, the Technical Platform (Développement de Techniques et Analyses Moléculaires de la Biodiversité; Institut Fédératif de Recherche 41) for use of the qRT-PCR and the environmental genomics platform

N. Alloisio, C. Queiroux, P. Fournier, P. Pujic, P. Normand et al., The Frankia alni symbiotic transcriptome, Mol Plant Microbe Interact, vol.23, pp.593-607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00599356

J. F. Arrighi, O. Godfroy, F. De-billy, O. Saurat, A. Jauneau et al., The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection, Proc Natl Acad Sci, vol.105, pp.9817-9822, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02660311

E. Asamizu, Y. Nakamura, S. Sato, and S. Tabata, Generation of 7137 nonredundant expressed sequence tags from a legume, Lotus japonicus, DNA Res, vol.7, pp.127-130, 2000.

C. D. Bell, E. D. Soltis, and P. S. Soltis, The age and diversification of the angiosperms re-revisited, Am J Bot, vol.97, pp.1296-1303, 2010.

D. R. Benson and W. B. Silvester, Biology of Frankia strains, actinomycete symbionts of actinorhizal plants, Microbiol Rev, vol.57, pp.293-319, 1993.

R. H. Berg and L. Mcdowell, Cytochemistry of the wall of infected cells in Casuarina actinorhizae, Can J Bot, vol.66, pp.2038-2047, 1988.

A. M. Berry, O. T. Harriott, R. A. Moreau, S. F. Osman, D. R. Benson et al., Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase, Proc Natl Acad Sci, vol.90, pp.6091-6094, 1993.

W. Capoen, D. Herder, J. Sun, J. Verplancke, C. et al., Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata, Plant Cell, vol.21, pp.1526-1540, 2009.

H. Ceremonie, Molecular and genetic interaction in Frankia-Alnus symbiosis, 1998.

H. Ceremonie, F. Debelle, and M. P. Fernandez, Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor, Can J Bot, vol.77, pp.1293-1301, 1999.

G. Colebatch, G. Desbrosses, T. Ott, L. Krusell, O. Montanari et al., Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus, Plant J, vol.39, pp.487-512, 2004.

A. Conesa, S. Gö-tz, J. M. García-gó-mez, J. Terol, M. Taló-n et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

J. J. Doyle, Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria, Trends Plant Sci, vol.3, pp.473-478, 1998.

F. El-yahyaoui, H. Kü-ster, B. Amor, B. Hohnjec, N. Pü-hler et al., Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program, Plant Physiol, vol.136, pp.3159-3176, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683438

H. Gherbi, E. Duhoux, C. Franche, K. Pawlowski, A. Nassar et al., Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule, Physiol Plant, vol.99, pp.608-616, 1997.

H. Gherbi, K. Markmann, S. Svistoonoff, J. Estevan, D. Autran et al., SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria, Proc Natl Acad Sci, vol.105, pp.4928-4932, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02666106

M. P. Goetting-minesky and B. C. Mullin, Differential gene expression in an actinorhizal symbiosis: evidence for a nodule-specific cysteine proteinase, Proc Natl Acad Sci, vol.91, pp.9891-9895, 1994.

N. Gottig, B. S. Garavaglia, L. D. Daurelio, A. Valentine, C. Gehring et al., Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis, Proc Natl Acad Sci, vol.105, pp.18631-18636, 2008.

C. Guan, A. Akkermans, A. Van-kammen, T. Bisseling, and K. Pawlowski, ) ag13 is expressed in Alnus glutinosa nodules in infected cells during endosymbiont degradation and in the nodule pericycle, Physiol Plant, vol.99, pp.601-607, 1997.

C. Guan, A. Ribeiro, A. D. Akkermans, Y. Jing, A. Van-kammen et al., Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase, Plant Mol Biol, vol.32, pp.1177-1184, 1996.

Y. Hammad, R. Nalin, J. Marechal, K. Fiasson, R. Pepin et al., A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia, Plant Soil, vol.254, pp.193-205, 2003.

V. Hocher, F. Auguy, X. Argout, L. Laplaze, C. Franche et al., Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root, New Phytol, vol.169, pp.681-688, 2006.

J. Jeong, S. Suh, C. Guan, Y. F. Tsay, N. Moran et al., A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family, Plant Physiol, vol.134, pp.969-978, 2004.

E. P. Journet, D. Van-tuinen, J. Gouzy, H. Crespeau, V. Carreau et al., Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis, Nucleic Acids Res, vol.30, pp.5579-5592, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427223

C. Kistner and M. Parniske, Evolution of signal transduction in intracellular symbiosis, Trends Plant Sci, vol.7, pp.511-518, 2002.

K. Kucho, A. Hay, and P. Normand, The determinants of the actinorhizal symbiosis, Microbes Environ, vol.25, pp.241-252, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02548046

L. Laplaze, A. Ribeiro, C. Franche, E. Duhoux, F. Auguy et al., Characterization of a Casuarina glauca nodulespecific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12, Mol Plant Microbe Interact, vol.13, pp.113-117, 2000.

M. Lavin, P. S. Herendeen, and M. F. Wojciechowski, Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary, Syst Biol, vol.54, pp.575-594, 2005.

B. Lefebvre, T. Timmers, M. Mbengue, S. Moreau, C. Hervé et al., A remorin protein interacts with symbiotic receptors and regulates bacterial infection, Proc Natl Acad Sci, vol.107, pp.2343-2348, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663753

P. Lundberg and P. O. Lundquist, Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy, Planta, vol.219, pp.661-672, 2004.

L. H. Madsen, L. Tirichine, A. Jurkiewicz, J. T. Sullivan, A. B. Heckmann et al., The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus, Nat Commun, vol.1, pp.1-12, 2010.

F. Maillet, V. Poinsot, O. André, V. Puech-pagè-s, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.469, pp.58-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02649013

K. Markmann, G. Giczey, and M. Parniske, Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria, PLoS Biol, vol.6, p.68, 2008.

K. Markmann and M. Parniske, Evolution of root endosymbiosis with bacteria: how novel are nodules?, Trends Plant Sci, vol.14, pp.77-86, 2009.

R. Mathis, C. Grosjean, F. De-billy, T. Huguet, and P. Gamas, The early nodulin gene MtN6 is a novel marker for events preceding infection of Medicago truncatula roots by Sinorhizobium meliloti, Mol Plant Microbe Interact, vol.12, pp.544-555, 1999.

N. Maunoury, M. Redondo-nieto, M. Bourcy, W. Van-de-velde, B. Alunni et al., Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches, PLoS ONE, vol.5, p.9519, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661146

S. Meier, R. Bastian, L. Donaldson, S. Murray, V. Bajic et al., Coexpression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides, BMC Plant Biol, vol.8, p.24, 2008.

A. Miya, P. Albert, T. Shinya, Y. Desaki, K. Ichimura et al., CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis, Proc Natl Acad Sci, vol.104, pp.19613-19618, 2007.

A. Mort, P. Normand, and M. Lalonde, 2-O-Methyl-D-mannose, a key sugar in the taxonomy of Frankia, Can J Microbiol, vol.29, pp.993-1002, 1983.

P. Normand and C. Chapelon, Direct characterization of Frankia and of close phyletic neighbors from an Alnus viridis rhizosphere, Physiol Plant, vol.99, pp.722-731, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02553861

P. Normand and M. Lalonde, Evaluation of Frankia strains isolated from provenances of two Alnus species, Can J Microbiol, vol.28, pp.1133-1142, 1982.

P. Normand, P. Lapierre, L. S. Tisa, J. P. Gogarten, N. Alloisio et al., Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography, Genome Res, vol.17, pp.7-15, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00140365

P. Normand, S. Orso, B. Cournoyer, P. Jeannin, C. Chapelon et al., Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae, Int J Syst Bacteriol, vol.46, pp.1-9, 1996.

P. Normand, C. Queiroux, L. S. Tisa, D. R. Benson, Z. Rouy et al., Exploring the genomes of Frankia sp, Physiol Plant, vol.13, pp.331-343, 2007.

G. E. Oldroyd, M. J. Harrison, and U. Paszkowski, Reprogramming plant cells for endosymbiosis, Science, vol.324, pp.753-754, 2009.

K. Pawlowski, Nodules and oxygen, Plant Biotechnol, vol.25, pp.291-298, 2008.

K. Pawlowski, Induction of actinorhizal nodule by Frankia, Prokaryotic Symbionts in Plants. Microbiology Monographs, pp.127-154, 2009.

K. Pawlowski and T. Bisseling, Rhizobial and actinorhizal symbioses: what are the shared features?, Plant Cell, vol.8, pp.1899-1913, 1996.

K. Pawlowski, S. Swensen, C. Guan, A. E. Hadri, A. M. Berry et al., Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families, Mol Plant Microbe Interact, vol.16, pp.796-807, 2003.

K. Pawlowski, P. Twigg, S. Dobritsa, C. Guan, and B. C. Mullin, A nodulespecific gene family from Alnus glutinosa encodes glycine-and histidinerich proteins expressed in the early stages of actinorhizal nodule development, Mol Plant Microbe Interact, vol.10, pp.656-664, 1997.

F. Perrine-walker, P. Doumas, M. Lucas, V. Vaissayre, N. J. Beauchemin et al., Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules, Plant Physiol, vol.154, pp.1372-1380, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554754

F. Perrine-walker, H. Gherbi, L. Imanishi, V. Hocher, F. Ghodhbane-gtari et al., Symbiotic signaling in actinorhizal symbioses, Curr Protein Pept Sci, 2011.

C. Pucciariello, G. Innocenti, W. Van-de-velde, A. Lambert, J. Hopkins et al., Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti, Plant Physiol, vol.151, pp.1186-1196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02665067

A. Ribeiro, A. Akkermans, A. Van-kammen, T. Bisseling, and K. Pawlowski, A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development, Plant Cell, vol.7, pp.785-794, 1995.

A. Ribeiro, U. Praekelt, A. D. Akkermans, P. A. Meacock, A. Van-kammen et al., Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa, Plant J, vol.10, pp.361-368, 1996.

L. Schauser, A. Roussis, J. Stiller, and J. Stougaard, A plant regulator controlling development of symbiotic root nodules, Nature, vol.402, pp.191-195, 1999.

L. Simon, J. Bousquet, R. C. Levesque, and M. Lalonde, Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plant, Nature, vol.363, pp.67-69, 1993.

D. E. Soltis, P. S. Soltis, D. R. Morgan, S. M. Swensen, B. C. Mullin et al., Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms, Proc Natl Acad Sci, vol.92, pp.2647-2651, 1995.

S. Svistoonoff, L. Laplaze, F. Auguy, J. Runions, R. Duponnois et al., cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development, Mol Plant Microbe Interact, vol.16, pp.600-607, 2003.

S. M. Swensen, The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association, Am J Bot, vol.83, pp.1503-1512, 1996.

B. A. Thomas and R. A. Spicer, The Evolution and Paleobiology of Land Plants, 1987.

J. D. Tjepkema, The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale, Can J Bot, vol.56, pp.1365-1371, 1978.

J. D. Tjepkema, Symbiotic Nitrogen Fixation in the Management of Temperate Forests, pp.175-186, 1979.

J. G. Torrey, Initiation and development of root nodules of Casuarina (Casuarinaceae), Am J Bot, vol.63, pp.335-344, 1976.

M. Van-ghelue, A. Ribeiro, B. Solheim, A. D. Akkermans, T. Bisseling et al., Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules, Mol Gen Genet, vol.250, pp.437-446, 1996.