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SUMMARY

A compressible, multiphase, one-fluid RANS solver has been developed to study turbulent cavitating flows.

The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is

complex and not well understood. This constitutes a critical point to accurately simulate the dynamic

behaviour of sheet cavities. In the present study, different formulations based on a k − ℓ transport-equation

model are investigated and a scale-adaptive formulation is proposed. Numerical results are given for a

Venturi geometry and comparisons are made with experimental data. The scale-adaptive model shows

several improvements compared to standard turbulence models. Copyright c© 2010 John Wiley & Sons,

Ltd.

Received . . .
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1. INTRODUCTION

The simulation of cavitating flows is a challenging problem both in the modelling of the physics

involved and in developing robust numerical methodologies. Such flows are characterized by
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important variations of the local Mach number, compressibility effects on turbulence, and

thermodynamic phase transition. For the simulation of these flows, the numerical method must

accurately handle any Mach number. Moreover, the modelling of turbulence plays a major role

in the correct simulation of unsteady behaviours. Sheet cavitation that appear on solid bodies are

characterized by a closure region which always fluctuates, with the presence of a re-entrant jet. This

jet is mainly composed of liquid which flows upstream along the solid surface. Reynolds-Averaged

Navier-Stokes (RANS) models are frequently used to simulate such unsteady cavitating flows.

One fundamental problem with this approach is that turbulence models are tuned by steady-state

non-cavitating mean flow data. Moreover, the standard eddy-viscosity models based on the

Boussinesq relation are known to over-produce eddy-viscosity, which reduces the development

of the re-entrant jet and two-phase structure shedding [1]. Limitation of the turbulent viscosity

is therefore a determining point to correctly simulate cavitation sheets. Different strategies have

been investigated to limit or to correct standard turbulence models. An arbitrary modification

was proposed by Reboud to reduce the turbulent viscosity [1], and has been used successfully by

different authors [2, 3]. Other corrections are based on the modelling of compressibility effects of

the vapour/liquid mixture in the turbulence model. Correction terms proposed by Wilcox [4] in

the case of compressible flows were tested for unsteady periodic cavitating flows [2]. A sensitivity

analysis of constants Cε1 and Cε2, which directly influence the production and dissipation of

turbulence kinetic energy, was conducted for a k − ε model and a cavitating hydrofoil case [5].

Finally, a filter-based method was investigated [6] by which the sub-filter stresses are constructed

directly using the filter size and the k − ε turbulence closure.

In previous works, an in-house finite-volume code solving the Reynolds-Averaged Navier-Stokes

(RANS) compressible equations was developed with homogeneous approach. The cavitation

phenomenon is modelled by a barotropic liquid-vapour mixture equation of state (EOS).

Preliminary computations were performed to assess the numerical aspects and thermodynamic

constrains on the EOS [7, 8]. The influence of various transport equation turbulence models with
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different eddy-viscosity limiters were investigated [9].

This paper presents the latest work in which particular emphasis is placed on the study of a new

scale-adaptive turbulence model and the investigation of eddy-viscosity corrections for flows

involving a sheet cavity. The purpose of the study is to provide an alternative to the Reboud

empirical correction with a better theoretical fundament. All tests are performed with the Smith

k − ℓ model [10] to simulate a sheet cavity for a Venturi geometry. Three different eddy-viscosity

limiters are considered: the Reboud correction [1], the shear stress transport (SST) correction

developed by Menter [11, 12] and a variant of the latter based on realizability constraints [13].

Following Menter’s developments concerning the Scale-Adaptive Simulation (SAS) [14, 15], a new

k − ℓ SAS model is proposed.

The Scale-Adaptive Simulation first appeared in the formulation of the KE1E one-equation

model for the eddy-viscosity derived from the standard k − ε model [16]. The transformation from

the k − ε model to the KE1E model introduces the von Karman length-scale LvK . The KE1E

model provides a dynamical behaviour similar to a Detached Eddy Simulation (DES) model but

without an explicit grid dependence, allowing the development of a turbulent spectrum in the

detached regions. Later, Menter and Egorov [17] showed that the exact transport equation for the

turbulent length scale l as derived by Rotta actually introduces the second derivative of the velocity

field. They proposed a model for this term which introduces the von Karman length-scale. Then,

they inserted this term (referred to as SAS) in the existing two-equation models. Starting from the

two-equation model for the variable k and
√

kl including the SAS term, they derived a SST-SAS

model by a variable change. They calibrated the SST-SAS model for the decay of a homogeneous

isotropic turbulence[14]. Various test cases [15, 18] were also conducted such as flow around a

cylinder, which showed the ability of the SST-SAS model to resolve turbulent structures down to

the limit grid. Davidson [19] performed other test cases with the SST-SAS model such as channel

flow, asymmetric diffuser flow and flow over a three-dimensional hill. These test cases confirmed

that the SAS term reduces the turbulent eddy-viscosity and predicts resolved fluctuations much
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larger than standard models.

In this paper, we will first review the theoretical formulation, including physical models and

elements of the numerical methods, then we will present and discuss results for a Venturi geometry.

2. GOVERNING EQUATIONS AND MODELS

The numerical simulations are carried out using an in-house CFD code solving the one-fluid

compressible RANS system.

The homogeneous model assumes that the two phases are strongly coupled and moving at the same

velocity. The phases are assumed to share the same temperature T and the same pressure P . The

evolution of the two-phase flow can be described by Euler equations that employ the representative

flow properties as unknowns just as in a single-phase problem. The mixture density ρ is defined by:

ρ = αρV + (1 − α)ρL (1)

where ρL and ρV are respectively the liquid and vapour densities. The void ratio α characterizes the

volume of vapour in each cell: α = 1 means that the cell is completely filled by vapour and inversely,

a complete liquid cell is represented by α = 0. Liquid and vapour phases are characterized by their

thermodynamic properties. On each cell, the unknowns are calculated by averaging them over the

volume occupied.

2.1. Reynolds-Averaged Navier-Stokes equations

For turbulent computations, the Reynolds-averaged compressible equations are used, coupled with

two-equation turbulence models. For low Mach number applications, an inviscid preconditioning

method is necessary [20, 21], based on the modification of the derivative term by a pre-multiplication

with a suitable preconditioning matrix Pc. These equations can be expressed as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (2)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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where w denotes the conservative variables, Fc and Fv the convective and viscous flux densities and

S the source terms, which concern only the transport equations. k is the turbulent kinetic energy and

Ψ is a turbulent variable.

The exact expression of the eddy-viscosity µt and the source terms depends on the turbulence model

as well as constants σk and σΨ.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s law and the Boussinesq

assumption. The total heat flux vector Q is obtained from the Fourier law with thermal conductivities

λ and the constant Prandtl number hypothesis. The turbulent Prandtl number Prt is set to 1.

τ = τv + τ t = (µ + µt)

[

( grad V + ( grad V )t) − 2

3
( div V )I

]

+
2

3
kI

Q = Qv + Qt = − (λ + λt) grad T with λt =
µtCp

Prt
(3)

In pure liquid, the viscosity is determined by an exponential law and, in pure vapour, the viscosity

follows the Sutherland law. The mixture viscosity µ is calculated as the arithmetic mean of the liquid

and vapour viscosities:

µL(T ) = µ0L
exp (B/T ) (4)

µV (T ) = µ0V

√

T

293

1 + TS/293

1 + TS/T
(5)

µ(T, α) = αµV (T ) + (1 − α)µL(T ) (6)

where µ0L
, µ0V

, B and TS are constants.
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The mixture thermal conductivity λ is also defined as the arithmetic mean of the liquid and vapour

values:

λ(α) = α
µV CpV

PrV

+ (1 − α)
µLCpL

PrL

(7)

2.2. The cavitation model

To close the system, an equation of state (EOS) is necessary to link the pressure to the

thermodynamic variables. Pure phases follow the stiffened gas EOS. The barotropic law proposed

by Delannoy [22] is considered for the mixture.

This law is characterized by its maximum slope 1/c2
baro. The quantity cbaro is an adjustable

parameter of the model, which can be interpreted as the minimum speed of sound in the mixture.

When the pressure is between Pvap + ∆P and Pvap − ∆P , the following relationship applies:

P (α) = Pvap +

(

ρsat
L − ρsat

V

2

)

c2
baro Arcsin (1 − 2α) (8)

where ∆P represents the pressure range of the law and, for a void ratio value of 0.5, the pressure

is equal to the saturation pressure Pvap. This law introduces a small non-equilibrium effect on the

pressure. The cavitation phenomenon is assumed to be isothermal, thermal effects are neglected.

The void ratio is computed with the internal energy of each phase at saturation:

α =
ρe − ρsat

L esat
L

ρsat
V esat

V − ρsat
L esat

L

(9)

The hyperbolicity and convexity of the EOS have been demonstrated in [7]. The influence of cbaro

has been studied in previous works. In the present paper, the value of cbaro is set to 0.472 m/s,

corresponding to a pressure range of ∆P = 175 Pa.

2.3. Turbulence Modelling

The present study is based on the Smith k − ℓ (KL) turbulence model [10, 23] with different

corrections and improvements.

Turbulence models always lead to the generation of stable cavities, because very strong turbulent

eddy-viscosity µt inside the cavity prevents the formation of the re-entrant jet which plays the
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major role in driving the instability of partial sheet cavity. The link to compressibility effects

on turbulence is not clear. DNS of the supersonic boundary layer demonstrated a reduction in k

production as a consequence of compressibility [24, 25, 26]. In cavitating flows, the supersonic

regime is reached in the mixture area because of the drastic diminution of the speed of sound. The

detailed mechanisms of the interaction between turbulent flows and cavitation have not yet been

clearly revealed, especially for phenomena occurring at small scales.

To limit the turbulent viscosity, one can use an eddy-viscosity limiter in the mixture area. In

the present study, we propose to test and compare different eddy-viscosity limiters: the Reboud

correction [1] specially developped for the two-phase flow; the Shear Stress Transport (SST)

correction proposed by Menter [11, 12] to reduce the eddy-viscosity in case of positive pressure

gradient and a variant of the latter based on realizability constraints [13].

Moreover, we developed a k − ℓ model including the scale-adaptive term [15]. This term allows the

turbulence model to recognised the resolved scales in the flow and to adjust the eddy-viscosity as a

consequence.

For the modelling of flow close to the wall, a two-layer wall law approach is used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ =
u

Uτ
; y+ =

yUτ

νw
; U2

τ =
τw

ρw

(10)

where κ = 0.41 is the von Karman constant and the subscript ’w’ is used for a wall value.

We assume that wall functions are similar in a two-phase flow and in a single-phase flow. For

unsteady flows, the existence of a wall law is assumed to be valid at each instant. With regard to

the turbulent quantities, the production of k is computed according to the formulation proposed by

Viegas and Rubesin [27]. The value of ℓ in the first cell is obtained using a classical mixing length:

l = κy.
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2.3.1. The Smith k − ℓ model First, Smith developed a k − kℓ model [23] with a unique wall

function. The transport equation for kl derived originally by Rotta is based on the definition of

the integral length scale ℓ, using two-point correlations of the velocity fluctuations. This approach

provides a better theoretical basis compared to the heuristic arguments used for determining the

ε transport equation. However, the k − kℓ model does not simulate the turbulent kinetic energy

profiles in the viscous sublayer. To rectify this inconvenience, Smith transformed the k − kℓ model

to a k − ℓ near wall model [10]. The ℓ equation is derived from the kℓ transport equation by a simple

variable change. The Smith k − ℓ turbulence model reads:

∂ρk

∂t
+ div

[

ρk~V −
(

µ +
µt

σk

)

~grad k

]

= Pk − ρ(2k)3/2

B1l
− 2µ ~grad

√
k. ~grad

√
k

∂ρℓ

∂t
+ div

[

ρℓ~V −
(

µ +
µt

σl

)

~grad ℓ

]

= (2 − E2)
ρ
√

2k

B1

[

1 −
(

ℓ

κd

)2
]

− µt

σl

1

ℓ
( ~grad ℓ. ~grad ℓ)

(

ℓ

κd

)2

+ ρℓ div ~V

+ 2
µt

σl

1

k
( ~grad ℓ. ~grad k) (11)

With:

µt = µχfµ ; χ =
ρ
√

2kℓ

µB
1/3
1

fµ =

(

c1
4f1 + c2

2χ2 + χ4

c1
4 + c2

2χ2 + χ4

)1/4

; f1 = exp

[

−50

(

ℓ

κd

)2
]

c1 = 25.2 ; c2 = 2 (12)

Constants are:

κ = 0.41 ; B1 = 18 ; E2 = 1.2 ; σk = σl = 1.43

2.3.2. The Reboud correction Reboud [1] proposed an arbitrary limiter by introducing a function

f(ρ) in the computation of the turbulent viscosity for the k − ε model:

µt = f(ρ)Cµ
k2

ε
with f(ρ) = ρV + (1 − α)n(ρL − ρV ) (13)

where n is a parameter set to 10.

This correction is extended to the k − ℓ turbulence model with the same function f(ρ).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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2.3.3. The Menter SST correction The Menter correction [11, 12] is based on the empirical

Bradshaw’s assumption which binds the shear stress to the turbulent kinetic energy for a two-

dimensional boundary layer. The stress ratio predicted by two-equation models scales with the ratio

of production Pk to dissipation ε as:

−u′v′

k
=

√

Pk

ε

√

Cµ with Cµ = 0.09 (14)

Experiments showed that the quantity −u′v′/k ≤ 0.3. Menter devised his SST limiter from this

inequality. The empirically based constraint is expressed in the case of the k − ℓ turbulence model

as:

νt = min

[

µχfµ

ρ
,

ck√
2 | Ω | F2(y)

]

with c = 0.3 (15)

where F2 is a blending function that tends to zero outside the boundary layer, Ω is the vorticity and

fµ is a damping function of the model.

The evolution of the ratio −u′v′/k was recently measured by [28] in the case of a cavitating mixing

layer. Authors showed that this ratio decreased significantly and continuously when cavitation

developed. They observed a factor 2 between the non-cavitating regime and the most severe

cavitating case. As the ratio −u′v′/k is unknown for cavitating flows involving sheet cavities, we

tested two lower values for the constant c in the two-phase area: 0.2 and 0.1. The correction is

defined as followed:

c = 0.3 if α = 0

c = 0.1 or 0.2 if α > 0

(16)

2.3.4. Realizability constrains By replacing the vorticity Ω with the stress tensor S in the SST

formula, a correction is derived based on the realizability principle [13].

νt = min

[

µχfµ

ρ
,

ck√
2 | S | F2(y)

]

with c = 0.3 (17)

with:

S =
√

2SijSij ; Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(18)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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In the same way as for the SST correction, we tested different values of the constant c between

0.1 and 0.3 in the two-phase flow region.

2.3.5. Scale-Adaptive Simulation model To include the Scale-Adaptive Simulation (SAS) term into

the k − ℓ turbulence model, we started from the k − φ SAS formulation provided by Menter and

Egorov [14, 15] with φ =
√

kℓ. This model reads (in high Reynolds number formulation):

∂ρk

∂t
+

∂ρUjk

∂xj
= Pk − c3/4

µ ρ
k3/2

l
+

∂

∂xj

(

µt

σk

∂k

∂xj

)

∂ρφ

∂t
+

∂ρUjφ

∂xj
=

φ

k
Pk

(

ξ1 − ξ2

(

l

Lvκ

)2
)

− ξ3ρk +
∂

∂xj

(

µt

σφ

∂φ

∂xj

)

(19)

with the SAS term in bold in the transport equation for φ and:

µt

ρ
= νt = c1/4

µ φ

Pk = µtS
2 ; S =

√

2SijSij ; Sij =
1

2

(

∂Ui

∂xj
+

∂Uj

∂xi

)

Lvκ = κ

∣

∣

∣

∣

∣

U
′

U ′′

∣

∣

∣

∣

∣

;
∣

∣

∣
U

′

∣

∣

∣
= S ;

∣

∣

∣
U

′′

∣

∣

∣
=

√

∂2Ui

∂x2
k

∂2Ui

∂x2
j

The constants calibrated by Menter are:

ξ1 = 0.8 ; ξ2 = 1.47 ; ξ3 = 0.0288 ; σφ = σk =
2

3
; Cµ = 0.09

By a variable change, we obtained a transport equation for ℓ including the SAS term (in bold).

∂ρℓ

∂t
+ div

[

ρℓ~V −
(

µ +
µt

σφ

)

~grad ℓ

]

=
ℓ

k
Pk

(

ξ1 −
1

2
− ξ2

(

ℓ

Lvκ

)2
)

+
ρ
√

2k

B1

(

1 − B1ξ3√
2

)

−1

ℓ

(

µt

σφ

)

~grad ℓ. ~grad ℓ

+
1

k

(

µt

σφ

)

~grad ℓ. ~grad k

+
l

2k

∂

∂xj

(

µt
∂k

∂xj

) (

1

σφ
− 1

σk

)

(20)

We compared this transport equation with the formulation of Smith (Equation 11). Excepted the

new SAS term, several terms are different because of the introduction of low Reynolds number
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terms and by the choice in the Smith model to cancel the production term ℓ
kPk

(

ξ1 − 1
2

)

. The last

term in equation (20) is zero due to the equality between σk and σφ.

We decided to retain the choice of Smith and to activate the SAS term only in the two-phase flow

region where no information about the constant values are available in the literature.

The k − ℓ SAS formulation is then given by the transport equation for the turbulent kinetic energy

of the Smith model (Equation 11) and a new transport equation for the turbulent length scale ℓ:

∂ρℓ

∂t
+ div

[

ρℓ~V −
(

µ +
µt

σl

)

~grad ℓ

]

= − l

k
Pkξ2

(

ℓ

Lvκ

)2

+(2 − E2)
ρ
√

2k

B1

[

1 −
(

ℓ

κd

)2
]

−1

ℓ

(

µt

σℓ

)

( ~grad ℓ. ~grad ℓ)

(

ℓ

κd

)2

+ ρℓ div~V

+2
1

k

(

µt

σk

)

( ~grad ℓ. ~grad k) (21)

The constant ξ2 is set to 1.47 as specified by Menter.

The bold term in equation 21 is the SAS term and it acts as a destruction term for ℓ. The von Karman

length scale Lvκ is the key to understanding the role played by the SAS term. Lvκ adjusts to the

already resolved scales in a simulation and provides a length scale proportional to the size of the

resolved eddies whereas a standard turbulence model always provides a length scale proportional to

the shear layer. Thus the SAS term leads to a model less diffusive than the standard two-equation

model and provides a reduction of the turbulent viscosity. For all calculations, the SAS term is

activated only in the two-phase flow region by using a test on the void ratio α:

SAS term = 0 if α < 0

SAS term = − l
kPkξ2

(

ℓ
Lvκ

)2

if α > 0

(22)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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3. NUMERICAL METHODS

The numerical simulations are carried out using an implicit CFD code solving the RANS/turbulent

systems for multi-domain structured meshes. This solver is based on a cell-centered finite-volume

discretization.

3.1. Spatial discretization

For the mean flow, the convective flux density vector on a cell face is computed with the Jameson

scheme [29] in which the dispersive error is cancelled. The artificial viscosity includes a second-

order dissipation term D2 and a fourth-order dissipation term D4, which involve two tunable

parameters k(2) and k(4).

The viscous terms are discretized by a second-order space-centered scheme. For the turbulence

transport equations, the upwind Roe scheme [30] is used to obtain a more robust method. The

second-order accuracy is obtained by introducing a flux-limited dissipation [31].

3.2. Temporal discretization

Time integration is achieved using a low-cost implicit method [32]. The implicit method consists

in solving, at each time step, a system of equations arising from the linearization of a fully implicit

scheme. The main advantage of this method is that the storage of the Jacobian matrix is completely

eliminated, which leads to a low-storage algorithm. More details are given in [7].

For the turbulence transport equations, the diffusive flux Jacobian matrix is replaced by its spectral

radius. The source term needs special treatment [33]. Only the negative part of the source term

Jacobian matrix is considered and replaced by its spectral radius. The system obtained is solved

with a line-alternated Jacobi relaxation algorithm.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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3.3. Inlet and outlet boundary conditions

The numerical treatment of boundary conditions is based on the use of the preconditioned

characteristic relationships [7]. We assume that inlet and outlet areas are in a pure liquid region;

no cavitation appears in these boundaries.

4. COMPUTATIONAL RESULTS FOR A VENTURI GEOMETRY

4.1. Experimental conditions

The Venturi was tested in the cavitation tunnel of the CREMHyG (Centre d’Essais de Machines

Hydrauliques de Grenoble). It is characterized by a divergence angle of 4◦, illustrated in Fig. 1. The

edge forming the throat of the Venturi is used to fix the separation point of the cavitation cavity.

This geometry is equipped with five probing holes to allow various measurements such as the local

void ratio, instantaneous local speed and wall pressure (Fig. 1). However, we do not have access to

measurements of turbulent quantities in the two phase-flow region. This lack of information makes

turbulence models validation difficult.

The selected operating point is characterized by the following physical parameters [34]:

Uinlet = 10.8 m/s, the inlet velocity

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 0.55, the cavitation parameter in the inlet section

Tref ≃ 293K, the reference temperature

Lref =252 mm, the reference length

ReLref
=

UinletLref

ν
= 2.7 106, the Reynolds number

With these parameters, a cavity length L ranging from 70 mm to 85 mm is obtained. The

experimental views for this geometry show a relatively stable cavity behaviour. It is characterized

by an almost constant length, although the closure region always fluctuates, with the presence of

a re-entrant jet and little vapour cloud shedding. For this geometry, no periodic cycles with large

shedding were observed.
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4.2. Mesh

The grid is a H-type topology. It contains 251 nodes in the flow direction and 62 nodes in the

orthogonal direction. A special contraction of the mesh is applied in the main flow direction just

after the throat to better simulate the two-phase flow area (Fig. 2). The y+ values of the mesh, at the

center of the first cell, vary between 12 and 27 for a non cavitating computation.

According to the study of mesh dependence presented in [35], this grid size is adequate to simulate

cavities in such Venturi type section.

4.3. Numerical parameters

For the non cavitating regime, computations are started from an uniform flow-field using a local

time step. The numerical parameters used are:

- the CFL number, 10

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 0 and k(4) = 0.032

- the farfield value of turbulent kinetic energy, k∞ = 0.0045 m2/s2

- the farfield value of length, l∞ = 1.4 10−6 m

For the unsteady cavitating regime, computations are performed with the dual time stepping method

and are started from the non cavitating numerical solution. The numerical parameters are:

- the dimensionless time step, ∆t∗ =
∆tUinlet

Lref
= 4.88 10−3

- sub-iterations of the dual time stepping method, 100

- the CFL number, 0.2

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 1 and k(4) = 0.045.
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4.4. Global analysis

The unsteady calculations performed with the different derivations of the k − ℓ model are

summarized in Table (I). The goal is to obtain a quasi-stable sheet cavity whose length varies

between 70 and 85 mm and with a re-entrant jet. The time of simulation is between 1 and 3 seconds.

For all calculations, the cavitation parameter in the inlet section is close to the experimental value

and the length of the cavity is about 0.7 cm. Without surprise, the standard Smith k − ℓ model

provides a steady solution. Both SST and realizable models with the usual value c = 0.3 also

simulate a steady cavity. On the other hand, the reduction of the constant c from 0.3 to 0.2 make

possible to simulate a quasi stable sheet cavity. With the value c = 0.1, a cavity with vapour cloud

shedding up to x = 0.1 m is obtained. As observed with the k − ε and Spalart-Allmaras models,

the Reboud correction improves the capability of the models to compute a realistic sheet [9]. As

expected, the k − ℓ SAS model is able to correctly capture an unsteady quasi-stable sheet. All

models including a turbulent viscosity reduction, except for the k − ℓ SST model with c = 0.1,

show an attached cavity of 0.3 m long and a time-averaged length of the cavity of about 0.075 m, in

good agreement with experimental visualizations.

4.5. Velocity and void ratio profiles

The local analysis involves void ratio and velocity profile comparisons inside the cavity. The

experimental void ratio and velocity profiles are obtained for five stations by a double optical probe

(Fig. 1). The velocity is evaluated as the most probable value and the void ratio is obtained from the

signal of the double optical probe using a post-processing algorithm. The relative uncertainty on the

void ratio measurement was estimated at roughly 15% [34]. All numerical values are obtained by a

time-averaged treatment.

4.5.1. Influence of the parameter c on the SST and realizable models The first comparisons

concern the standard Smith model, the SST and realizable models with c = 0.3. Figure 3 shows the

longitudinal velocity and void ratio profiles for the experiments and the three computations.

At the first two stations (not presented here), all models show a good agreement with the
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experimental results. In particular, the void ratio is close to unity. At station 3, the experimental

results show a re-entrant jet near the wall whereas none of the models simulate this phenomenon.

All models predict an attached sheet cavity identical to the first two stations. Station 4 shows

a difference between the standard k − ℓ model and the SST and realizable models. These last

ones capture a small re-entrant jet with a velocity profile close to the experimental profile while

the standard k − ℓ model computes a stable sheet. The last station indicates that both SST and

realizable models compute a sheet that is too small compared to the experimental sheet.

From these comparisons, we note that the SST and realizable models with c = 0.3 initiate a small

re-entrant jet. The standard Smith model is not able to predict unsteady behaviour.

To further reduce the eddy-viscosity, we decreased the c value from 0.3 to 0.2 and 0.1, only in

the two-phase flow region. Figure 4 shows the velocity and void ratio profiles for the experiment

and four calculations: the SST model with c = 0.3, c = 0.2 and c = 0.1 and the realizable model

with c = 0.2. At the first two stations (not presented here), the velocity and the void ratio profiles

computed by all models are close to the experimental data. At station 3, the models with a c

value lower than 0.3 initiate a re-entrant jet. These models provide a velocity profile close to the

experimental profile with a recirculation area thicker for the k − ℓ SST-c = 0.1 model than for the

k − ℓ SST and realizable models with c = 0.2. The computed void ratio is well simulated with the

SST-c = 0.1 model and overestimated by both SST and realizable models with c = 0.2. Velocity

and void ratio profiles at station 4 indicate good agreement between the experiment and numerical

computations. At station 5, the velocity profile computed with the SST-c = 0.1 model is close to the

experimental data whereas recirculation is too weak for all other models. Therefore, only the k − ℓ

SST model with c = 0.1 simulates a mixture area at this station. In the other cases, the sheet cavity

length is too short.

On the whole, the use of the vorticity Ω or the stress tensor S in the eddy-viscosity formulation does

not change the numerical results computed. The velocity or the void ratio profiles obtained with

both the SST and realizable models with the same c value are very close.
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The reduction of the viscosity limiter allows the development of a re-entrant jet and it seems that the

k − ℓ SST model with c = 0.1 provides the best agreement with the experimental profiles. However,

the dynamic behaviour of the sheet presents vapour cloud shedding (Fig. 10), which is not observed

experimentally.

4.5.2. Comparison of the Reboud correction and the SAS model The velocity and the void ratio

profiles obtained with the Reboud limiter and the SAS model are shown in Fig. 5. For comparison,

we add the results provided by the SST model with c = 0.2.

As previously, the velocity and void ratio profiles at station 1 are identical for all models and close

to the experimental results. At station 2 the velocity profile obtained with the SAS model shows a

slight discrepancy with the experimental results due to an early re-entrant jet.

At station 3, both Reboud and SAS k − ℓ models predict a similar recirculation area. The void ratio

profile computed by these models is close to the experimental data with overestimation at the wall.

At station 4, both models provide identical solutions. The velocity curves match the experimental

profile and the void ratios show the same trend as the experimental results though somewhat

overestimated. The cavity computed by the SAS model is too short as we can see on the void ratio

profile at station 5 contrary to the one computed by the k − ℓ Reboud model. However, the velocity

profiles estimated by both models match the experimental results.

In conclusion, the k − ℓ SAS model and the k − ℓ model with the Reboud correction provide similar

results close to the experimental data.

4.6. Wall pressure evolution and RMS fluctuations

The dimensionless wall pressure distribution
P−Pvap

Pvap
is plotted in Fig. 6 versus the distance

x − xinlet. The first five data are located inside the cavity (where the void ratio and velocity profiles

are measured).

All models provide a pressure distribution similar to the experimental measurements upstream of the

re-compression. The re-compression computed by all models is too strong. Moreover, the standard

model, the k − ℓ SST model with c = 0.1 and the SAS model compute a re-compression that is
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slightly too far downstream compared to the experimental observations.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Fig. 7 versus the distance x −

xinlet. The pressure fluctuation is divided by the time-averaged pressure Pav. For all computations,

the statistical treatment is performed over a simulation time of 1 to 3 s. Experimental data indicate

an augmentation of pressure fluctuations at the end of the sheet cavity, with a peak located at the

fifth station.

The standard model and both the SST and realizable models with c = 0.3 yield a pressure fluctuation

profile close to the experimental profile even if the peak is slightly overestimated and the pressure

fluctuation range is narrower. The pressure fluctuation computed by the k − ℓ Reboud model

presents a different behaviour with two peaks more than three times higher than the experimental

peak. The k − ℓ SST model with c = 0.2 and c = 0.1 also provides an overestimated pressure peak.

The pressure fluctuations range for the k − ℓ SST model with c = 0.1 is too large. Finally, the profile

simulated by the k − ℓ SAS model is in good agreement with the experimental data even if the peaks

are overestimated.

4.7. Turbulent eddy-viscosity profiles

Figure 8 compares time-averaged profiles of the viscosity ratio µt/µ, at the five stations, obtained

with the k − ℓ SST model with c = 0.2 and c = 0.1, the k − ℓ model with the Reboud correction

and the k − ℓ SAS model.

First, the k − ℓ model with the Reboud correction induces a large reduction of the ratio µt/µ in the

sheet at all stations except at station 5. This model always shows the same µt/µ shape with a peak

of the ratio at the boarder between pure liquid flow and the cavity followed by a quick decrease. The

peak never exceeds the value of ten. Nevertheless, this drastic reduction of the µt/µ ratio compared

to the other models seems to be unnecessary to correctly simulate a re-entrant jet.

The ratio computed by the k − ℓ SST-c = 0.1 model is bounded by the k − ℓ Reboud and k − ℓ SAS

models. However, the k − ℓ SST-c = 0.1 sheet (Fig 10) shows vapour cloud shedding which is not
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observed with the other models. Consequently, an eddy-viscosity reduction leads to different sheet

cavity behaviours according to how this reduction is set in the model.

4.8. Density gradient and Q-criterion

We now propose a qualitative description of the dynamics of sheet cavities with plotting of the

contours of the density gradient modulus (Schlieren-like visualizations) and the iso-lines of the

Q-criterion. Four calculations at three different times are studied: the k − ℓ SST model with c = 0.2

(Fig 9) and with c = 0.1 (Fig 10), the k − ℓ SAS model (Fig 11) and the k − ℓ Reboud model

(Fig 12).

The Schlieren-like visualizations give some information about the sheet. First, all models simulate

a stable attached cavity signaled by a strong density gradient from the abscissa x = 0 m up

to approximately x = 0.035 m for the SST model with c = 0.2 and x = 0.025 m for the other

calculations. This cavity is followed by a time-fluctuating two-phase area, which differs according

to the model. The k − ℓ SST model with c = 0.1 (Fig 10) provides cavitation cloud shedding not

observed either in the experiment or in other computations. The end of the k − ℓ Reboud cavity

(Fig 12) fluctuates slightly between x = 0.75 m and x = 0.85 m whereas the k − ℓ SST model with

c = 0.2 (Fig 9) and the k − ℓ SAS model (Fig 11) do not show such fluctuations. The quasi-stable

sheet computed by the k − ℓ SST c = 0.2 and k − ℓ Reboud models provides strong density

gradients inside the cavity and a shear layer is clearly exhibited. On the other hand, the SAS model

simulates a more homogeneous cavity.

Positive values of the Q-criterion, defined as the second invariant of the velocity gradient tensor ∂ui

∂xj

[36],

Q =
1

2

[

(

∂ui

∂xi

)2

− ∂ui

∂xj

∂uj

∂xi

]

(23)

are used to identify vortices and local rotational areas. A dimensionless quantity is built using the

inlet velocity and the reference length. Iso-line levels vary between 0.004 and 0.01.
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All models simulate a shear layer at the boundary between the stable and quasi-stable parts of the

sheet. Vortex shedding occurs along the boundary between the external flow and the recirculating

flow. The extension of the shear layer differs according to the model.

5. CONCLUSION

An aperiodic quasi stable sheet cavity has been studied in a 2D Venturi configuration by numerical

one-fluid RANS simulations. Numerical results have been compared with experimental data

concerning the void ratio, streamwise velocity, wall pressure and wall pressure fluctuations.

Calculations have been carried out with the Smith k − ℓ turbulence model with different eddy-

viscosity limitation strategies: the SST limiter developed by Menter, a realizability constraints

correction as developed by Durbin, the Reboud correction specially built for cavitating flows and

a Scale-Adaptive Simulation model based on Menter’s work. Moreover, tests on the values of the

SST or realizable limiter have been carried out in order to further reduce the eddy-viscosity.

Results show that the use of an eddy-viscosity limiter lets the model correctly simulate unsteady

behaviours of the sheet, however large discrepancies occur between models. First, reduction of

the parameter c in both the SST and realizable models has shown that it is possible to tune

this constant to obtain an adequate solution. Indeed, a value of c = 0.1 leads to a cavity with

vapour cloud shedding whereas a value of c = 0.2 leads to an underestimation of re-entrant

jet development. Therefore, an intermediate value should give results in good agreement with

experimental observations. However, it is likely that this value depends on the geometry.

On the other hand, the Reboud correction and the SAS model provide local profiles in good

agreement with the experimental data. The RMS pressure fluctuations reveal some differences

between models. With the Reboud correction, the peak of wall fluctuations is largely overestimated.

The topology of the cavity illustrated by density gradient visualizations also shows some differences.

The SAS computation leads to a more homogeneous cavity in comparison with the Reboud solution.

Furthermore, the drastic reduction of the eddy-viscosity caused by the Reboud correction compared

to other models seems to be unnecessary to simulate an unsteady sheet cavity.
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Note that the k − ℓ SAS model provides good results since it does not use an ad hoc correction to

force the model to reproduce the experimental flow. The SAS formulation introduces additional

information from the mean velocity profile to reduce the eddy-viscosity through an added

destruction term in the ℓ transport equation. Consequently, this model has a more robust physical

basis. Its good behaviour in cavitating flows needs to be confirmed by performing three-dimensional

computations and other geometries.
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Table I. Unsteady computations, 4◦ Venturi.

case turbulence model σinlet comments sheet length (m)

1 KL 0.59 steady state 0.075

2 KL + Reboud 0.56 aperiodic quasi stable sheet 0.080

3 KL + SST c = 0.3 0.59 steady state 0.070

4 KL + SST c = 0.2 0.59 aperiodic quasi stable sheet 0.070

5 KL + SST c = 0.1 0.58 aperiodic quasi stable sheet 0.100

6 KL + Durbin c = 0.3 0.59 steady state 0.070

7 KL + Durbin c = 0.2 0.59 aperiodic quasi stable sheet 0.070

8 KL + SAS 0.58 aperiodic quasi stable sheet 0.070
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Figure 1. Schematic view of the 4◦ Venturi profile.
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Figure 2. Enlargement of the mesh near the Venturi throat.
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Figure 3. Velocity (left) and void ratio (right) profiles from station 3 to 5.
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Figure 4. Velocity (left) and void ratio (right) profiles from station 3 to 5.
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Figure 5. Velocity (left) and void ratio (right) profiles from station 1 to 5.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)

Prepared using fldauth.cls DOI: 10.1002/fld



30

x-xi

(P
-P

v)
/P

v

0.1 0.15 0.2 0.25 0.3
-2

0

2

4

6

8

10

12

14

16

EXP
KL
KL-SST : c = 0.3
KL-Realizable : c = 0.3

x-xi

(P
-P

v)
/P

v

0.1 0.15 0.2 0.25 0.3
-2

0

2

4

6

8

10

12

14

16

EXP
KL-Reboud
KL-SST : c = 0.2
KL-SST : c = 0.1
KL-SAS

Figure 6. Dimensionless wall pressure evolution.
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Figure 7. RMS wall pressure fluctuations.
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Figure 8. Time averaged µt/µ profiles from station 1 to 5.
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Figure 9. Contours of the density gradient (left) and iso-lines of the dimensionless Q-criterion (right), at

three instants, KL-SST c = 0.2 model.
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Figure 10. Contours of the density gradient (left) and iso-lines of the dimensionless Q-criterion (right), at

three instants, KL-SST c = 0.1 model.
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Figure 11. Contours of the density gradient (left) and iso-lines of the dimensionless Q-criterion (right), at

three instants, KL-SAS model.
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Figure 12. Contours of the density gradient (left) and iso-lines of the dimensionless Q-criterion (right), at

three instants, KL-Reboud model.
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