                                                                              |
| 46                                                                                           |
| 47                                                                                           |
| 48                                                                                           |
| 49                                                                                           |
| 50                                                                                           |
| 51                                                                                           |
|                                                                                              |
|                                                                                              |
| 53                                                                                           |
| 54                                                                                           |
| 55                                                                                           |
| 56                                                                                           |
| 57                                                                                           |
| 58                                                                                           |

1 2 3

293 combination with other treatments or if it was significant also as a single treatment effect.

Finally, we noted simple additive effects when two of the treatments both showed significant

295 main factor effects but with no interactions.

**Results** 

| 298 | Ecosystem N balance                                                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 299 | The N cycle at the site is dominated by higher internal N turnover in comparison to the inputs                                                                |
| 300 | and losses by leaching and gaseous emission to the atmosphere (Fig. 1). Gross mineralization                                                                  |
| 301 | $(6.7 \pm 0.96 \text{ g N m}^{-2}\text{y}^{-1})$ is five times higher than bulk deposition $(1.35 \pm 0.04 \text{ g N m}^{-2}\text{y}^{-1})$ , an             |
| 302 | order of magnitude higher than losses by leaching $(0.80 \pm 0.37 \text{ g N m}^{-2}\text{y}^{-1})$ and two orders of                                         |
| 303 | magnitude higher than gaseous losses in form of N <sub>2</sub> O (0.031 $\pm$ 0.006 g N m <sup>-2</sup> y <sup>-1</sup> ). Negligible                         |
| 304 | $N_2O$ reductase activity was observed in the soil samples with $N_2O$ uptake rates less than 1 ng                                                            |
| 305 | N g <sup>-1</sup> dw h <sup>-1</sup> in all samples and N <sub>2</sub> production is therefore assumed to be negligible (data not                             |
| 306 | shown). Above ground, about 90 % of N is found in the two dominant species Calluna (~60                                                                       |
| 307 | %) and Deschampsia (~30%). Below ground, most N is stored in the SOM pool (~90%) with                                                                         |
| 308 | Deschampsia roots (~4%), Calluna roots (~3%) and soil microbial (~1.5%) pools                                                                                 |
| 309 | dominating the remaining fraction. Soil fauna biomass was $\sim 10$ % of microbial biomass but                                                                |
| 310 | their mineralization of N is estimated to $5.0 \pm 0.6$ g NH <sub>4</sub> <sup>+</sup> -N m <sup>-2</sup> y <sup>-1</sup> , <i>i.e.</i> an amount of labile N |
| 311 | much larger than the N input to the system by N bulk deposition. The system retained 0.53 g                                                                   |
| 312 | N m <sup>-2</sup> y <sup>-1</sup> of bulk deposition in the ambient, non-manipulated plots in 2007 as estimated by                                            |
| 313 | difference between bulk deposition and sum of total N leaching below 60 cm soil depth and                                                                     |
| 314 | $N_2O$ emission. While bulk deposition in 2006 (1.27 ± 0.07 g N m <sup>-2</sup> y <sup>-1</sup> ) was similar to the                                          |
| 315 | deposition in 2007 (1.35 $\pm$ 0.04 g N m <sup>-2</sup> y <sup>-1</sup> ), total N leaching across all treatments was                                         |
| 316 | significantly lower (P < 0.0001) in 2006 (0.13 $\pm$ 0.06 g N m <sup>-2</sup> y <sup>-1</sup> ) than in 2007 (0.56 $\pm$ 0.20 g                               |
| 317 | N $m^{-2}y^{-1}$ ) with no significant treatment effects in either 2006 (data not shown) or in 2007                                                           |
| 318 | (Table 1). The major cause of this interannual difference was a wet summer in 2007 (202 mm                                                                    |
|     |                                                                                                                                                               |

precipitation in July) with extensive leaching compared to a dry summer in 2006 (60 mm
precipitation in July) when summer leaching was absent.

## 322 Plant responses to climate manipulations

The above-ground biomass N of the dominant plant species Calluna and Deschampsia did not respond to the climate manipulations (Table 1). Root biomass N of Deschampsia was also unaffected by the treatments, whereas root biomass N of Calluna increased in response to drought (Table 1, P = 0.04) indicating a change in the root:shoot N allocation pattern. While N in above-ground biomasses were unaffected by treatments, the C/N ratios of Calluna flowers as well as leaves from both *Calluna* and *Deschampsia* increased in response to elevated CO<sub>2</sub> (Table 1, P = 0.02, 0.04, and 0.01, respectively). The evaluation by DLSM of the three-way interaction for the C/N ratio of mosses (Table 1, P = 0.003) showed that the interaction was due to significantly higher C/N ratios in the single treatments of drought and elevated CO<sub>2</sub>, while ratios were unchanged when drought and elevated CO<sub>2</sub> were combined with each other as well as when they were combined with warming. The observed increases in C/N ratios in new plant tissue of leaves and flowers were not seen in whole-plant C/N ratios of *Deschampsia* or in the green tissue or wood fractions of *Calluna*. Yet, the N concentration of *Deschampsia* litter decreased under elevated  $CO_2$  (Table 1, P = 0.05), indicating that the changes in C/N ratios starting in the leaves, are already beginning to cascade through the system, after only two years of treatments (Fig. 2a). 

54339Deschampsia leaves and also mosses (single treatment only) responded to drought5556340with increased C/N ratios (Table 1, P = 0.002 and P  $\leq$  0.05, respectively) whereas Calluna5859341leaves were unaffected (Table 1, Fig. 2b). Also, the pool of N in the annually produced60342Deschampsia litter decreased in response to drought (Table 1, P = 0.01). The warming

#### **Global Change Biology**

| 3           |                       |  |  |
|-------------|-----------------------|--|--|
| 4           |                       |  |  |
| 5           |                       |  |  |
| 6<br>7<br>8 |                       |  |  |
| ß           |                       |  |  |
| 9           |                       |  |  |
| 1           | 0                     |  |  |
|             | 1                     |  |  |
| 1           | 2<br>3                |  |  |
| 1           | 3<br>4                |  |  |
| י<br>1      | 4<br>5                |  |  |
| 1           | 6                     |  |  |
| 1           | 7                     |  |  |
| 1           | 8                     |  |  |
| 1           | 9                     |  |  |
| 2           | 0                     |  |  |
| 2           | 012345678901234567890 |  |  |
| 2           | 2<br>3                |  |  |
| 2           | 4                     |  |  |
| 2           | 5                     |  |  |
| 2           | 6                     |  |  |
| 2           | 7                     |  |  |
| 2           | 8                     |  |  |
| 2<br>2      | 9<br>0                |  |  |
| 3           | 1                     |  |  |
| 3           | 2                     |  |  |
| 3           | 3                     |  |  |
| 3           | 4                     |  |  |
| 3           | 5                     |  |  |
| 32          | 6<br>7                |  |  |
| 3           | י<br>8                |  |  |
| 3           | 9                     |  |  |
| 4           | 0                     |  |  |
| 4           | 1                     |  |  |
| 4           |                       |  |  |
|             | 3<br>⊿                |  |  |
| 4<br>4      | 45                    |  |  |
|             | 6                     |  |  |
| 4           |                       |  |  |
| 4           | 8                     |  |  |
|             | 9                     |  |  |
|             | 0                     |  |  |
| D           | 1<br>ว                |  |  |
| 5           | 2<br>3                |  |  |
| 5           | 4                     |  |  |
| 5           | 1<br>2<br>3<br>4<br>5 |  |  |
| 5           | 6<br>7<br>8<br>9<br>0 |  |  |
| 5           | 7                     |  |  |
| 5           | 8                     |  |  |
| s<br>S      | ր<br>9                |  |  |
| 0           | U                     |  |  |

treatment had fewer effects on above-ground processes than the other treatments, showing only an increase of N concentration in *Deschampsia* litter (Table 1, P = 0.03, Fig 2c).

When all treatments were combined (Fig. 2d), the lack of interactions between single 345 treatment effects for leaf level C/N ratios indicates that the effect is found also in treatment 346 combinations. Consequently, increased C/N ratios of leaves as well as decreased 347 Deschampsia litter N production are found in the full combination of treatments, *i.e.* in the 348 simulation of the projected future climate scenario. In contrast, the C/N ratio of mosses 349 increases in two of the three single treatments and N concentrations in Deschampsia litter 350 either increase or decrease depending on treatment but these effects disappear when all 351 treatments are combined. 352

353

# 354 *Responses of below-ground processes to climate manipulations*

The below-ground N turnover was significantly affected by the climate manipulations, primarily by the warming and drought treatments (Table 1, Fig. 3) showing changes cascading through pools and processes. Elevated  $CO_2$  as a main factor had no effects below ground but the analysis of DLSM when evaluating the interactions revealed reductions in leachate concentrations in 5 cm soil depth of  $NO_3^-$ -N,  $NH_4^+$ -N and DON (Table 1, Fig. 3a) in the single  $CO_2$  treatment. These effects were reduced when elevated  $CO_2$  was combined with other treatments causing the significant interactions for these three variables (Table 1).

The drought treatment reduced the N pools of enchytraeids and protozoans and their NH<sub>4</sub><sup>+</sup>-N mineralization (Table 1, P = 0.03 and 0.04, respectively), decreased gross mineralization (Table 1, P = 0.03), and reduced the pool of NH<sub>4</sub><sup>+</sup>-N (Table 1, P = 0.02), thus indicating an overall decrease in the N turnover in response to drought (Fig. 3b). In contrast, warming stimulated microbial ammonium consumption in the top 5 cm of soil (Table 1, P =

#### **Global Change Biology**

0.04) as well as the gross mineralization rate (single treatment only, Table 1,  $P \le 0.05$ ) and nitrification rates (Table 1, P = 0.004), leading to both increased denitrification (Table 1, P =0.02) and N<sub>2</sub>O emission (Table 1, P = 0.05). Overall, the below-ground response to the warming treatments was therefore an increase in N turnover (Fig. 3c). While no direct main effects of elevated CO<sub>2</sub> were observed, it influenced the responses to drought and warming primarily by reducing some of the significant individual effects in the three-factor combination. Still, the drought-induced decrease of fauna-N and fauna N mineralization as well as the warming-induced increased denitrification did not 

interact significantly with the other treatments and consequently remained in the full

376 treatment combination.

# 378 Interactions between climate manipulations

Across the 47 variables reported (Table 1) the drought treatment lead to the highest number of significant main effects (11) followed by warming and CO<sub>2</sub> treatments (6 and 4, respectively). Simultaneously there were a large number of interactions between the three treatments (14). Interestingly, the analysis of the interactions revealed a dominance of antagonistic effects (Fig. 4) with more than twice as many antagonistic effects as synergistic effects. Furthermore, simple additive effects were less frequent than both antagonistic and synergistic effects. Discussion

Overall ecosystem N turnover

| 1                |     |
|------------------|-----|
| 2<br>3<br>4<br>5 | 385 |
| 6<br>7<br>8      | 386 |
| 9<br>10<br>11    | 387 |
| 12<br>13<br>14   | 388 |
| 15<br>16         | 389 |
| 17<br>18         | 390 |
| 19<br>20<br>21   | 391 |
| 22<br>23         | 392 |
| 24<br>25         | 393 |
| 26<br>27<br>28   | 394 |
| 29<br>30         | 395 |
| 31<br>32         | 396 |
| 33<br>34<br>35   | 397 |
| 36<br>37         | 398 |
| 38<br>39         | 399 |
| 40<br>41<br>42   | 400 |
| 43<br>44         | 401 |
| 45<br>46<br>47   | 402 |
| 47<br>48<br>49   | 403 |
| 50<br>51         | 404 |
| 52<br>53<br>54   | 405 |
| 54<br>55<br>56   | 406 |
| 57<br>58         | 407 |
| 59<br>60         |     |

| 388 | The N cycle at the experimental site is characterized by higher internal N turnover than bulk                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 389 | N deposition and losses by leaching and $N_2O$ production as generally seen in natural and                                                        |
| 390 | semi-natural ecosystems. In comparison to our estimated annual gross mineralization rate (6.7                                                     |
| 391 | $\pm$ 0.96 g N m <sup>-2</sup> y <sup>-1</sup> ), Emmett <i>et al.</i> (2004) reported net mineralization rates of 3.8 to 6.6 g N m <sup>-2</sup> |
| 392 | <sup>2</sup> y <sup>-1</sup> from another Danish dry heathland and Aerts (1993) reported rates ranging from 4.4 to                                |
| 393 | 12.6 g N m <sup>-2</sup> y <sup>-1</sup> under different plant species in wet and dry Dutch heathlands, where                                     |
| 394 | atmospheric deposition is 2-3 times higher than in Denmark. Inter-annual variability in N                                                         |
| 395 | leaching was significant, while treatment differences after two years of treatments were not                                                      |
| 396 | significant. The observed difference in leaching between 2006 and 2007 shows that the                                                             |
| 397 | ecosystem N loss by leaching is highly dependent on the amount and timing of precipitation.                                                       |
| 398 | In a future climate with more precipitation distributed in fewer, but more severe rain events, N                                                  |
| 399 | leaching is likely to increase in this ecosystem. The inter-annual variability in leaching may                                                    |
| 400 | also indicate that the ecosystem is close to N saturation as also suggested from an adjacent                                                      |
| 401 | short-term experiment where N and phosphorus (P) addition resulted in only a modest                                                               |
| 402 | increase in fine root biomass of Deschampsia, and no effects on Calluna roots (Nielsen et al.                                                     |
| 403 | 2009). Furthermore, Deschampsia responded more when both N and P were added indicating                                                            |
| 404 | that this species is currently more limited by P than N availability. If nitrogen availability                                                    |
| 405 | should decrease due to progressive nitrogen limitation as the treatment exposure continues,                                                       |
| 406 | this, in combination with the P limitation for Deschampsia, would be beneficial to the slower                                                     |
| 407 | growing Calluna. However, other climate factors, <i>i.e.</i> water availability and temperature                                                   |
|     |                                                                                                                                                   |

increase, are likely to influence the overall competitive relationship, potentially disturbing thebalance of the equilibrium, especially if the rates of mortality of *Calluna* are increased.

The mineralization of  $NH_4^+$ -N by soil fauna is often neglected but contributes significantly to the pool of plant available N in the soil (Osler & Sommerkorn 2007). In the present study, we calculated fauna N mineralization from estimated biomasses and literature values of the turnover times and yields of microfauna and mesofauna. Obviously, upscaling of e.g. enumeration of bacterivorous protozoa and nematodes to gross nitrogen mineralization should be evaluated with caution. Values for bacterivore biomass, turnover, and growth yield on bacteria are all needed to perform the upscaling and very few references exist in the literature on such values. This said, the value for fauna-related N mineralization in the ambient treatment based on this calculation seems trustworthy based on the gross N mineralization from the pool dilution assay of 6.7 g N  $m^{-2}y^{-1}$ . The assumption that most bacterial mineralization is facilitated through predation and mineralization by the soil fauna implies that N mineralization by bacteria is responsible for approximately 75% of the total activity, the rest being due to fungi. 

*Responses to elevated CO*<sub>2</sub>, warming and drought

Elevated atmospheric CO<sub>2</sub> concentration is known to induce down-regulation of
photosynthetic capacity, *e.g.* via reduced content of Rubisco in the leaves (Ainsworth & Long
2005; Ainsworth & Rogers 2007) and reduction of leaf nitrogen content and increased C/N
ratios of leaves (Paterson *et al.* 1999; Lutze & Gifford 2000; van Heerwaarden *et al.* 2005;
Finzi *et al.* 2006; Chen *et al.* 2007; Hovenden *et al.* 2008). At our experimental site, we
observed reduced photosynthetic capacity (Albert *et al.* 2010) and leaf nitrogen under
elevated CO<sub>2</sub> for the dominant species, *Calluna* and *Deschampsia*, as well as increased leaf

Page 23 of 46

#### **Global Change Biology**

C/N ratios. However, the increased C/N ratios observed in leaves, and for Calluna also observed in flower biomass were after two years of treatments not large enough to affect whole plant biomass C/N ratios, which were not affected by the treatments. Previous studies have found increasing C/N ratios in other plant tissues than leaves (McGuire et al. 1995; Cotrufo et al. 1998), but the change often is much weaker than that observed for leaves (McGuire *et al.* 1995), indicating that the C/N effect of elevated  $CO_2$  is closely linked to the processes involved in the carbon sequestration in the photosynthetic apparatus (Körner 2000). As hypothesized, however, N concentration in *Deschampsia* litter after two years of treatments was also reduced by elevated CO<sub>2</sub>, possibly showing that the effect is beginning to cascade from leaf level to other ecosystem N pools, although the effect disappears in the full treatment combination. Together with the observed increased concentration of tannins (Schmidt et al. 2007) in plant tissues, we anticipate that the changes in C/N ratios will affect litter decomposition rates as the experimental treatments continue.

In contrast to our expectations, the above- and below-ground plant N pools were not increased by elevated CO<sub>2</sub>. However, total root biomass N of *Calluna* increased unexpectedly in response to drought. It is inherently difficult to estimate total roots from small soil samples due to the large spatial heterogeneity in root distribution and, at the same time, collection of larger samples is problematic due to the destruction of the experimental plots. We are therefore reluctant to put too much emphasis on this result and conclude overall that total biomass N of both dominant species as well as mosses after two years of treatments were only marginally affected by the applied climate drivers. 

Increased rhizodeposition is a common plant response to elevated CO<sub>2</sub> (Pendall *et al.*Increased rhizodeposition is a common plant response to elevated CO<sub>2</sub> (Pendall *et al.*2004; Allard *et al.* 2006), and strong effects on below-ground C cycling have been observed
in response to elevated CO<sub>2</sub> in the current experiment, *e.g.* increased soil respiration rates
(Selsted *et al.* 2010) and increased production of dissolved organic carbon (Andresen *et al.*

 2010a). However, in contrast to our expectation, we observed very few direct effects of elevated CO<sub>2</sub> on below-ground N processes. Still, the decreased concentrations of organic and inorganic N leachate water at 5 cm soil depth imply that mineralization processes are affected or possibly that root N uptake has increased. In contrast to the lack of direct changes in response to elevated CO<sub>2</sub>, soil processes were more sensitive to the drought and warming treatments. Our study supports previous observations of increased below-ground N turnover in response to warming (Rustad et al. 2001; Schmidt et al. 2004). We observed increased microbial NH<sub>4</sub><sup>+</sup>-N consumption, gross mineralization, potential nitrification, and denitrification from lab incubations of soils, as well as increased in situ N<sub>2</sub>O emissions. Soil and litter incubations *in situ* also showed that warming promoted N cycling (Andresen *et al.* 2010b). Previous field studies with artificial warming also showed no warming effect on N<sub>2</sub>O emission rates (Peterjohn et al. 1994; Mchale et al. 1998). However, we interpret our observation of five variables that all responded in the same direction to warming as a strong indicator that the warming effect on N turnover was real. 

The below-ground N turnover was reduced by drought as observed by reduced gross N mineralization and fauna N mineralization. Reduced N mineralization in response to drought has previously been observed (Emmett et al. 2004; Schmidt et al. 2004; Sowerby et al. 2008) but the negative effects of drought on N mineralization are often attributed directly to reduced microbial activity. The importance of soil fauna to the N mineralization shown in this study, together with the negative effects of drought on top soil layer populations of enchytraeids (Maraldo et al. 2010) and other fauna groups and their decreased N mineralization rates, indicate that the fauna response plays a significant role in the observed decrease in N turnover in drought-exposed plots. Furthermore, while the warming effects were generally reduced in combination with drought and elevated CO<sub>2</sub>, the negative effect of drought on fauna N biomass and N mineralization was not reduced by interactions.

#### **Global Change Biology**

Consequently, the effect prevailed in the full combination of treatments, indicating that N mineralization will be reduced in the full future climate scenario. Therefore, despite the fact that this ecosystem currently show no clear sign of N limitation of plant growth, we cannot rule out the possibility that progressive nitrogen limitation will play a role in the longer term, as the impacts of increased  $CO_2$  on C/N ratios of leaves combined with the drought induced reduction of mineralization and litter N production continues to reduce the availability of N in the ecosystem.

# 490 Importance of climate driver interactions

We thoroughly investigated the background for all significant interactions observed in the 47 variables reported in Table 1 by evaluating the DLSM from the mixed model statistical output. This analysis revealed a clear dominance of antagonistic effects over synergistic and simple additive effects when several treatments were combined (Table 1 and Fig. 4), *i.e.* the ecosystem is more robust when more than one factor is changed. For instance, the C/N ratio of mosses increased in both single treatments of drought and elevated CO<sub>2</sub> but was unaffected when treatments were combined. Similarly, the increased gross mineralization rate observed in the single warming treatment was reduced especially in combination with elevated CO<sub>2</sub>. Furthermore, two of the three additive effects observed (Deschampsia litter N concentration and N<sub>2</sub>O emissions) were additive responses with opposing directions, which therefore acts to reduce the observed effects in treatment combinations. 

502 Previous studies have investigated interactions between elevated CO<sub>2</sub> and *e.g.* N
555
563 supply (Lutze & Gifford 2000; Lutze *et al.* 2000; van Heerwaarden *et al.* 2005; Reich *et al.*504 2006), warming (Peltola *et al.* 2002; Tingey *et al.* 2003; Hovenden *et al.* 2008; Dijkstra *et al.*505 2010), biodiversity (Reich *et al.* 2001; Niklaus *et al.* 2001) and water relations (Morgan *et al.*

2004; Nowak et al. 2004). A review by Barnard et al. (2005) of 25 multi-factor studies concluded that interactions were generally rare. These 25 studies were dominated by experimentally elevated CO<sub>2</sub> combined with increased N supply. The lack of interactions could be due to the common trend that most ecosystems respond strongly to increased N supply, which hides weaker interactive responses. Luo et al. (2008) analyzed and modeled interactions between elevated CO<sub>2</sub>, warming and changes in precipitation in 7 multi-factor studies and found that three-way interactions were rare while two-way interactions were more common. Generally, interactions were positive between elevated CO<sub>2</sub> and warming and negative between elevated  $CO_2$  and reduced precipitation with respect to net primary production (NPP).

A general pattern of most published studies is the focus on a few important variables, *i.e.* overall changes in NPP or biomasses or specific studies focusing on processes, *e.g.* nitrification and denitrification. As interactions are only sometimes significant, investigating a small number of variables prevents a more general interpretation of the importance of interactions. Furthermore, assuming that three-way interactions are more uncommon than two-way interactions, important three-way interactions could be missed when fewer variables are analyzed. Out of 14 interactions observed across 47 N related variables in the present study, 5 were three-way interactions. This suggests that insufficient interactions between elevated CO<sub>2</sub>, warming and changes in precipitation were included in the ecosystem models applied by Luo et al. (2008) and reinforces the need for further multi-factor ecosystem manipulation experiments focusing on interactive effects. 

527 When analyzing the interactions, we found a predominance of antagonism in the 528 combined responses. The consequence of the dominance of antagonistic interactions in 529 combined climate driver responses is that ecosystem changes caused by climate change may 530 be less pronounced than judged from single factor experiments. Based on these results we

#### **Global Change Biology**

raise the hypothesis that combined effects of all future climate change are dampened compared to expected effects based on simple addition of single treatment responses. If this pattern prevails for ecosystem responses to future climate change in general it highlights 1) that single factor studies are likely to overestimate responses and should be evaluated with caution, and 2) that multi-factor field-scale ecosystem experiments are critical in order to be able to predict realistic response strengths as well as for developing a conceptual framework for understanding interactions among climate drivers. Our multi-variable approach may aid the latter point if tested in other multi-factor studies and by including variables not only cycμ. constraint to the nitrogen cycle.

| 540 |                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------|
| 541 | Conclusions                                                                                            |
| 542 | The drought treatment effects dominated over effects of warming and elevated CO <sub>2</sub> in        |
| 543 | observed responses of the nitrogen cycle after two years of treatments. In contrast to our             |
| 544 | expectations, we did not observe increased growth of the N pools of the dominant plant                 |
| 545 | species, Calluna and Deschampsia in response to elevated CO <sub>2</sub> . While previous studies have |
| 546 | usually found interactions to be rare, interactions were commonly observed and antagonism              |
| 547 | dominated over synergism in combined responses, <i>i.e.</i> the ecosystem response to the              |
| 548 | combination of several climate drivers is dampened compared to single treatment responses.             |
| 549 | Still, the observed negative response to drought of soil fauna biomass and N mineralization            |
| 550 | and Deschampsia litter N production prevailed in the full treatment combination and so did             |
| 551 | the increased leaf C/N ratios of the dominant species Calluna and Deschampsia. If persistent,          |
| 552 | these changes are likely to lead to reduced N availability and possibly to progressive nitrogen        |
| 553 | limitation as the experimental treatments continue.                                                    |
|     |                                                                                                        |

| 1<br>2<br>3<br>4                                                                                                                                   | 554 |                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7<br>8                                                                                                                                   | 555 | Acknowledgements                                                                                                  |
| 9<br>10<br>11                                                                                                                                      | 556 | We wish to thank Preben Jørgensen and Poul Sørensen for their great efforts in maintaining                        |
| 12<br>13                                                                                                                                           | 557 | the CLIMAITE field site. We gratefully acknowledge Claus Thorn Ekstrøm and Anders                                 |
| 14<br>15                                                                                                                                           | 558 | Tolver Jensen for their help with the statistical model setup and statistical output                              |
| 16<br>17<br>18                                                                                                                                     | 559 | interpretation. The CLIMAITE experiment is sponsored by the Villum Kann Rasmussen                                 |
| 19<br>20                                                                                                                                           | 560 | foundation with substantial co-funding from Air Liquide, DONG Energy and SMC Pneumatic                            |
| 21<br>22<br>23                                                                                                                                     | 561 | A/S. Measurements of $N_2O$ emissions were part of NitroEurope IP funded by the European                          |
| 23<br>24<br>25                                                                                                                                     | 562 | Commission.                                                                                                       |
| 26<br>27<br>28<br>29<br>31<br>32<br>33<br>34<br>35<br>37<br>38<br>9<br>41<br>42<br>34<br>45<br>46<br>7<br>89<br>51<br>253<br>455<br>57<br>89<br>60 |     | A/S. Measurements of N <sub>2</sub> O emissions were part of NitroEurope IP funded by the European<br>Commission. |

| 1                                            |     |                                                                                                                       |
|----------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5                             | 563 |                                                                                                                       |
| 6<br>7<br>8                                  | 564 | Reference List                                                                                                        |
| 9<br>10<br>11                                | 565 | Aerts R (1993) Biomass and nutrient dynamics of dominant plant species from heathlands. In:                           |
| 12<br>13                                     | 566 | Heathlands: Patterns and Processes in a Changing Environment (eds Aerts R, Heil GW), pp.                              |
| 14<br>15<br>16                               | 567 | 51-84. Kluwer Academic Publishers, Dordrecht, The Netherlands.                                                        |
| 17<br>18<br>19                               | 568 | Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air $CO_2$                                    |
| 20<br>21                                     | 569 | enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New                             |
| 22<br>23<br>24                               | 570 | Phytologist, 165, 351-371.                                                                                            |
| 25<br>26<br>27                               | 571 | Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to                              |
| 28<br>29                                     | 572 | rising [CO <sub>2</sub> ]: mechanisms and environmental interactions. <i>Plant Cell and Environment</i> , <b>30</b> , |
| 30<br>31<br>32                               | 573 | 258-270.                                                                                                              |
| 33<br>34<br>35                               | 574 | Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Beier C (2010) Water status interacts                             |
| 36<br>37                                     | 575 | strongly with the effect of elevated CO <sub>2</sub> , warming and drought episodes on plant carbon                   |
| 38<br>39<br>40                               | 576 | uptake in a temperate heath ecosystem. Submitted July 2010 to <i>Plant Cell Environment</i> .                         |
| 41<br>42<br>43                               | 577 | Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term                                   |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | 578 | effects of elevated CO <sub>2</sub> on Lolium perenne rhizodeposition and its consequences on soil                    |
|                                              | 579 | organic matter turnover and plant N yield. Soil Biology & Biochemistry, 38, 1178-1187.                                |
|                                              | 580 | Andresen, L. C., Michelsen, A., Ambus, P., and Beier, C. (2010a) Belowground heathland                                |
| 51<br>52<br>53                               | 581 | responses after 2 years of combined warming, elevated CO <sub>2</sub> and summer drought.                             |
| 54<br>55<br>56<br>57<br>58                   | 582 | Biogeochemistry, in press.                                                                                            |

# **Global Change Biology**

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>4<br>5<br>16<br>17<br>18<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ∠0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 583 | Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C                       |
|-----|--------------------------------------------------------------------------------------------------------|
| 584 | (2010b) Plant nutrient mobilization in temperate heathland responds to elevated CO <sub>2</sub> ,      |
| 585 | temperature and drought. Plant and Soil, 328, 381-396.                                                 |
| 586 | Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification:            |
| 587 | A review. Global Biogeochemical Cycles, 19, 1-13, DOI: 10.1029/2004GB002282.                           |
| 588 | Belser LW, Mays EL (1980) Specific-Inhibition of Nitrite Oxidation by Chlorate and Its Use             |
| 589 | in Assessing Nitrification in Soils and Sediments. Applied and Environmental Microbiology,             |
| 590 | <b>39</b> , 505-510.                                                                                   |
| 591 | Carter MS, Ambus P, Albert K, et al (2010) Effects of elevated atmospheric CO <sub>2</sub> , prolonged |
| 592 | summer drought and temperature increase on $N_2O$ and $CH_4$ fluxes in a temperate heathland.          |
| 593 | Submitted July 2010 to <i>Biogeochemistry</i> .                                                        |
| 594 | Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu SJ (2007) Plant nitrogen acquisition                 |
| 595 | and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae.                  |
| 596 | Global Change Biology, 13, 1238-1249.                                                                  |
| 597 | Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic                       |
| 598 | Interactions in Soils As They Affect Energy and Nutrient Dynamics .4. Flows of Metabolic               |
| 599 | and Biomass Carbon. <i>Microbial Ecology</i> , <b>4</b> , 373-380.                                     |
| 600 | Cotrufo MF, Ineson P, Scott A (1998) Elevated CO <sub>2</sub> reduces the nitrogen concentration of    |
| 601 | plant tissues. Global Change Biology, 4, 43-54.                                                        |
| 602 | Danish Meteorological Institute (2009) www.dmi.dk.                                                     |
|     |                                                                                                        |

| 2<br>3                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                 |
| 4                                                                                                                                                                                                                                                               |
| 5                                                                                                                                                                                                                                                               |
| 5<br>6<br>7                                                                                                                                                                                                                                                     |
| 7                                                                                                                                                                                                                                                               |
| 8                                                                                                                                                                                                                                                               |
| 9                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                              |
| 11                                                                                                                                                                                                                                                              |
| 8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                        |
| 12                                                                                                                                                                                                                                                              |
| 13<br>14<br>15                                                                                                                                                                                                                                                  |
| 14                                                                                                                                                                                                                                                              |
| 15                                                                                                                                                                                                                                                              |
| 16                                                                                                                                                                                                                                                              |
| 17                                                                                                                                                                                                                                                              |
| 18                                                                                                                                                                                                                                                              |
| 16         16         17         18         19         20         21         22         23         24         25         26         27         28         30         31         32         33         34         35         36         37         38         40 |
| 20                                                                                                                                                                                                                                                              |
| 21                                                                                                                                                                                                                                                              |
| 22                                                                                                                                                                                                                                                              |
| 22<br>22                                                                                                                                                                                                                                                        |
| 20                                                                                                                                                                                                                                                              |
| 24                                                                                                                                                                                                                                                              |
| 25                                                                                                                                                                                                                                                              |
| 26                                                                                                                                                                                                                                                              |
| 27                                                                                                                                                                                                                                                              |
| 28                                                                                                                                                                                                                                                              |
| 29                                                                                                                                                                                                                                                              |
| 30                                                                                                                                                                                                                                                              |
| 31                                                                                                                                                                                                                                                              |
| 32                                                                                                                                                                                                                                                              |
| 33                                                                                                                                                                                                                                                              |
| 24                                                                                                                                                                                                                                                              |
| 34                                                                                                                                                                                                                                                              |
| 35                                                                                                                                                                                                                                                              |
| 36                                                                                                                                                                                                                                                              |
| 37                                                                                                                                                                                                                                                              |
| 38                                                                                                                                                                                                                                                              |
| 39                                                                                                                                                                                                                                                              |
| 40                                                                                                                                                                                                                                                              |
| 41                                                                                                                                                                                                                                                              |
| 42                                                                                                                                                                                                                                                              |
| 43                                                                                                                                                                                                                                                              |
| 43<br>44                                                                                                                                                                                                                                                        |
| 44<br>45                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                 |
| 46                                                                                                                                                                                                                                                              |
| 47                                                                                                                                                                                                                                                              |
| 48                                                                                                                                                                                                                                                              |
| 49                                                                                                                                                                                                                                                              |
| 50                                                                                                                                                                                                                                                              |
| 51                                                                                                                                                                                                                                                              |
| 52                                                                                                                                                                                                                                                              |
| 53                                                                                                                                                                                                                                                              |
| 54                                                                                                                                                                                                                                                              |
| 55                                                                                                                                                                                                                                                              |
| 55<br>56                                                                                                                                                                                                                                                        |
| 56<br>57                                                                                                                                                                                                                                                        |
| э/<br>Го                                                                                                                                                                                                                                                        |
| 58                                                                                                                                                                                                                                                              |
| 59                                                                                                                                                                                                                                                              |
| 60                                                                                                                                                                                                                                                              |

| 603 | Darbyshire JF, Wheatley RE, Greaves MP, Inkson RHE (1974) Rapid micromethod for            |
|-----|--------------------------------------------------------------------------------------------|
| 604 | estimating bacterial and protozoan populations in soil. Revue D Ecologie et de Biologie du |
| 605 | <i>Sol</i> , <b>11</b> , 465-475.                                                          |
|     |                                                                                            |
| 606 | Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of         |
| 607 | nitrate in an annual grassland. Ecology, 71, 1968-1975.                                    |
|     |                                                                                            |
| 608 | de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions         |

between plant growth and soil nutrient cycling under elevated CO<sub>2</sub>: a meta-analysis. *Global Change Biology*, **12**, 2077-2091.

611 De Ruiter PC, Moore JC, Zwart KB, *et al.* (1993) Simulation of nitrogen mineralization in the
612 belowground food webs of 2 winter-wheat fields. *Journal of Applied Ecology*, **30**, 95-106.

Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting
effects of elevated CO<sub>2</sub> and warming on nitrogen cycling in a semiarid grassland. *New Phytologist*, 187, 426-437.

Emmett BA, Beier C, Estiarte M, *et al.* (2004) The response of soil processes to climate
change: Results from manipulation studies of shrublands across an environmental gradient. *Ecosystems*, 7, 625-637.

619 Finzi AC, Moore DJP, DeLucia EH, *et al.* (2006) Progressive nitrogen limitation of

620 ecosystem processes under elevated  $CO_2$  in a warm-temperate forest. *Ecology*, **87**, 15-25.

621 Georgieva S, Christensen S, Petersen H, Gjelstrup P, Thorup-Kristensen K (2005) Early

622 decomposer assemblages of soil organisms in litterbags with vetch and rye roots. *Soil Biology* 

623 & Biochemistry, **37**, 1145-1155.

Page 33 of 46

# **Global Change Biology**

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 11 \\ 13 \\ 14 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 32 \\ 33 \\ 34 \\ 56 \\ 78 \\ 33 \\ 34 \\ 56 \\ 78 \\ 9 \\ 31 \\ 33 \\ 34 \\ 56 \\ 78 \\ 33 \\ 34 \\ 56 \\ 78 \\ 9 \\ 31 \\ 33 \\ 34 \\ 56 \\ 78 \\ 9 \\ 31 \\ 33 \\ 34 \\ 56 \\ 78 \\ 9 \\ 31 \\ 33 \\ 34 \\ 56 \\ 78 \\ 9 \\ 31 \\ 33 \\ 34 \\ 56 \\ 78 \\ 36 \\ 78 \\ 36 \\ 78 \\ 36 \\ 78 \\ 36 \\ 78 \\ 36 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 7$ |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 41<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| 624 | Holmstrup M, Maraldo K, Krogh PH (2007) Combined effect of copper and prolonged                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 625 | summer drought on soil Microarthropods in the field. <i>Environmental Pollution</i> , <b>146</b> , 525-533. |
| 626 | Hovenden MJ, Newton PCD, Carran RA, et al. (2008) Warming prevents the elevated CO <sub>2</sub> -           |
| 627 | induced reduction in available soil nitrogen in a temperate, perennial grassland. Global                    |
| 628 | <i>Change Biology</i> , <b>14</b> , 1018-1024.                                                              |
| 629 | Hungate BA (1999) Ecosystem responses to rising atmospheric CO <sub>2</sub> : Feed backs through the        |
| 630 | nitrogen cycle. In: Carbon dioxide and environmental stress (eds Luo YQ, Mooney HA), pp.                    |
| 631 | 265-285. Academic Press, San Diego, USA.                                                                    |
| 632 | IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working                        |
| 633 | Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.                   |
| 634 | (eds Solomon S, Qin D, Manning M et al.), pp. 1-996. Cambridge University Press,                            |
| 635 | Cambridge, UK and New York, NY, USA.                                                                        |
| 636 | Jamieson N, Monaghan R, Barraclough D (1999) Seasonal trends of gross N mineralization in                   |
| 637 | a natural calcareous grassland. Global Change Biology, 5, 423-431.                                          |
| 638 | Jansson PE, Moon DS (2001) A coupled model of water, heat and mass transfer using object                    |
| 639 | orientation to improve flexibility and functionality. <i>Environmental Modelling &amp; Software</i> , 16,   |
| 640 | 37-46.                                                                                                      |
| 641 | Jonasson S (1988) Evaluation of the Point Intercept Method for the Estimation of Plant                      |
| 642 | Biomass. Oikos, 52, 101-106.                                                                                |
| 643 | Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass                      |
| 644 | C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar:                       |
| 645 | implications for plant nutrient uptake. Oecologia, 106, 507-515.                                            |

#### **Global Change Biology**

Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Proceedings, 18, 33-34. Kongstad J, Schmidt IK, Riis-Nielsen T, Beier C, Arndal MF, Mikkelsen TN (2010) Species specific responses in plant growth to changes in temperature, drought and  $CO_2$  in combination: results from the CLIMAITE experiment. Submitted May 2010 to Global Change Biology. Körner C (2000) Biosphere responses to CO<sub>2</sub> enrichment. *Ecological Applications*, **10**, 1590-1619. Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO<sub>2</sub>. *Global Change Biology*, **13**, 2498-2508. Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128, 305-316. Lukewille A, Wright RF (1997) Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. *Global Change Biology*, **3**, 13-21. Luo Y, Su B, Currie WS, et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731-739. Luo YQ, Gerten D, Le Maire G, et al. (2008) Modeled interactive effects of precipitation, temperature, and [CO<sub>2</sub>] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986-1999. Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO<sub>2</sub> stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 87, 53-63.

### **Global Change Biology**

| 3                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                  |
| 5                                                                                                                  |
| 6                                                                                                                  |
| 7                                                                                                                  |
| 1                                                                                                                  |
| 8                                                                                                                  |
| 9                                                                                                                  |
| 10                                                                                                                 |
| 11                                                                                                                 |
| 12                                                                                                                 |
| 13                                                                                                                 |
| 1/                                                                                                                 |
| 14                                                                                                                 |
| 10                                                                                                                 |
| 16                                                                                                                 |
| 17                                                                                                                 |
| 18                                                                                                                 |
| 4 5 6 7 8 9 10 11 2 3 14 5 16 7 8 9 10 11 2 3 14 5 16 7 8 9 20 12 23 24 25 26 27 8 9 30 1 32 33 34 35 36 37 8 39 0 |
| 20                                                                                                                 |
| 21                                                                                                                 |
| 22                                                                                                                 |
| 22                                                                                                                 |
| 23                                                                                                                 |
| 24                                                                                                                 |
| 25                                                                                                                 |
| 26                                                                                                                 |
| 27                                                                                                                 |
| 28                                                                                                                 |
| 20                                                                                                                 |
| 29                                                                                                                 |
| 30                                                                                                                 |
| 31                                                                                                                 |
| 32                                                                                                                 |
| 33                                                                                                                 |
| 34                                                                                                                 |
| 35                                                                                                                 |
| 36                                                                                                                 |
| 37                                                                                                                 |
| 20                                                                                                                 |
| 30                                                                                                                 |
| 39                                                                                                                 |
| 40                                                                                                                 |
| 41                                                                                                                 |
| 42                                                                                                                 |
| 43                                                                                                                 |
| 44                                                                                                                 |
| 45                                                                                                                 |
| 46                                                                                                                 |
|                                                                                                                    |
| 47                                                                                                                 |
| 48                                                                                                                 |
| 49                                                                                                                 |
| 50                                                                                                                 |
| 51                                                                                                                 |
| 52                                                                                                                 |
| 53                                                                                                                 |
| 54                                                                                                                 |
| 54                                                                                                                 |
| 55                                                                                                                 |
| 56                                                                                                                 |
| 57                                                                                                                 |
| 58                                                                                                                 |
| 59                                                                                                                 |

60

Lutze JL, Gifford RM (2000) Nitrogen accumulation and distribution in Danthonia 667 668 richardsonii swards in response to CO<sub>2</sub> and nitrogen supply over four years of growth. Global Change Biology, 6, 1-12. 669 670 Lutze JL, Gifford RM, Adams HN (2000) Litter quality and decomposition in Danthonia richardsonii swards in response to CO<sub>2</sub> and nitrogen supply over four years of growth. Global 671 Change Biology, 6, 13-24. 672 Maraldo K, Schmidt IK, Beier C, Holmstrup M (2008) Can field populations of the 673 enchytraeid, Cognettia sphagnetorum, adapt to increased drought stress? Soil Biology & 674 Biochemistry, 40, 1765-1771. 675 676 Maraldo K, van der Linden L, Christensen B, Mikkelsen TN, Beier C, Krogh PH, Holmstrup M (2010) The counteracting effects of elevated atmospheric CO<sub>2</sub> concentrations and drought 677 episodes: studies of enchytraeid communities in dry heathland. Soil Biology and 678 Biochemistry, in press. 679 680 Marion GM, Hastings SJ, Oberbauer SF, Oechel WC (1989) Soil-plant element relationships in a tundra ecosystem. Holarctic Ecology, 12, 296-303. 681 McGuire AD, Melillo JM, Joyce LA (1995) The role of nitrogen in the response of forest net 682 primary production to elevated atmospheric carbon-dioxide. Annual Review of Ecology and 683 Systematics, 26, 473-503. 684 Mchale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a northern hardwood forest: trace 685 gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research-Revue 686 687 Canadienne de Recherche Forestiere, 28, 1365-1372.

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 122 \\ 223 \\ 225 \\ 227 \\ 229 \\ 203 \\ 112 \\ 233 \\ 345 \\ 367 \\ 389 \\ 401 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 $ |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Mikkelsen TN, Beier C, Jonasson S, et al. (2008) Experimental design of multifactor climate
change experiments with elevated CO<sub>2</sub>, warming and drought: the CLIMAITE project. *Functional Ecology*, 22, 185-195.
Morgan JA, Pataki DE, Körner C, *et al.* (2004) Water relations in grassland and desert
ecosystems exposed to elevated atmospheric CO<sub>2</sub>. *Oecologia*, 140, 11-25.
Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J (2009) Seasonal variations
and effects of nutrient applications on N and P and microbial biomass under two temperate

695 heathland plants. *Applied Soil Ecology*, **42**, 279-287.

696 Niklaus PA, Leadley PW, Schmid B, Körner C (2001) A long-term field study on biodiversity

697 x elevated  $CO_2$  interactions in grassland. *Ecological Monographs*, **71**, 341-356.

698 Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated

699 atmospheric  $CO_2$  – do photosynthetic and productivity data from FACE experiments support

700 early predictions? *New Phytologist*, **162**, 253-280.

Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: Incorporating the
soil fauna. *Ecology*, 88, 1611-1621.

Page FC (1988) A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological
Association, Cumbria, England.

Paterson E, Hodge A, Thornton B, Millard P, Killham K (1999) Carbon partitioning and

rhizosphere C-flow in Lolium perenne as affected by  $CO_2$  concentration, irradiance and

below-ground conditions. *Global Change Biology*, **5**, 669-678.

Page 37 of 46

1 2

### **Global Change Biology**

| 3                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------|
| 4                                                                                                                    |
| 5<br>6                                                                                                               |
| 6                                                                                                                    |
| 7                                                                                                                    |
| 0                                                                                                                    |
| 0                                                                                                                    |
| 9                                                                                                                    |
| 10                                                                                                                   |
| 11                                                                                                                   |
| 12                                                                                                                   |
| 13                                                                                                                   |
| 14                                                                                                                   |
| 15                                                                                                                   |
| 16                                                                                                                   |
| 10                                                                                                                   |
| 17                                                                                                                   |
| 18                                                                                                                   |
| 19                                                                                                                   |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                             |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 |
| 22                                                                                                                   |
| 22<br>22                                                                                                             |
| 23                                                                                                                   |
| 24                                                                                                                   |
| 25                                                                                                                   |
| 26                                                                                                                   |
| 27                                                                                                                   |
| 28                                                                                                                   |
| 20                                                                                                                   |
| 29                                                                                                                   |
| 30                                                                                                                   |
| 31                                                                                                                   |
| 32                                                                                                                   |
| 33                                                                                                                   |
| 34                                                                                                                   |
| 35                                                                                                                   |
| 35                                                                                                                   |
| 30                                                                                                                   |
| 37                                                                                                                   |
| 38                                                                                                                   |
| 39                                                                                                                   |
| 40                                                                                                                   |
| 41                                                                                                                   |
| 42                                                                                                                   |
|                                                                                                                      |
| 43                                                                                                                   |
| 44                                                                                                                   |
| 45                                                                                                                   |
| 46                                                                                                                   |
| 47                                                                                                                   |
| 48                                                                                                                   |
| 49                                                                                                                   |
| -+-3<br>F-0                                                                                                          |
| 50                                                                                                                   |
| 51                                                                                                                   |
| 52<br>53                                                                                                             |
| 53                                                                                                                   |
| 54                                                                                                                   |
| 55                                                                                                                   |
| 55<br>56                                                                                                             |
|                                                                                                                      |
| 57                                                                                                                   |
| 58                                                                                                                   |
| 59                                                                                                                   |

Peltola H, Kilpelainen A, Kellomaki S (2002) Diameter growth of Scots pine (*Pinus sylvestris*) trees grown at elevated temperature and carbon dioxide concentration under boreal

710 conditions. *Tree Physiology*, **22**, 963-972.

Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated  $CO_2$  in a

ria semiarid grassland. *New Phytologist*, **162**, 447-458.

713 Penuelas J, Prieto P, Beier C, et al. (2007) Response of plant species richness and primary

714 productivity in shrublands along a north-south gradient in Europe to seven years of

715 experimental warming and drought: reductions in primary productivity in the heat and

716 drought year of 2003. *Global Change Biology*, **13**, 2563-2581.

717 Persson T (1983) Influence of soil animals on nitrogen mineralisation in a northern Scots pine

718 forest. In: *New Trends in Soil Biology* (eds Lebrun P, André H, De Medts A, Grégoire-Wibo

719 C, Wauthy G), pp. 117-126. Dieu Brichart, Louvain-la-Neuve, Belgium.

720 Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994)

721 Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures.

*Ecological Applications*, **4**, 617-625.

Petersen H, Luxton M (1982) A comparative-analysis of soil fauna populations and their role
in decomposition processes. *Oikos*, **39**, 287-388.

Rastetter EB, Agren GI, Shaver GR (1997) Responses of N-limited ecosystems to increased
 CO<sub>2</sub>: A balanced-nutrition, coupled-element-cycles model. *Ecological Applications*, 7, 444 727 460.

Reich PB, Hobbie SE, Lee T, *et al.* (2006) Nitrogen limitation constrains sustainability of
ecosystem response to CO<sub>2</sub>. *Nature*, 440, 922-925.

#### **Global Change Biology**

| 2                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                    |
| 1                                                                                                                    |
| 4                                                                                                                    |
| 5                                                                                                                    |
| 6                                                                                                                    |
| 7                                                                                                                    |
| 8                                                                                                                    |
| 9                                                                                                                    |
| 10                                                                                                                   |
| 11                                                                                                                   |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                    |
| 13                                                                                                                   |
| 14                                                                                                                   |
| 15                                                                                                                   |
| 16                                                                                                                   |
| 10                                                                                                                   |
| 17                                                                                                                   |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                   |
| 19                                                                                                                   |
| 20                                                                                                                   |
| 21                                                                                                                   |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 |
| 23                                                                                                                   |
| 24                                                                                                                   |
| 25                                                                                                                   |
| 26                                                                                                                   |
| 27                                                                                                                   |
| 28                                                                                                                   |
| 20                                                                                                                   |
| 20                                                                                                                   |
| 21                                                                                                                   |
| 31                                                                                                                   |
| 32                                                                                                                   |
| 33                                                                                                                   |
| 34                                                                                                                   |
| 35                                                                                                                   |
| 36                                                                                                                   |
| 37                                                                                                                   |
| 38                                                                                                                   |
| 39                                                                                                                   |
| 40                                                                                                                   |
| 41                                                                                                                   |
| 42                                                                                                                   |
| 43                                                                                                                   |
| 43<br>44                                                                                                             |
| 44                                                                                                                   |
| 45<br>46                                                                                                             |
| 40                                                                                                                   |
| 47                                                                                                                   |
| 48                                                                                                                   |
| 49                                                                                                                   |
| 50                                                                                                                   |
| 51                                                                                                                   |
| 52                                                                                                                   |
| 53                                                                                                                   |
| 54                                                                                                                   |
| 55                                                                                                                   |
| 56                                                                                                                   |
| 57                                                                                                                   |
| 58                                                                                                                   |
| 58<br>59                                                                                                             |
| 72                                                                                                                   |

1

Reich PB, Knops J, Tilman D, et al. (2001) Plant diversity enhances ecosystem responses to
elevated CO<sub>2</sub> and nitrogen deposition. *Nature*, 410, 809-812.

- 732 Riis-Nielsen T, Schmidt IK (2010) Non-destructive plant biomass and cover estimates from
- 733 point intercept analysis a case study of *Calluna vulgaris* and *Deschampsia flexuosa*.

734 Submitted May 2010 to *Functional Ecology*.

Rønn R, Ekelund F, Christensen S (1995) Optimizing soil extract and broth media for mpn-

race enumeration of naked amoebas and heterotrophic flagellates in soil. *Pedobiologia*, **39**, 10-19.

Rustad LE, Campbell JL, Marion GM, et al. (2001) A meta-analysis of the response of soil
respiration, net nitrogen mineralization, and aboveground plant growth to experimental
ecosystem warming. *Oecologia*, **126**, 543-562.

740 SAS Institute (2003) SAS/STAT User's Guide. Statistical Analysis System Institute, Cary,
741 NC, USA.

742 Schimel JP, Bennett J (2004) Nitrogen mineralization: Challenges of a changing paradigm.
743 *Ecology*, **85**, 591-602.

Schmidt IK, Beier C, Kongstad J, et al. (2007) Klimaændringer og processer og funktion i
terrestriske økosystemer. *Flora og Fauna*, **113**, 121-132.

746 Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M (2004)

747 Soil solution chemistry and element fluxes in three European heathlands and their responses

- to warming and drought. *Ecosystems*, 7, 638-649.
- 55 749 Selsted MB, Ibrom A, Ambus P, *et al.* (2010) Soil respiration in a temperate heathland
- $\frac{1}{20}$  750 responds strongly to elevated temperature, extended summer drought and elevated CO<sub>2</sub>.
- 60 751 Submitted July 2010 to *Global Change Biology*.

## **Global Change Biology**

| 1                                                                                                                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ~                                                                                                                                                                                                                                                                               |  |
| 2                                                                                                                                                                                                                                                                               |  |
| 1                                                                                                                                                                                                                                                                               |  |
| 4                                                                                                                                                                                                                                                                               |  |
| 5                                                                                                                                                                                                                                                                               |  |
| 0                                                                                                                                                                                                                                                                               |  |
| 1                                                                                                                                                                                                                                                                               |  |
| 8                                                                                                                                                                                                                                                                               |  |
| 9                                                                                                                                                                                                                                                                               |  |
| 10                                                                                                                                                                                                                                                                              |  |
| 11                                                                                                                                                                                                                                                                              |  |
| 12                                                                                                                                                                                                                                                                              |  |
| 13                                                                                                                                                                                                                                                                              |  |
| 14                                                                                                                                                                                                                                                                              |  |
| 15                                                                                                                                                                                                                                                                              |  |
| 16                                                                                                                                                                                                                                                                              |  |
| 17                                                                                                                                                                                                                                                                              |  |
| 18                                                                                                                                                                                                                                                                              |  |
| 19                                                                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                                                                              |  |
| 21                                                                                                                                                                                                                                                                              |  |
| $\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 13\\ 14\\ 5\\ 16\\ 17\\ 18\\ 19\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 32\\ 32\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32$ |  |
| 22                                                                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                                                                              |  |
| 24                                                                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                                                                              |  |
| 20                                                                                                                                                                                                                                                                              |  |
| 21                                                                                                                                                                                                                                                                              |  |
| 28                                                                                                                                                                                                                                                                              |  |
| 29                                                                                                                                                                                                                                                                              |  |
| 30                                                                                                                                                                                                                                                                              |  |
| 31                                                                                                                                                                                                                                                                              |  |
| 32                                                                                                                                                                                                                                                                              |  |
| 33                                                                                                                                                                                                                                                                              |  |
| 34                                                                                                                                                                                                                                                                              |  |
| 35                                                                                                                                                                                                                                                                              |  |
| 36                                                                                                                                                                                                                                                                              |  |
| 37                                                                                                                                                                                                                                                                              |  |
| 38                                                                                                                                                                                                                                                                              |  |
| 39                                                                                                                                                                                                                                                                              |  |
| 40                                                                                                                                                                                                                                                                              |  |
| 41                                                                                                                                                                                                                                                                              |  |
| 42                                                                                                                                                                                                                                                                              |  |
| 43                                                                                                                                                                                                                                                                              |  |
| 43                                                                                                                                                                                                                                                                              |  |
| 44<br>45                                                                                                                                                                                                                                                                        |  |
| 45<br>46                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                 |  |
| 47                                                                                                                                                                                                                                                                              |  |
| 48                                                                                                                                                                                                                                                                              |  |
| 49                                                                                                                                                                                                                                                                              |  |
| 50                                                                                                                                                                                                                                                                              |  |
| 51                                                                                                                                                                                                                                                                              |  |
| 52                                                                                                                                                                                                                                                                              |  |
| 53                                                                                                                                                                                                                                                                              |  |
| 54                                                                                                                                                                                                                                                                              |  |
| 55                                                                                                                                                                                                                                                                              |  |
| 56                                                                                                                                                                                                                                                                              |  |
| 57                                                                                                                                                                                                                                                                              |  |
| 58                                                                                                                                                                                                                                                                              |  |
| 59                                                                                                                                                                                                                                                                              |  |
| 60                                                                                                                                                                                                                                                                              |  |

| 752 | Sohlenius B, Sandor A (1987) Vertical distribution of nematodes in arable soil under grass                  |
|-----|-------------------------------------------------------------------------------------------------------------|
| 753 | (Festuca pratensis) and Barley (Hordeum vulgare). Biology and Fertility of Soils, 3, 19-25.                 |
| 754 | Sørensen P, Jensen ES (1991) Sequential diffusion of ammonium and nitrate from soil                         |
| 755 | extracts to a polytetrafluoroethylene trap for N-15 determination. Analytica Chimica Acta,                  |
| 756 | <b>252</b> , 201-203.                                                                                       |
| 757 | Sowerby A, Emmett BA, Tietema A, Beier C (2008) Contrasting effects of repeated summer                      |
| 758 | drought on soil carbon efflux in hydric and mesic heathland soils. Global Change Biology, 14,               |
| 759 | 2388-2404.                                                                                                  |
| 760 | Standen V (1973) Production and respiration of an enchytraeid population in blanket bog.                    |
| 761 | Journal of Animal Ecology, <b>42</b> , 219-245.                                                             |
| 762 | Stout JD, Heal OW (1967) Protozoa. In: Soil Biology (eds Burges A, Raw F), pp. 149-195.                     |
| 763 | Academic Press, New York, USA.                                                                              |
| 764 | Svensson M, Jansson PE, Gustafsson D, Kleja DB, Langvall O, Lindroth A (2008) Bayesian                      |
| 765 | calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest                 |
| 766 | stand. <i>Ecological Modelling</i> , <b>213</b> , 331-344.                                                  |
| 767 | Tingey DT, McKane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Lee EH (2003) Elevated                           |
| 768 | CO <sub>2</sub> and temperature alter nitrogen allocation in Douglas-fir. <i>Global Change Biology</i> , 9, |
| 769 | 1038-1050.                                                                                                  |
| 770 | van der Linden L, Beier C, Mikkelsen TN, et al (2010) The effects of warming, drought and                   |
| 771 | elevated CO <sub>2</sub> on the Carbon balance of a Danish heathland: the Climaite project carbon           |
| 772 | synthesis. Expected submitted September 2010 to Global Change Biology.                                      |

| 2<br>3                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                          |
| 4                                                                                                                          |
| 5                                                                                                                          |
| 4<br>5<br>6<br>7                                                                                                           |
| 2                                                                                                                          |
| 1                                                                                                                          |
| 8                                                                                                                          |
| 9                                                                                                                          |
| 10                                                                                                                         |
| 10                                                                                                                         |
| 11                                                                                                                         |
| 8<br>9<br>10<br>11<br>12                                                                                                   |
| 13<br>14<br>15                                                                                                             |
| 14                                                                                                                         |
| 14                                                                                                                         |
| 15                                                                                                                         |
| 16<br>17                                                                                                                   |
| 17                                                                                                                         |
| 18                                                                                                                         |
| 10                                                                                                                         |
| 18<br>19                                                                                                                   |
| 20                                                                                                                         |
| 21                                                                                                                         |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 |
| 22                                                                                                                         |
| 23                                                                                                                         |
| 24                                                                                                                         |
| 25                                                                                                                         |
| 26                                                                                                                         |
| 27                                                                                                                         |
| 21                                                                                                                         |
| 28                                                                                                                         |
| 29                                                                                                                         |
| 30                                                                                                                         |
| 21                                                                                                                         |
| 31                                                                                                                         |
| 32                                                                                                                         |
| 33                                                                                                                         |
| 34                                                                                                                         |
| 25                                                                                                                         |
| 30                                                                                                                         |
| 36                                                                                                                         |
| 37                                                                                                                         |
| 38                                                                                                                         |
| 30                                                                                                                         |
| 39                                                                                                                         |
| 40                                                                                                                         |
| 41                                                                                                                         |
| 42                                                                                                                         |
| 43                                                                                                                         |
| 43<br>44                                                                                                                   |
|                                                                                                                            |
| 45                                                                                                                         |
| 46                                                                                                                         |
| 47                                                                                                                         |
|                                                                                                                            |
| 48                                                                                                                         |
| 49                                                                                                                         |
| 50                                                                                                                         |
| 51                                                                                                                         |
|                                                                                                                            |
| 52                                                                                                                         |
| 53                                                                                                                         |
| 54                                                                                                                         |
| 55                                                                                                                         |
| 56                                                                                                                         |
| 30                                                                                                                         |
| 57                                                                                                                         |
| 58                                                                                                                         |
| 59                                                                                                                         |
| 60                                                                                                                         |
|                                                                                                                            |

van Heerwaarden LM, Toet S, van Logtestijn RSP, Aerts R (2005) Internal nitrogen dynamics 773 in the graminoid Molinia caerulea under higher N supply and elevated CO<sub>2</sub> concentrations. 774 775 Plant and Soil, 277, 255-264. Vervaet H, Boeckx P, Boko AMC, Van Cleemput O, Hofman G (2004) The role of gross and 776 net N transformation processes and NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> immobilization in controlling the mineral 777 778 N pool of a temperate mixed deciduous forest soil. Plant and Soil, 264, 349-357. 779 Wolsing M, Prieme A (2004) Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by 780 determining T-RFLP of nir gene fragments. Fems Microbiology Ecology, 48, 261-271. 781 Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated 782 atmospheric CO<sub>2</sub> and feedback between carbon and nitrogen cycles. *Plant and Soil*, **151**, 105-783 117. 784 Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere Protozoa: their significance in 785 786 nutrient dynamics. In: Soil Protozoa (ed Darbyshire JF), CAB International, Wallingford, UK.

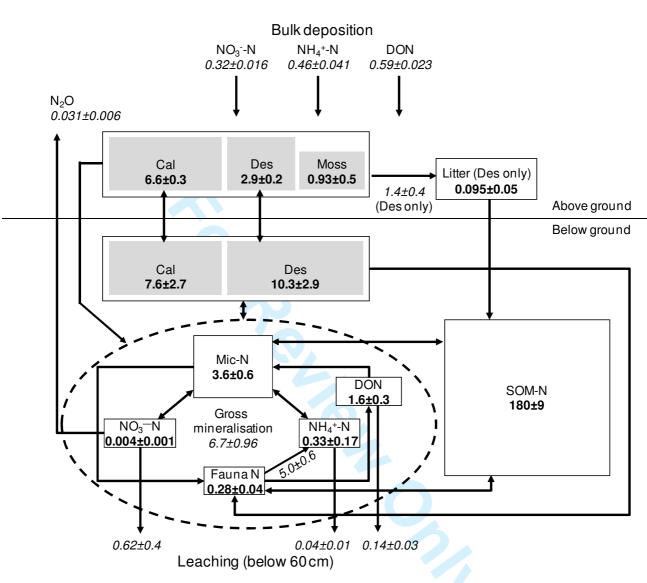
| 1<br>2               |     |                                                                                                                                                    |
|----------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5     | 787 |                                                                                                                                                    |
| 6<br>7<br>8          | 788 | Figure captions                                                                                                                                    |
| 9<br>10<br>11        | 789 | Figure 1                                                                                                                                           |
| 12<br>13<br>14       | 790 | Measured N pools in August 2007 ( <b>bold</b> , g N m <sup>-2</sup> ) and annual fluxes ( <i>italic</i> , g N m <sup>-2</sup> y <sup>-1</sup> ) in |
| 15<br>16             | 791 | ambient plots down to 10 cm soil depth (leaching below 60 cm depth) in 2007. Abbreviations:                                                        |
| 17<br>18             | 792 | Calluna vulgaris (Cal), Deschampsia flexuosa (Des), dissolved organic nitrogen (DON),                                                              |
| 19<br>20<br>21       | 793 | microbial biomass nitrogen (Mic-N), soil organic matter nitrogen (SOM-N), Gross                                                                    |
| 22<br>23             | 794 | mineralization (Gross min). Data of litter N mass and litter N production was only available                                                       |
| 24<br>25             | 795 | for Deschampsia. Estimates of fauna biomass and mineralization includes enchytraeids,                                                              |
| 26<br>27<br>28       | 796 | microarthropods, nematodes, and protozoans. Dashed line indicates the major components                                                             |
| 29<br>30<br>31       | 797 | involved in N mineralization. The annual N balance was $+0.53$ g N m <sup>-2</sup> y <sup>-1</sup> .                                               |
| 32<br>33<br>34       | 798 |                                                                                                                                                    |
| 35<br>36<br>37       | 799 | Figure 2                                                                                                                                           |
| 38<br>39<br>40       | 800 | Observed above-ground changes in N pools, C/N ratios, litter N production of Deschampsia                                                           |
| 41<br>42             | 801 | and percentage N in litter of <i>Deschampsia</i> caused by single treatments factors $(a - c)$ and                                                 |
| 43<br>44             | 802 | when all treatments are combined (d). Calluna vulgaris (Cal), Deschampsia flexuosa (Des).                                                          |
| 45<br>46<br>47<br>48 | 803 | See Table 1 for statistical significance of observed changes.                                                                                      |
| 49<br>50<br>51       | 804 |                                                                                                                                                    |
| 52<br>53<br>54       | 805 | Figure 3                                                                                                                                           |
| 55<br>56<br>57       | 806 | Observed below-ground changes in N pools, N fluxes/processes and N concentrations caused                                                           |
| 58<br>59             | 807 | by single treatments factors $(a - c)$ and when all treatments are combined (d). Dissolved                                                         |
| 60                   | 808 | organic nitrogen (DON), microbial biomass nitrogen (Mic-N), mineralization (min). See                                                              |

809 Table 1 for statistical significance of observed changes.

#### **Global Change Biology**

| -<br>3<br>4      | 810 |
|------------------|-----|
| 5<br>6<br>7<br>8 | 811 |
| 9<br>10<br>11    | 812 |
| 12<br>13         | 813 |
| 14<br>15         | 814 |
| 16<br>17         | 815 |
| 18<br>19<br>20   | 816 |
| 21<br>22         | 817 |
| 23<br>24<br>25   | 818 |
| 26<br>27         | 819 |
| 28<br>29         | 820 |
| 30<br>31<br>32   |     |
| 33<br>34         |     |
| 35<br>36<br>37   |     |
| 38<br>39         |     |
| 40<br>41         |     |
| 42<br>43         |     |
| 44<br>45<br>46   |     |
| 47<br>48         |     |
| 49<br>50         |     |
| 51<br>52<br>53   |     |
| 54<br>55         |     |
| 56<br>57         |     |
| 58<br>59         |     |

60


Figure 4 811 Observed significant interactions (P≤0.05) from the PROC MIXED analysis of 47 812 813 individually tested variables (see Table 1) followed by analysis of Differences of Least Squares Means (DLSM) were categorized as antagonistic, *i.e.* combination leads to reduction 814 815 of effects, or as synergistic, *i.e.* combination leads to amplification of single effects or significant effect is only observed in combination. Number of observed simple additive 816 817 effects is also shown, *i.e.* cases where two significant individual effects were observed without significant interaction. Note that the sum of antagonistic and synergistic effects are 15 818 819 because one three-way interaction (potential nitrification – see Table 1) was caused by both ι. antagonistic and synergistic effects. 820

### **Global Change Biology**

Table 1. Pools and fluxes of N (g N m<sup>2</sup>), C/N ratios and N concentrations (mg L<sup>-1</sup>) in 2007. Data are means with SE for ambient (A) and means with SE normalized to the mean of the ambient treatment (all other treatments than A).<sup>11</sup>Significant P values (P  $\leq 0.05$ ) from statistical analysis. Direction of main treatment effects is indicated with arrows. Significant interactions are indicated as antagonistic (§), or synergistic (‡). Additive effects of multiple significant main effects are also indicated (+ $\frac{2}{3}$ . Significant interactions are indicated as antagonistic (§), or synergistic (‡). Additive effects of multiple significant main effects are also indicated (+ $\frac{2}{3}$ . Significant single treatment effects as indicated by evaluation of main effects plus interaction(s) by analysis of DLSM (see text for further details). Direction of effects is indicated with arrows. n.s. = not significant.

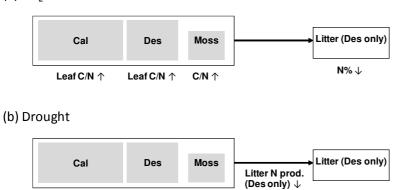

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 00                                        | _                                         | _                                         | DCC                                       | TCC                                       |                                           | TRAC                                      |                 | reatment e |        | Dree              | Interact |       | TIDICO              |                 | treatment | . eneci |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------|------------|--------|-------------------|----------|-------|---------------------|-----------------|-----------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                         | CO <sub>2</sub>                           | D                                         | т                                         | DCO <sub>2</sub>                          | TCO <sub>2</sub>                          | TD                                        | TDCO <sub>2</sub>                         | CO <sub>2</sub> | D          | Т      | D*CO <sub>2</sub> | T*CO2    | T*D   | T*D*CO <sub>2</sub> | CO <sub>2</sub> | D         |         |
| bove-ground biomass N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Calluna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.74 ± 25%                                | $1.01 \pm 0.09$                           | $0.88 \pm 0.09$                           | 0.96 ± 0.21                               | $0.80 \pm 0.19$                           | 0.97 ± 0.20                               | $0.84 \pm 0.13$                           | $0.67 \pm 0.14$                           |                 |            |        |                   |          |       |                     |                 |           |         |
| C/N ratio of Calluna leaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.4 ± 7%                                 | 1.17 ± 0.05                               | 1.07 ± 0.04                               | $1.03 \pm 0.09$                           | $1.14 \pm 0.08$                           | $1.15 \pm 0.12$                           | 0.97 ± 0.03                               | $1.15 \pm 0.09$                           | 0.02个           |            |        |                   |          |       |                     | 0.02个           |           |         |
| C/N ratio of Calluna flowers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.5 ± 4%                                 | 1.17 ± 0.09                               | $1.09 \pm 0.05$                           | 1.04 ± 0.07                               | $1.16 \pm 0.06$                           | $1.15 \pm 0.05$                           | $1.09 \pm 0.04$                           | $1.21 \pm 0.04$                           | 0.04个           |            |        |                   |          |       |                     | 0.04个           |           |         |
| C/N ratio of Calluna green tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.1 ± 5%                                 | 0.94 ± 0.08                               | 0.94 ± 0.08                               | 0.90 ± 0.07                               | $1.09 \pm 0.04$                           | 0.88 ± 0.06                               | 0.97 ± 0.05                               | 0.98 ± 0.06                               |                 |            |        |                   |          |       |                     |                 |           |         |
| C/N ratio of Calluna wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56.7 ± 9%                                 | 0.97 ± 0.08                               | $1.00 \pm 0.10$                           | 0.94 ± 0.07                               | $1.03 \pm 0.06$                           | 0.95 ± 0.08                               | 1.06 ± 0.08                               | 1.16 ± 0.02                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Deschampsia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.99 ± 20%                                | 0.89 ± 0.07                               | 1.20 ± 0.27                               | 0.97 ± 0.27                               | 0.94 ± 0.21                               | $1.05 \pm 0.18$                           | 0.73 ± 0.17                               | 0.78 ± 0.06                               |                 |            |        |                   |          |       |                     |                 |           |         |
| C/N ratio of Deschampsia green leaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.2 ± 6%                                 | 1.16 ± 0.02                               | 1.16 ± 0.12                               | 1.05 ± 0.07                               | 1.39 ± 0.07                               | 1.27 ± 0.11                               | $1.18 \pm 0.05$                           | 1.40 ± 0.07                               | 0.01个           | 0.002个     |        | +                 |          |       |                     | 0.01个           | 0.002个    | 1       |
| C/N ratio of Deschampsia whole plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.3 ± 8%                                 | 1.08 ± 0.06                               | 0.92 ± 0.09                               | 1.07 ± 0.14                               | 1.25 ± 0.15                               | 0.90 ± 0.04                               | 1.07 ± 0.10                               | 1.12 ± 0.06                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Mosses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.930 ± 53%                               | 3.20 ± 1.10                               | 3.95 ± 1.65                               | 2.57 ± 0.89                               | 1.54 ± 0.73                               | 1.95 ± 0.67                               | 2.48 ± 1.20                               | 1.77 ± 1.22                               |                 |            |        |                   |          |       |                     |                 |           |         |
| C/N ratio of mosses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.4 ± 5%                                 | 1.44 ± 0.15                               | 1.31 ± 0.15                               | 1.24 ± 0.09                               | 1.12 ± 0.18                               | 0.97 ± 0.13                               | 1.16 ± 0.15                               | $1.02 \pm 0.11$                           |                 |            |        |                   |          |       | 0.003§              | 0.05个           | 0.05个     | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| itter N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Deschampsia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.095 ± 52%                               | 0.56 ± 0.19                               | 0.19 ± 0.04                               | 0.15 ± 0.04                               | 0.64 ± 0.32                               | 0.46 ± 0.17                               | 0.21 ± 0.15                               | 0.58 ± 0.17                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Deschampsia litter N conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.936 ± 12%                               | 0.76 ± 0.11                               | 1.05 ± 0.08                               | 1.07 ± 0.12                               | 0.75 ± 0.12                               | 0.88 ± 0.09                               | 1.15 ± 0.15                               | 1.06 ± 0.08                               | 0.05↓           |            | 0.03个  |                   | +        |       |                     | 0.05↓           |           |         |
| Deschampsia litter N production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.42 ± 28%                                | 0.92 ± 0.22                               | 0.69 ± 0.28                               | $1.05 \pm 0.51$                           | 0.64 ± 0.18                               | 1.17 ± 0.20                               | 0.73 ± 0.25                               | 0.77 ± 0.14                               |                 | 0.01↓      |        |                   |          |       |                     |                 | 0.01↓     |         |
| Plant root biomarc N (0.10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Plant root biomass N (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 56 - 25%                                | 0.98 ± 0.24                               | 1.73 ± 0.34                               | 1.47 ± 0.35                               | 1.90 ± 0.42                               | 0.96 - 0.20                               | 1.71 ± 0.31                               | 1.23 ± 0.38                               |                 | 0.044      |        |                   |          |       |                     |                 | 0.04个     |         |
| Calluna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.56 ± 35%<br>10.3 ± 29%                  | 0.98 ± 0.24<br>0.67 ± 0.22                | $1.73 \pm 0.34$<br>$0.60 \pm 0.14$        | $1.47 \pm 0.35$<br>$0.56 \pm 0.10$        | 1.90 ± 0.42<br>0.67 ± 0.18                | 0.86 ± 0.29<br>0.65 ± 0.22                | $1.71 \pm 0.31$<br>0.45 ± 0.10            | 1.23 ± 0.38<br>0.59 ± 0.15                |                 | 0.04个      |        |                   |          |       |                     |                 | 0.04°F    |         |
| Deschampsia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.5 I 29%                                | 0.07 ± 0.22                               | 0.00 ± 0.14                               | 0.30 ± 0.10                               | 0.07 ± 0.18                               | 0.05 ± 0.22                               | 0.45 ± 0.10                               | 0.59 ± 0.15                               |                 |            |        |                   |          |       |                     | _               |           |         |
| oil microbial biomass N and soil fauna N (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Vicrobes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.55 ± 16%                                | 1.46 ± 0.39                               | 1.32 ± 0.20                               | 1.46 ± 0.20                               | 1.27 ± 0.36                               | 1.16 ± 0.28                               | 1.03 ± 0.15                               | 1.02 ± 0.22                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Inchytraeids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.197 ± 10%                               | 1.62 ± 0.50                               | 0.71 ± 0.15                               | 1.48 ± 0.20<br>1.19 ± 0.38                | $1.27 \pm 0.36$<br>$1.00 \pm 0.26$        | 1.02 ± 0.15                               | 0.53 ± 0.10                               | 1.02 ± 0.22<br>1.14 ± 0.39                |                 | 0.03↓      |        |                   |          |       |                     |                 | 0.03↓     |         |
| Aicroarthropods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.064 ± 28%                               | 2.18 ± 0.82                               | 1.53 ± 0.38                               | 1.84 ± 0.53                               | 1.36 ± 0.49                               | 1.61 ± 0.33                               | 1.92 ± 0.27                               | 1.82 ± 0.47                               |                 | 0.034      |        |                   |          |       |                     |                 | 0.034     |         |
| Vematodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.007 ± 12%                               | 1.46 ± 0.32                               | 0.84 ± 0.18                               | 1.21 ± 0.27                               | 1.31 ± 0.48                               | 0.95 ± 0.11                               | 1.05 ± 0.19                               | 0.97 ± 0.16                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Protozoans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.011 ± 44%                               | 0.55 ± 0.13                               | 0.82 ± 0.19                               | 1.47 ± 0.47                               | 0.36 ± 0.11                               | 1.29 ± 0.82                               | 0.61 ± 0.15                               | 0.37 ± 0.09                               |                 | 0.04↓      |        |                   |          |       |                     |                 | 0.04↓     |         |
| Annual enchytraeid mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.592 ± 10%                               | 1.62 ± 0.50                               | 0.71 ± 0.15                               | 1.19 ± 0.38                               | 1.00 ± 0.26                               | 1.02 ± 0.15                               | 0.53 ± 0.10                               | 1.14 ± 0.39                               |                 | 0.03↓      |        |                   |          |       |                     |                 | 0.03      |         |
| Annual microarthropod mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.191 ± 28%                               | 2.18 ± 0.82                               | 1.53 ± 0.38                               | 1.84 ± 0.53                               | 1.36 ± 0.49                               | 1.61 ± 0.33                               | 1.92 ± 0.27                               | 1.82 ± 0.47                               |                 | 0.034      |        |                   |          |       |                     |                 | 0.034     |         |
| Annual nematode mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.63 ± 12%                                | 1.46 ± 0.32                               | 0.84 ± 0.18                               | 1.21 ± 0.27                               | 1.31 ± 0.48                               | 0.95 ± 0.11                               | 1.05 ± 0.19                               | 0.97 ± 0.16                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Annual protozoan mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.58 ± 44%                                | 0.55 ± 0.13                               | 0.82 ± 0.19                               | 1.47 ± 0.47                               | 0.36 ± 0.11                               | 1.29 ± 0.82                               | 0.61 ± 0.15                               | 0.37 ± 0.09                               |                 | 0.04↓      |        |                   |          |       |                     |                 | 0.04↓     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           | 0.02 - 0.00                               |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           | _       |
| oil organic and inorganic N pools and concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| OM-N (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180.2 ± 5%                                | 1.19 ± 0.14                               | 1.08 ± 0.11                               | 0.81 ± 0.04                               | 1.30 ± 0.36                               | 0.85 ± 0.07                               | 0.86 ± 0.09                               | 1.11 ± 0.16                               |                 |            |        |                   |          |       |                     |                 |           |         |
| xtractable soil NO <sub>3</sub> -N (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004 ± 15%                               | 1.37 ± 0.26                               | 1.15 ± 0.19                               | 1.06 ± 0.16                               | 1.42 ± 0.47                               | 1.02 ± 0.08                               | 0.85 ± 0.09                               | 1.13 ± 0.27                               |                 |            |        |                   |          |       |                     |                 |           |         |
| xtractable soil NH <sub>4</sub> <sup>+</sup> -N (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.330 ± 52%                               | 0.76 ± 0.47                               | 0.58 ± 0.50                               | 0.87 ± 0.33                               | 0.72 ± 0.37                               | 3.29 ± 0.99                               | 0.19 ± 0.06                               | 0.19 ± 0.05                               |                 | 0.02↓      |        |                   |          |       |                     |                 | 0.02↓     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 | 0.024      |        |                   |          |       |                     |                 | 0.024     |         |
| Extractable soil DON (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.59 ± 16%                                | 1.07 ± 0.19                               | 0.90 ± 0.10                               | 1.25 ± 0.17                               | 1.20 ± 0.23                               | 0.71 ± 0.15                               | 0.92 ± 0.12                               | 0.85 ± 0.17                               |                 |            |        |                   | 0.04‡    |       |                     |                 |           |         |
| Mean annual leachate NO <sub>3</sub> -N conc. (-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.39 ± 22%                                | $0.24 \pm 0.01$                           | 0.56 ± 0.07                               | $1.01 \pm 0.10$                           | $0.68 \pm 0.08$                           | 0.93 ± 0.23                               | $0.80 \pm 0.06$                           | 0.71 ± 0.11                               |                 |            | 0.01↑  | 0.002§            |          |       | 0.03§               | 0.05↓           | 0.05↓     |         |
| Mean annual leachate NH4 <sup>+</sup> -N conc. (-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.87 ± 18%                                | $1.10 \pm 0.09$                           | 1.76 ± 0.48                               | $1.21 \pm 0.13$                           | $1.05 \pm 0.19$                           | $2.13 \pm 0.51$                           | $1.35 \pm 0.16$                           | 1.06 ± 0.09                               |                 |            |        | 0.004§            |          |       |                     |                 | 0.05个     |         |
| vlean annual leachate DON conc. (-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.4 ± 16%                                | 0.70 ± 0.05                               | 1.25 ± 0.25                               | 1.09 ± 0.08                               | $0.89 \pm 0.11$                           | 1.43 ± 0.28                               | 1.06 ± 0.05                               | 1.07 ± 0.09                               |                 | 0.01个      |        |                   | 0.02§    |       |                     | 0.05↓           | 0.01个     |         |
| Mean annual leachate total N conc. (-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.23 ± 10%                                | $0.80 \pm 0.04$                           | 1.45 ± 0.25                               | $1.04 \pm 0.05$                           | 0.96 ± 0.11                               | $1.28 \pm 0.13$                           | $1.03 \pm 0.04$                           | 1.42 ± 0.15                               |                 |            |        |                   | 0.05§    |       |                     | 0.05↓           |           |         |
| Mean annual leachate NO <sub>3</sub> -N conc. (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.04 ± 68%                                | 0.27 ± 0.12                               | 0.72 ± 0.30                               | 0.57 ± 0.39                               | 0.45 ± 0.23                               | 0.58 ± 0.29                               | 1.22 ± 0.51                               | 0.30 ± 0.10                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Mean annual leachate NH <sup>+</sup> -N conc. (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.140 ± 20%                               | 0.66 ± 0.05                               | 1.46 ± 0.33                               | 1.66 ± 0.67                               | 1.81 ± 0.88                               | 2.63 ± 1.56                               | 0.81 ± 0.15                               | 1.05 ± 0.39                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Mean annual leachate DON conc. (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.60 ± 59%                                | 0.37 ± 0.10                               | 0.80 ± 0.25                               | 0.63 ± 0.36                               | 0.60 ± 0.24                               | 0.74 ± 0.23                               | 1.13 ± 0.45                               | 0.42 ± 0.09                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Mean annual leachate total N conc. (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.444 ± 30%                               | 0.73 ± 0.17                               | 0.94 ± 0.19                               | 0.78 ± 0.32                               | 0.95 ± 0.33                               | 0.93 ± 0.20                               | 0.97 ± 0.41                               | 0.69 ± 0.11                               |                 |            |        |                   |          |       |                     |                 |           |         |
| the second | 0 ± 30/0                                  | 5.75 ± 0.17                               | 0.54 ± 0.15                               | 0.70 ± 0.52                               | 0.33 ± 0.33                               | 0.33 ± 0.20                               | 0.37 ± 0.41                               | 5.55 ± 0.11                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Gaseous fluxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Annual N <sub>2</sub> O emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.031 ± 18%                               | 0.78 ± 0.35                               | 0.89 ± 0.25                               | 0.95 ± 0.21                               | 0.52 ± 0.16                               | 1.66 ± 0.23                               | 1.07 ± 0.18                               | 1.06 ± 0.21                               |                 | 0.05↓      | 0.05个  | 0.04‡             |          | +     |                     |                 | n.s.      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Vineralisation, immobilisation and nitrification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| Annual $NH_4^+$ consumption (0-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.21 ± 19%                                | 1.16 ± 0.17                               | 1.18 ± 0.16                               | 2.50 ± 0.54                               | 1.76 ± 0.19                               | 2.06 ± 0.39                               | 1.87 ± 0.15                               | 0.90 ± 0.06                               |                 |            | 0.04个  |                   | 0.045    | 0.015 |                     |                 |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 | 0.021      | 0.04.1 |                   | 0.04§    | 0.01§ | 0.071               |                 | 0.021     |         |
| Annual gross mineralisation (0-5 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.27 ± 9%                                 | 0.97 ± 0.09                               | 0.93 ± 0.11                               | 1.45 ± 0.22                               | 1.41 ± 0.20                               | 1.45 ± 0.15                               | 1.25 ± 0.08                               | 0.80 ± 0.03                               |                 | 0.03↓      |        |                   | 0.02§    |       | 0.03‡               |                 | 0.03↓     |         |
| Annual NH4 <sup>+</sup> consumption (5-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6 ± 70%                                 | 0.79 ± 0.13                               | 1.89 ± 0.73                               | 1.01 ± 0.32                               | 0.45 ± 0.29                               | 0.16 ± 0.04                               | 0.17 ± 0.04                               | $0.56 \pm 0.11$                           |                 |            |        |                   |          |       | 0.03§               |                 | 0.05个     |         |
| Annual gross mineralisation (5-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.40 ± 24%                                | 2.16 ± 0.61                               | 2.75 ± 1.70                               | 1.54 ± 0.29                               | 1.74 ± 0.49                               | 0.93 ± 0.36                               | 0.87 ± 0.21                               | 1.40 ± 0.36                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Potential nitrification (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.159 ± 44%                               | 0.22 ± 0.20                               | $1.01 \pm 0.53$                           | $1.69 \pm 0.61$                           | $1.23 \pm 0.80$                           | $1.53 \pm 0.63$                           | 3.15 ± 1.03                               | $1.16 \pm 0.54$                           |                 |            | 0.004个 |                   |          |       | 0.03§‡              |                 |           | (       |
| Potential denitrification (0-10 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.9 ± 29%                                | 1.03 ± 0.26                               | 1.24 ± 0.35                               | 1.61 ± 0.58                               | 0.99 ± 0.38                               | 1.08 ± 0.36                               | $1.95 \pm 0.40$                           | 1.49 ± 0.36                               |                 |            | 0.02个  |                   |          |       |                     |                 |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| N Leaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| N Leaching<br>Annual NO3 <sup>°</sup> -N leaching (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.619 ± 62%                               | 0.31 ± 0.16                               | 0.73 ± 0.32                               | 0.32 ± 0.18                               | 0.39 ± 0.20                               | 0.65 ± 0.28                               | $1.00 \pm 0.38$                           | 0.28 ± 0.09                               |                 |            |        |                   |          |       |                     |                 |           |         |
| Annual NO <sub>3</sub> -N leaching (-60 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                 |            |        |                   |          |       |                     |                 |           |         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.619 ± 62%<br>0.045 ± 27%<br>0.144 ± 24% | 0.31 ± 0.16<br>0.68 ± 0.06<br>0.94 ± 0.24 | 0.73 ± 0.32<br>1.48 ± 0.37<br>1.02 ± 0.23 | 0.32 ± 0.18<br>1.98 ± 0.46<br>0.86 ± 0.29 | 0.39 ± 0.20<br>2.01 ± 1.14<br>1.35 ± 0.72 | 0.65 ± 0.28<br>2.76 ± 1.40<br>1.46 ± 0.39 | 1.00 ± 0.38<br>0.74 ± 0.12<br>0.90 ± 0.38 | 0.28 ± 0.09<br>1.24 ± 0.49<br>0.64 ± 0.11 |                 |            |        |                   |          |       |                     |                 |           |         |

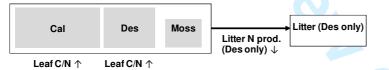
Figure 1

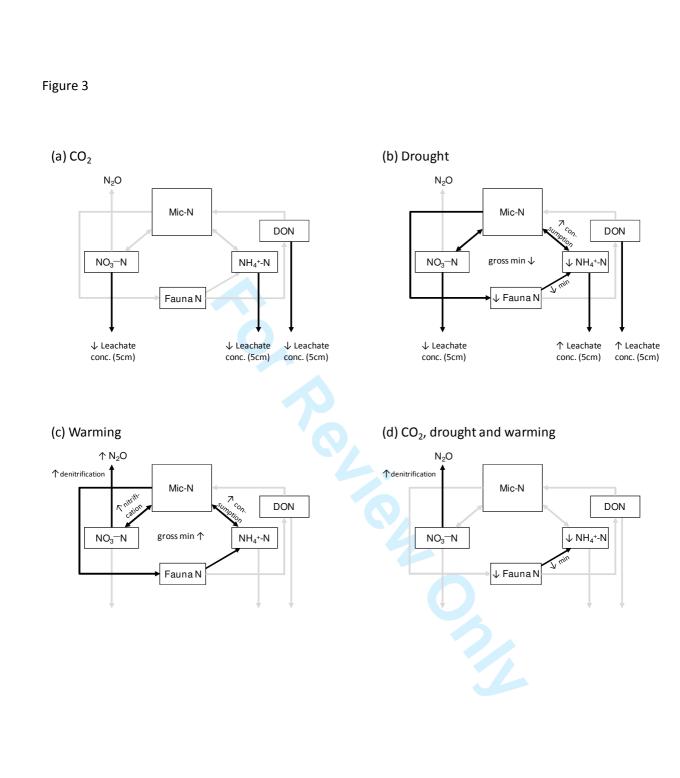


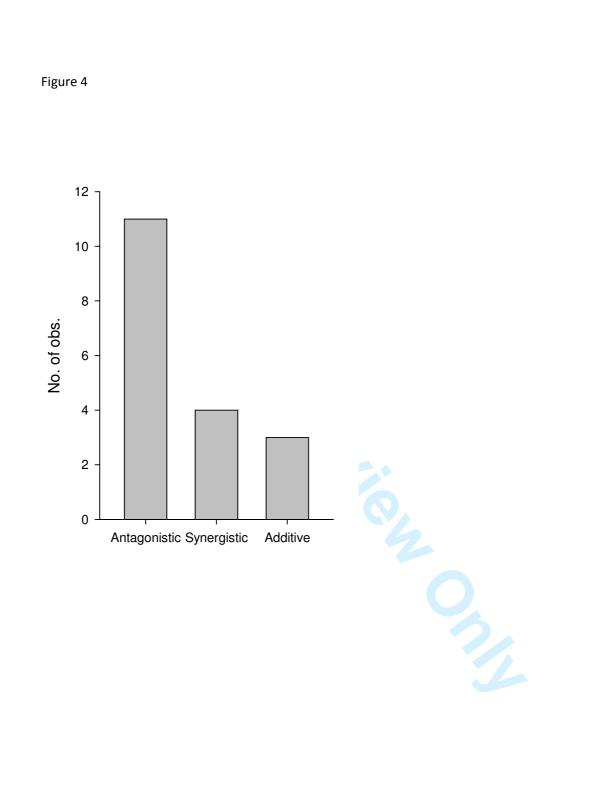
## Figure 2

(a)  $CO_2$ 




C/N ↑


Leaf C/N ↑


## (c) Warming

| 0.1 | Dee | Masa | Litter (Des only) |
|-----|-----|------|-------------------|
| Cal | Des | Moss |                   |
|     |     |      | N% ↑              |

# (d) $CO_2$ , drought and warming





