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Abstract. In this paper we present a study on the Random Forest (RF) family of

classification methods, and more particularly on two important properties called

strength and correlation. These two properties have been introduced by Breiman

in the calculation of an upper bound of the generalization error. We thus propose

to experimentally study the actual relation between these properties and the error

rate in order to confirm and extend the Breiman theoretical results. We show that

the error rate statistically decreases with the joint maximization of the strength

and minimization of the correlation, and this for different sizes of RF.
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1 Introduction

Recently, Leo Breiman has proposed a new family of ensemble methods called Random

Forest (RF) [1], that can be defined as a generic principle of classifier combination that

uses L tree-structured base classifiers. The particularity of this kind of combination is

that each decision tree is built from a random vector of parameters. It can be built for

example by randomly sampling a feature subset (as in Random Subspace Method [2]),

and/or by randomly sampling a training data subset (as in Bagging [3]).

RF is now known to be one of the most efficient classification methods ([1, 4, 5]). In

a recent paper ([6]), we have shown the interest of designing a dynamic RF induction

method, that would add trees to the ensemble by making them growing according to

the trees already added to the committee. But for that purpose, it is crucial to find

a criterion that could guide the tree induction so that it could suit to the rest of the

ensemble. The main objective here is to minimize the error rate of the ensemble while

adding more and more trees. For that purpose, we have followed Breiman’s idea that

the properties of strength and correlation could be very helpful for better understanding

and controlling the behavior of RF ([1]). Our idea is to determine the relation between

these two properties and the performance of RF. To do so, we have decided to generate

a large set of forests that exhibit different error rates on the same test set, and to monitor

their strength and correlation. Those forests are actually sub-forests generated thanks to

a classifier selection method applied to a large RF: the principle is to grow a large pool

of trees and to select different subsets from it, in order to simulate the growing of several

RF, with different sizes and different performance. By this means, we show that error

rates statistically decrease for a joint increasing strength and decreasing correlation.
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The paper is thus organized as follows: we recall in section 2 the Forest-RI princi-

ples; in section 3, we explain our approach and describe our experimental protocol, the

datasets used, and the results. We finally draw some conclusions and future works in

the last section.

2 The Forest-RI algorithm

One can see Random Forests as a family of methods, made of different decision trees

ensemble induction algorithms, such as the Breiman Forest-RI method ([1])li often

cited as the reference algorithm in the literature. In this algorithm the Bagging prin-

ciple is used with another randomization technique called Random Feature Selection.

The training step consists in building an ensemble of decision trees, each one trained

from a bootstrap sample of the original training set — i.e. applying the Bagging princi-

ple — and with a decision tree induction method called Random Tree. This induction

algorithm modifies the “traditional” splitting procedure for each node, in such a way

that the selection of the feature used for the splitting criterion is partially randomized.

That is to say, for each node, a feature subset is randomly drawn, from which the best

splitting criterion is then selected.

In the literature, only few research works have focused on the number of trees that

have to be grown in a RF. When introducing RF formalism in [1], Breiman demon-

strated that for an increasing number of trees in the forest, the generalization error

converges to a maximum. This result indicates that the number of trees in a forest does

not have to be as large as possible to produce an accurate RF. However, noting that

above a certain number of trees no improvement can be obtained by adding more “ar-

bitrary” trees in the forest does not mean obviously that the optimal performance has

been reached. Besides, in [6] we have shown that a subset of individual trees is able

to outperform the whole ensemble. This led us to the conclusion that one could benefit

from building trees in a more dependent way than it is actually done in traditional RF

induction algorithm like Forest-RI for example. In this perspective, we have decided to

focus on the two crucial properties of strength and correlation, that Breiman stated in

[1] that they could be very helpful in a better understanding of RF behaviors. In the next

section, we detail the definitions of these properties, and the result that led him to this

conclusion.

3 Strength and Correlation

A RF is usually noted as an ensemble of individual classifiers {h(x,Θk), k = 1, ...L}
where {Θk} is a family of independent identically distributed random vectors, and x is
an input data. In [1], Leo Breiman introduces the strength and the correlation properties
through an upper bound of the generalization error noted PE∗:

PE
∗
≤

ρ(1− s2)

s2

In this bound, s stands for the strength and ρ stands for the correlation. The main

conclusion of this result is that the lower the ratio ρ
s2

, the better the forest, since it gives

better chances to obtain a low error rate.



Strength and Correlation in Random Forests 3

Through the demonstration of this result, Breiman defines the margin function of a
RF by the following equation:

mr(x, y) = PΘ(h(x,Θ) = y)−max
j 6=y

PΘ(h(x,Θ) = j)

where x is an input data, y its class, and where the subscripts Θ indicate that the prob-
ability is over the {Θk} family of random vectors. The strength is then defined as the
expectation of this margin over the data space:

s = Ex,y[mr(x, y)]

Then, Breiman defines the raw margin function as

rm(Θ, x, y) = I(h(x,Θ) = y)− I(h(x,Θ) = ̂(x, y))

where ̂(x, y) represents the index of the “best” class among the wrong classes, defined
by:

̂(x, y) = arg max
j 6=y

PΘ(h(x,Θ) = j)

What is called here correlation is actually the statistical mean correlation between

rm(Θ, x, y) and rm(Θ′, x, y) over all pairs of (Θ,Θ′).
The demonstration of these results strongly depends on the assumption that RF con-

tains a “large” number of trees. However, we have already mentioned in the previous

section that the number of trees does not have to be that large to obtain an accurate RF.

As a consequence, we have decided in this work to focus on RF made of reasonably

small number of trees, i.e. from 50 to 200 trees, in order to determine the actual relation

between strength, correlation and error rates. The goal is to confirm Breiman’s theoret-

ical results for RF of different sizes, and thus to give elements of understanding of RF

behaviors that could be helpful for guiding the RF induction. We detail our classifier

selection approach for that purpose in the next section.

4 Tree Selection

For studying the relation between the ratio ρ
s2

and the error rate, we generate a pool of

forests and we measure for all of them the strength, the correlation and the error rate.

To be able to accurately determine this relation it is necessary to have at our disposal an

ensemble of RF that exhibit error rates in a large range of values. For that purpose, we

have chosen to apply a classifier selection approach to RF, in order to generate a large

ensemble of sub-forests with different error rates on the same test set. Among the clas-

sifier selection approaches that we can be found in the literature, we are interested in

what is called the wrapper approach, since it specifically consists in selecting the subset

of classifiers that a posteriori optimizes the combination performance ([7]). Moreover,

since our goal is to generate a large pool of sub-forests so that we could observe sig-

nificant differences between these sub-forests in terms of error rates, we have decided

to use Genetic Algorithms (GA) ([8]) for decision tree selection in RF. This approach

allows to produce sub-forests that could potentially exhibit high and low error rates.

Hence, we have applied this classifier selection strategy on several datasets de-

scribed in the next subsection.
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Table 1. Datasets description

Dataset # Samples # Features # Classes Dataset # Samples # Features # Classes

Diabetes 768 8 2 OptDigits 5620 64 10

Gamma 19020 10 2 Page-blocks 5473 10 5

Isolet 7797 616 26 Pendigits 10992 16 10

Letter 20000 16 26 Segment 2310 19 7

Madelon 2600 500 2 Spambase 4610 57 2

Mfeat-factors 2000 216 10 Vehicle 946 18 4

Mfeat-fourier 2000 76 10 Waveform 5000 40 3

Mfeat-karhunen 2000 64 10 Digits 38142 330 10

Mfeat-zernike 2000 47 10 DigReject 14733 330 2

Musk 6597 166 2 Mnist 60000 85 10

4.1 Datasets used

The 20 datasets used in our experiments are described in Table 1. The first 17 datasets

in this table have been selected from the UCI repository [9]. The last 3 datasets are

handwritten character recognition databases; the MNIST database ([10]) with a 85 mul-

tiresolution density feature set (1 + 2 × 2 + 4 × 4 + 8 × 8) built from greyscale mean

values; Digits and DigReject both described in [11], on which a 330-feature set has been

extracted, made from three state-of-the-art kinds of descriptors, as detailed in [12].

4.2 Experimental protocol

First, each dataset has been randomly split into a training and a test subset, containing

respectively two thirds and one third of the original dataset. We denote by Tr the train-

ing set and by Ts the test set. Then, a RF has been grown from Tr, with a number L

of trees fixed to 500. The value of the hyperparameter K, which denotes the number of

features randomly selected at each node of the trees, has been fixed to
√
M , M being

the dimension of the feature space, which is a default value commonly used in the litera-

ture ([12]). A classifier selection process using a GA has been then applied to this forest.

The size of sub-forests generated during this process is fixed, so that all of them could

be fairly compared with each other, as the number of trees could affect the calculation

of strength and correlation. The selection procedure through GA is conducted for the

following sizes of sub-forests: 50, 100, 150 and 200. Concerning the GA parameters,

they have been fixed to the following classical values: number of generations fixed to

300, population size to 50, mutation probability to 0.01, crossover probability to 0.60
and selection proportion to 0.80. At each new generation, several new sub-forests, are

generated using the crossover and mutation operators. Therefore, for each size of sub-

forest (50, 100, 150, 200) and for each dataset (among the 20 datasets used), a total of

15000 sub-forests are studied, i.e. 50 sub-forests for each generation step multiplied by

300 generations. For each of these 15000 RF, the error rate, the strength and the corre-

lation have been measured on Ts. All these measures are analyzed and discussed in the

next subsection.
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4.3 Results and Discussion

The results obtained with the experimental protocol detailed in the previous subsection

can be illustrated with a 2D-point cloud, each point being a sub-forest represented by its

error rate and its value of ρ
s2

. Figure 4.3 gives the results obtained with sub-forests made

of 50 trees. Note that the tendancies observed on this figure and the conclusion drawn

from them can be extended to all the sub-forest sizes tested in these experiments (please

see [13] for other sizes). To have a better idea of the shape of the clouds, a regression

line has been drawn on each diagram. These lines illustrate the relation between ρ
s2

and

error rates. One can clearly observe a decrease of ρ
s2

for decreasing error rates. This

observation is consistent with Breiman’s theoretical result ([1]) since it indicates that

the smaller the ratio, the better chances for the error rate to be low. Note however that

this relation is thus still verified even for small forests, which was not demonstrated by

Breiman since his result lied on the assumption of a large number of trees grown in the

RF.

(a) (b)

Fig. 1. Error rates (y-axis) according to ρ

s2
values (x-axis) for all the sub-forests of 50 trees,

obtained during the selection process. The red line is the regression line of the cloud.

In the perspective of designing a dynamic RF induction algorithm, this result is

interesting because it indicates that minimizing the ratio ρ
s2

should allow to minimize

a priori the error rate. Thus, using strength and correlation as criteria for guiding the

tree induction in a RF growing process should be a promising idea. Hence, a direct

perspective of this work is to study a mean to guide the tree induction process to make

it fit to the rest of the forest, by maximizing the current ensemble strength and jointly

minimizing its correlation. This could be done for example by weighting the training
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data so that each tree would focus its induction on previous errors, which is actually

part of a work in progress that aims at designing a complete dynamic RF induction

algorithm.

5 Conclusion

In this paper we have studied the strength and correlation properties of RF in a perspec-

tive of designing a dynamic RF induction process. The interest of inducting a RF in a

more dependent way than it is traditionaly done in a RF induction algorithm has already

been demonstrated in a recent paper ([6]), but it requires the use of a criterion for the

guidance of such a sequential procedure. We have thus proposed in this paper a study

on the feasability of using the strength and correlation, two crucial properties of RF, for

that purpose. We have firstly shown that the relation between these two properties and

the performance, theoretically established by Breiman for RF made of a large number

of trees, is still verified with smaller RF, i.e. made of 50 to 200 trees. We have thus

shown that such a dynamic algorithm can be designed according to the joint objectives

of maximizing the strength and minimizing the correlation.
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